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ON THE REPRESENTATION OF LATTICES:.

BJARNI JONSSON

Introduction. The concept of a modular lattice? arose from the study
of normal subgroups of a group, and it has been shown that most known
theorems on lattices of normal subgroups are actually valid for arbitrary
modular lattices. It is therefore natural to ask whether every modular
lattice is isomorphic to a lattice of normal subgroups of some group. As
will be shown in Section 2 below, the answer to this question is negative.
In Section 3 we obtain a different kind of representation applicable to
arbitrary modular lattices. Modifying slightly the methods developed
there we prove in Section 4 a somewhat stronger form of the fundamental .
representation theorem for arbitrary lattices.

1. Preliminaries. The symbols

<, = +,-

will denote inclusion, non-inclusion, sum (least upper bound) and product
(greatest lower bound) in an arbitrary lattice, while the symbols

S,U,N, 6, ¢

will refer to set-inclusion, union (set-sum), intersection (set-product),
membership and non-membership. The following notations will also be
used :

U U, = the union of all sets U, for which the condition ¢(x) holds.

()

{z|p(x)} = the set of all elements x for which the condition ¢(z) holds.

{®,, @y, ..., x,} = the set whose elements are z,, z,, ..., Z,.
(&1, Ty, ..., x,) = the n-termed sequence whose first, second, ..., n-th
terms are respectively x,, z,, ..., &,.
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1 The results contained in this paper constitute part of a research project supported by
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presented to the American Mathematical Society in April 1953. Cf. J6nsson [3].

2 For general information on lattices and modular lattices, see Birkhoff [1].
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X X Y = the Cartesian product of X and Y, i.e., the set of all two-
termed sequences, or ordered pairs, (z,y) with x € X and
yel.

As is well known, binary relations can be regarded as sets whose ele-
ments are ordered pairs. We can therefore apply to them the usual set-
theoretic operations. We shall also need two other operations, relative
multiplication and conversion. The relative product R;S of two binary
relations R and 8 is the set of all ordered pairs (x, y) such that (x, z) € R
and (z, y) € S for some element z, while the converse B-! of R is the set
of all ordered pairs {z, y) such that (y, ) € R.

The domain of a binary relation R is defined by the formula

dmn R = {z|{z, y) € R for some y}.

We say that R is transitive if R;R < R, symmetric if R-! = R. A binary
relation that is both transitive and symmetric is called an equivalence
relation; an equivalence relation whose domain is U is called an equiva-
lence relation over U.

By a partitioning of a set U is meant a family & of mutually disjoint
non-empty subsets of U such that

v=Ux.
XeF

To each equivalence relation R over U there coresponds a unique parti-
tioning & of U such that (p, ¢) € R if and only if p and ¢ belong to the
same member of &. Conversely, each partitioning of U corresponds in
this manner to one and only one equivalence relation over U. The mem-
bers of & will be called the equivalence classes of R or, more briefly, the
R classes.

It is known that the family of all equivalence relations over a set U is
a lattice. Here lattice-inclusion coincides with set-inclusion and lattice-
multiplication with settheoretic intersection while the sum R-8 of two
equivalence relations R and 8 over U is the smallest equivalence relation
over U which contains both B and S. It is easy to see that an ordered
pair (z, ¥) belongs to B+8 if and only if there exist finitely many ele-

ments zy, 2y, ..., 2, such that z, ==, 2, =y, and (2;,2,,)e RUS for
j=0,1,...,n—1. Hence R+8 is the union of the non-decreasing se-
quence

(1.1) R;S, R;S;R, R;S;R;S, R;S;R;SiR, ....

The fundamental representation theorem for lattices (Whitman [5],
Theorem 1) states that any lattice 4 is isomorphic to a sublattice &7 of
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the lattice of all equivalence relations over some set U. We shall be con-
cerned with the possibility of choosing & in such a way that for B, Se A
the sequence (1.1) is constant from the first, second, or third term on, so
that

R+S = R;S, or RS = R;S;R, or R+8 = R;S;R;S .
The following terminology therefore suggests itself:

DerFiNiTION 1.1. By a representation of a lattice A we mean an ordered
pair (F, U) such that U is a set and F is a function which maps A isomor-
phically onto a sublaitice of the lattice of all equivalence relations over U.
We say that {F, U) is

(i) of type 1 of F(@)+F(y) = F(x);F(y) forx,ye 4,
(i) of type 2 if F(x)+-F(y) = F(x);F(y);,F(x) for v,y 4,
(iii) of type 3  if F(x)+F(y) = F(x),F(y);F (x);F(y) for x,yec A .

