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SYMMETRIC MANIFOLDS OF COMPACT TYPE
ASSOCIATED TO THE JB*-TRIPLES Cy(X, Z)

P. MELLON

Abstract.

We examine the compact type symmetric Banach manifolds of infinite dimension which are asso-
ciated to the JB*-triples of the form Co(X,Z), for X a locally compact Hausdorff space and
Z a JB*-triple. The case of the commutative C*-algebras receives special attention.

0. Introduction.

Symmetric manifolds of compact type are the infinite dimensional analogues of
the compact Hermitian symmetric spaces. They arise as the simply connected
symmetric manifolds associated via [5] to the dual triples of JB*-triples, (the dual
triple of a given triple is obtained by multiplying the triple product by —1).
Although “dual” in this sense to the bounded symmetric domains, the compact
type symmetric manifolds are not as well understood and many of the natural
questions suggested by the finite dimensional case remain to be answered.

In [7] all compact type symmetric manifolds are shown to have constant
positive holomorphic curvature. The compact type manifolds associated to the
JB*-triples #(H, K), for complex Hilbert spaces H and K, are known to be
certain Grassmann manifolds (cf. [4]).

The purpose of this paper is to examine the compact type symmetric manifolds
associated to JB*-triples of the form Cy(X, Z), where Z is a JB*-triple and X is
a locally compact