The equation in (i) is equivalent to the condition that
F(z);F(y) = F(y);F () .

In other words, to say that 4 has a representation of type 1 means that
A is isomorphic to a lattice of commuting equivalence relations. It is
well known that the lattice of all normal subgroups of a group @ has a
representation of type 1; we let U = @, and for each normal subgroup
H of G let F(H) be the set of all ordered pairs (u, v) with uv—1e H. It is
not known whether the converse of this result holds.

It is easy to see that a representation of type 1 is also of type 2, and

a representation of type 2 is also of type 3. Somewhat less trivial is the
following :

TarorEM 1.2. If a lattice A has a representation of type 2, then A is
modular.

Proor. Suppose (F, U) is a representation of 4 of type 2. Assuming
that @, b, c e A and a < ¢, we shall show that

(@+b)-c<a+b-c.
If p,qe U and

(p, ) € Fl(a+b) - c],
then

(p,qd>e F(a+b) and <(p,q)eF(c).
Since

F(a-+b) = F(a)+F(b) = F(a);F(b);F(a),
there exist r, s € U with

13*
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(p,ryeF(a), (r,s)el(b), (s,9)eF(a).

Using the fact that F(a) = F(c), together with the symmetry and tran-
sitivity of F(c), we infer that

(r, 2): <P, ), {2, ) € F(c), (r,s)eF(c),
(r,s)eFb-c), <(p,q)eF(a)Fb-c)F(a)= Flat+b-c).
Thus
Fl(a+b):c] = Fla+b-¢c), (a+d)-c<atb-c.

2. Representations of type 1. The purpose of this section is to show
that there exist modular lattices which do not have a representation of
type 1. A preliminary result is needed.

LemMa 2.1. Every modular lattice A which has a representation of type 1
satisfies the following condition :
If ay, ay, as, by, by, by € A and if
x = (@g+by) * (211by) * (@y+by) ,
(x) Y = (ap+ay) * (by+01) - [(@o+as) * (Do+b2)+(a1+as) * (b,40,)],
then
x < ag (a1 +y)+bo* (by+Y) .

Proor. Suppose (F, U) is a representation of 4 of type 1. If p,qe U
and

(p, pel(x),

(p, ©) € F(a;+b)) = F(a,);F (b)) for j=0,1,2,

then

and there exist elements 7, 7;, 7, € U such that
(p, ;) € F(a), (rj» @) € F(b)) for j=0,1,2.
It follows that
{ro, 73) € [F(ao);F(az)] N [F(bo);F(by)] = Fl(ag+as) - (be+bs)],
(ry, 11) € [F(ay);F(a1)] N [F(by);F(by)] = Fl(a,+as) - (b;+b5)],
and hence
(7o, 1) € F(ag+ay) + (bo+b5)+(a1+as) « (b1+b,)] .
Furthermore
(1o, 11) € F(ay+ay), (o> 71) € F(by+by) .
Consequently
(7’0, ’I'1> € F(y) ’
(p, 1oy € Flay - (a:3+y)], <{ro,q) € F[by* (b+¥)],
(P, q) € Flay * (a14y)+bo - (bi+¥)].
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We conclude that
F(x) < Fla, - (a,+y)+bo - (b1+¥)]

and hence
r < agc (A 4y)+bo * (b1+y) .

In order to show that the condition («) is not satisfied in every modular
lattice we consider the lattice A of all subspaces of a projective plane P.
The elements of 4 are the subspaces of P—the points and lines of P as
well as the null space and P itself — while the product z - y and the sum
x+y of two subspaces « and y of P are respectively the largest subspace
contained in both z and % and the smallest subspace containing both x
and y. It is well known that this lattice is modular.

THEOREM 2.2. If A4 is the lattice of all subspaces of a projective plane P,
then the following conditions are equivalent:

(1) 4 has a representation of type 1.
(ii) A4 satisfies the condition (x).
(iii) P ¢s Desarguesian.
(iv) A 1is isomorphic to a lattice of subgroups of some Abelian group G.

Proor. We know from Lemma 2.1 that (i) implies (ii), and from the
remark following Definition 1.1 that (iv) implies (i). It is therefore suffi-
cient to show that (ii) implies (iii) and (iii) implies (iv).

Assume that (ii) holds, and let aq, a4, @y, by, by, b, be distinct points of
P such that the lines

ao-+bg, a3+b;, ay+b,

meet in a common point z. Defining « and y as in Lemma 2.1 we have
z < x (with equality holding unless the three lines coincide) and hence

z < ay (@ 4-y)+bo - (b1+u) .
It follows that y == 0, for otherwise
@ (@1+y)+bo * (by+y) = ag - ay+by by = 0.

Choose a point z, of P with 2z, < y. Then the lines a,4a, and by+b, meet
in z,. Furthermore

2y < (@g+ay) - (by+by)+(a;+as) - (by+b,) ,

whence there exist points z, and z, such that

21 < (@o+as) * (botba), 2z < (@1+as) - (by+by), 2y < 2pt2 .
Thus the three pairs of lines
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ay+ag by+by;  aytag, by+-by;  agtay, by+-by

meet in the three collinear points z,, 2, and z,. Hence P is Desarguesian.

Finally suppose (iii) holds. It is well known that A4 is then isomorphic
to the lattice of all subspaces of a three-dimensional vector space V over
a division ring (skew-field). But V is an Abelian group under vector
addition, and the subspaces of V are subgroups of V. Hence (iv) holds.

THEOREM 2.3. 4 free modular lattice with four or more generators does
not have a representation of type 1.

Proor. We shall show that such a lattice does not satisfy the condition
(x). Since this condition can be expressed in the form of an equation, it
is sufficient to show that there exists a modular lattice with exactly four
generators in which («) fails. For this purpose we make use of the fact
that there exists a non-Desarguesian plane P generated by four points
(see e.g. Hall [2], Theorem 4.6, p. 239). The lattice 4 of all subspaces of
P is generated by the same four points, and it follows from Theorem 2.2
that the condition (x) fails in 4.

THEOREM 2.4. The lattice of all subspaces of a non-Desarguesian projec-
tive plane ts not isomorphic to a lattice of normal subgroups of a group,and
neither is a free modular lattice with four or more generators.

Proor. By Theorems 2.2 and 2.3 and the remark following Definition
1.1.

In the proof of Theorem 2.3 it was shown that a free modular lattice
with four generators contains six elements a,, a,, a,, by, b, b, for which
the condition («) fails. Hence there exists an equation in four variables
which fails for the generators of this lattice but holds in every lattice of
commuting equivalence relations. We can actually write down such an
equation explicitly. Suppose z, a,, a,, @, are elements of a modular lattice
A, and let

2 = (a,12) * (a,12),
by = (@+2') * (@1 +@s), by = (a1+7) * (@2+ao), by = (a2+2) - (@o+ay),
¢o = (@1+as) - (b1+by), ¢ = (@a+ao) * (batby), €2 = (Ag+ay) * (bo+by) .

Using the same ideas as in the proof of Lemma 2.1, we can show that if
A has a representation of type 1, then

(2.1) o < ¢+-¢,y .

Applied to the lattice of all subspaces of a projective plane this inequality
implies the special case of Desargues’ theorem where the sides of one of
the two triangles involved pass through the vertices of the other. (We let
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@y, @y, @y and by, by, b, be the vertices of the two triangles and z the center
of perspectivity.) It follows that the above inequality is not identically
satisfied in every modular lattice, and must therefore fail if z, a,, a,, a,
are distinct generators of a free modular lattice?.

3. Representations of type 2. We shall now prove that every modular
lattice has a representation of type 2. The following terminology will
be useful:

DEeFIiNITION 3.1. By a weak representation of a lattice A we mean an order-
ed pair (F, U) where U is a set and F is a one-to-one function mapping A
onto a set of equivalence relations over U in such a way that

Fx-y)=F(x)n F(y) whenever x,yc A .

DEerFINITION 3.2. Given two weak representations (F, U) and (G, V) of a
lattice 4, we say that (Q, V) is an extension of (F,U) if U < V and
Gx)yn(UxU) = F@x) forxecd.
Lemwma 3.3. Any lattice A has a weak representation (F, U) which sotis-
fies the following condition:
For any two distinct elements w and v of U, the set
() {x|lx e A and {u,v) € F(x)}

18 either empty or has a smallest element.

Proor. With each element z of 4 associate two distinet elements ¢(z)
and y(z) in such a way that the sets {g(2), v(2)}, {p(z’), v(z')} are disjoint
for z 3= 2'. Let

U= U @), v},

ze A

and for each element x of A let F(x) be the equivalence relation over U
whose equivalence classes are the sets

{p(2), v(2)}
{p(2)}, {v()}

with z <<z and the sets
with z £ «.

3 This provides an affirmative answer to the question raised in Problem 27 of Birkhoff
[1]. The above inequality and the condition («) are based on similar ideas as the identities
W, and W, used in Schiitzenberger [4] to characterize Desarguesian projective planes.
See the footnote at the end of this paper.
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It is a simple matter to check that (¥, U) is a weak representation of
A. Furthermore, if 4 and v are distinct elements of U and if the set

B = {x|x e A and (u,v) € F(x)}
is not empty, then

(u, v) = p(z), (2)) or (u,v) = (y(2), p(2))
for some z € A. Hence
B={z|xeAd and z <z},
so that z is the smallest element of B. Thus the condition (f) is satisfied.

Lemma 3.4, Suppose A is a modular lattice and (F, U) is a weak repre-
sentation of A satisfying the condition (B). If a, b € A and

(v, 9 € F(a+b),
then there exists an extension (@, V) of (F, U) such that (G, V) satisfies the

condition () and
(p, ) € G(a);G(b);G(a) .

Proor. Dismissing as trivial the case in which p = ¢, take two distinct
elements r and s which do not belong to U, and let

V=UUf{rs}.
Let d be the smallest element of the set

{zx|zre A and (p,¢) e F(z)},
and let
o =at+d, b =a-b.
Note that d < a+b and hence a < a' < a+b. It follows by the modu-
lar law that
a =a+b.

In defining G(x) we consider four cases:

If @’ <z, then (p, ¢) € F(x), so that p and ¢ belong to the same F(x)
class. In this case the G(x) classes shall be the F(z) classes which do not
contain p and g, and the set obtained by adding r and s to the F(x) class
containing p and q.

Ifa <xand b’ <, then d < x and hence p and g belong to different F(x)
classes. In this case the G(x) classes shall be the F'(x) classesnot containing p
or ¢, the set obtained by adding r to the F(x) class containing p, and the set
obtained by adding s to the F(x) class containing g.

If @ & = and b’ < z, then the G (x) classes shall be the F(x) classes and
the set {r, s}.
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If o & x and b" & , then the G'(z) classes shall be the F(x) classes and
the sets {r}, {s}.

Clearly these conditions define a function G which maps 4 onto a set
of equivalence relations over V. Furthermore, if u, v € U and z € A then
the following four statements hold:

(1) (u, v) € G(z) if and only if (u,v) e F(z).

(2) (u, ry e G(x) if and only if (u,p) e F(x) and ¢ < x.
(3) (u, s) e G(z) if and only if (u, ¢) e F(z) and a < x.
(4) (r, s)eG(x) f and only if ' < =x.

From (1) we infer that
Gx)n (UxU)=F(x) forxed,

and the fact that F is one-to-one implies that @ is also one-to-one. Using
(1) - (4) and the symmetry of the relations G(z) we easily see that

Gx-y)=Gx)nGy) forx,yecd.

Hence (G, V) is a weak representation of A and an extension of (¥, U).
We next show that (@, V) satisfies the condition (f). If  and v are
distinct members of U, then the set

{xlxe 4 and (u,v) e G(x)} = {xr|re A and (u,v) € F(z)}
is either empty or else has a smallest element. If w € U, and if the set
B = {x|xe A and (u,r) e F(x)}
is non-empty, then it follows from (2) that the set
C={x|lrecA and (u, p)ec F(x)}

is also non-empty. Hence C has a smallest element ¢, and we use (2) again
to infer that a--¢ is the smallest element of B. Similarly, if » € U, then
the set

{xlxe A and (u, s) e G(x)}

is either empty or else has a smallest element. The set
{zlxe A and (r,s) e G(x)} = {x|xe 4 and b’ < x}

has the smallest element &’. Using the symmetry of the relations G(x) we
conclude that (@, V) satisfies the condition (f).
Finally we have

(p,yeGa), (r,seGbd), (s, 9eba),
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so that (p, ) € G(a);G(b);G(a) .

Lrmma 3.5. Suppose A is a lattice and A is a limiting ordinal, and sup-
pose with each ordinal & < A there is associated a weak representation (F,, U,y
of A such that if & <n < 4, then (F,, U,) is an extension of (F., U.). If

U,= UU and F(x) —UFEx) for x €A,
£<a
then (F,, U;) is a weak representation of A and an extension of (F., U,)

for & < A. Furthermore, if the condition (B) is satisfied by each (F., U.)
with & < 4, then this condition is also satisfied by (F,, U,).

Proor. The fact that
(3.1) Fy(x), Fy(x), ..., Fe(x), ... (&< i)

is a (possibly transfinite) non-decreasing sequence of equivalence rela-
tions implies that F,(x) is also an equivalence relation and that

dmn Fy() = U dmn F0) = U v, = 1,
§<A £<l

Furthermore, if u, v € U, and z € 4, then
(u,v) € Fy(x) if and only if (u,v)e F () for some n < 4.

In view of the monotonic character of the sequence (3.1) we may assume
that & < #. Then (U,, F,) is an extension of (U,, F,), so that

(w,v)e F,(x) ifand onlyif (u,v)e F.(x).
Consequently
(3.2) Fyx)n (U xU,) = Fx) for <A, xzed.

This implies that the function F; is one-to-one.
If ,y € 4, then

ooy =Ure y=Urwnren.

Again using the fact that the sequence (3.1) is non-decreasing, we infer
that
Py = (U r@]n[Urel=re0ne.

Thus (F,, U,) is a weak representation of 4 and, by (3.2), an extension
of (F,, U,) for & < A.

Now suppose (F,, U,) satisfies the condition (8) for & < A. If  and v
are distinct members of U,, then there exists an ordinal & < 4 such that
u, v € U,. Hence, by (3.2),
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{rlre A and (u,v) € F;(x)} = {zlre A and (u,v) € F(z)},
and we infer that this set is either empty or else has a smallest element.

Thus (F,, U,) also satisfies the condition (g).

Lemma 3.6. Suppose A is a modular lattice and (F, U) is a weak repre-
sentation of A satisfying the condition (B). Then there exists an extension
(G, V) of (F, U) such that (@, V) satisfies the condition (B) and

F(a+b) < G(a);G(b);G(a) for a,bec A.

Proor. Letting K be the set of all ordered quadruples (p, ¢, a, b) such
that a, b€ 4 and (p, ¢) € F(a+b), we arrange the members of K into a
(possibly transfinite) sequence

(pm QU’ ao: b0>1 <p1: QI5 al) b1>’ M <p£’ qE’ a/&: bs): e (5 < /1) b
and use Lemmas 3.4 and 3.5 to obtain a sequence
Fo, Up), F, Uy, ..., (F, Ug), ... (£EZA)

of weak representations of 4 with the following properties:

(1) Fo=F and U,=U.
2) If £ < 4, then (F,,, U,,,) is an extension of (F,, U,) and

(ps: %) el §+1(a5);F §+1(b5);lpf+l(a’£) .
(3) If £ < 1 and ¢ is a limiting ordinal, then

v,=Uv, F)=UF@ forzecd.
n<é& n<é&
(4) (F, U,y satisfies the condition (f) for § < 4.
Welet V = U, and @ = F,, and note thatif a,bed and
(P, ) € Fla+d),
then (p, ¢, a, b) is one of the quadruples (p,, g., a., b;) and hence
(P @) € Fepy(a);Fe1(0);Feq(a) = G(a);G(b);G(a) .

F(a+b) < G(a);G(b);G(a) for a,bec 4.

Thus

THEOREM 3.7. Every modular lattice has a representation of type 2.

Proor. It follows from Lemmas 3.3 and 3.6 that if 4 is any modular
lattice, then there exists an infinite sequence

(Fo, Uy, (F1, Uy, oo (s (F, U,y o
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of weak representations of A satisfying the condition (8) and such that
(F,.1 U, is an extension of (¥,, U, ) with

F.(a+b) = F, (a);F, (b);F, (a) fora,bed.
Letting
v=Uvu, 6¢w)=Ur,w forzeca,
n<oo n<oo
we infer from Lemma 3.5 that (@, V) is a weak representation of A.
Furthermore, if @, b € 4 then

¢a+b) = U F(a+b) < U F, @) F, ,0)F, ()
< G(a);G(b);G(a) = G(a)+G(b) = G(a+Db).
Thus
G(a)+G(b) = G(a);G(b);G(a) for a,be A4,

and (@G, V) is a representation of 4 of type 2.

4. Representations of type 3. In the preceding section the modular law
was used only once, in the proof of Lemma 3.4. That the modularity of
the lattice is essential for the construction given there is clear from Theo-
rem 1.2. However, replacing this lemma by a slightly different one but
using otherwise the same reasoning as in Section 3, we shall be able to
show that every lattice has a representation of type 3.

Lemma 4.1. Suppose A is a lattice and (F, U) is a weak representation
of A. If a, be A and

(P, ) € F(a+Dd),
then there exists an extension (G, V) of (F, U) such that
(p, 9) € F(a);F(b);F(a);F(b) .
Proor. Take three distinct elements 7, s, ¢ which do not belong to U,
and let V=UuU{rs,t}.

In defining G(x) we consider four cases.

If a <z and b <z, then (p, ¢) € F(x), so that p and ¢ belong to the
same F(z) class. In this case the G(x) classes shall be the F(x) classes
which do not contain p and ¢, and the set obtained by adding r, s and ¢
to the F(x) class containing p and gq.

If a <x and b £z, then the G(x) classes shall be the F(x) classes
which do not contain p, the set obtained by adding » to the F(x) class
containing p, and the set {s, ¢}.



ON THE REPRESENTATION OF LATTICES 205

Ifa < xand b << , then the G(z) classes shall be the F(x) classes which
do not contain g, the set obtained by adding ¢ to the F(x) class containing
g, and the set {r, s}.

If @ £ x and b & «, then the G(z) classes shall be the F(x) classes and
the sets {r}, {s}, {t}.

These conditions define a function & which maps 4 onto a set of equiv-
alence relations over V. Furthermore, if «, v € U then the following seven
statements hold:

(1) (u, v) € G(x) if and only if (u, v) € F(x) .

(2) (u, r) e G(z) if and only if (u, p) e F(z) and a < x.

(3) (u, 8) € G(x) if and only if {u, p) e F(z),a <z and b <=z.
(4) (u,t) € G(zx) if and only if (u,¢de F(zx) and b < x.

(5) (r,s)eGx)ifandonlyif b <z.

6) (r,t)eG)ifandonlyife <zandb <=z.

(7) ¢s,t)yeGx)ifandonlyifa <=z.

As in the proof of Lemma 2.4, we infer that (G, V) is a weak representa-
tion of 4 and an extension of (¥, U). Finally

(p,r)e@a), (r,s)eG(b), (s, tyeG(a), <(tq)eGd),
so that
(p, ) € G(a);G(b);G(a);G(b) .

Lemma 4.2. Suppose A is a lattice and (F, U) is a weak representation
of A. Then there exists an extension (G, V) of (F, U) such that

F(a+b) < G(a);G(b):G(a);G() for a,be A .

Proor. We proceed as in the proof of Lemma 3.6, using Lemma 4.1 in
place of Lemma 3.4.

THEOREM 4.3. Every lattice has a representation of type 3.

Proor. We proceed as in the proof of Theorem 3.7, using Lemma 4.2
in place of Lemma 3.6.

5. Unsolved problems. In connection with the above results it is natural
to ask whether the class of all lattices which are isomorphic to lattices of
commuting equivalence relations can be characterized by means of iden-
tities. It can be shown that a lattice of dimension 4 or less has a represen-
tation of type 1 if and only if it satisfies the modular law and the condi-
tion (x) of Lemma 2.1, but is is not known whether these conditions are
sufficient in the case of a lattice of higher dimension. Similar questions
can be raised concerning lattices which are isomorphic to lattices of nor-
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mal subgroups of arbitrary groups or to lattices of subgroups of Abelian
groups. In particular, it would be interesting to know whether these three
classes of lattices are actually distinct.
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4 Added in proofs: Dr. Schiitzenberger has pointed out to me that the inequality
(2.1) is actually equivalent to W, He has also shown that every lattice of normal
subgroups of a group satisfies 11, thus obtaining an independent solution of Problem
27 of Birkhoff [1]. By a slight modification of his reasoning it can be shown that
N, holds in every lattice of commuting equivalence relations.



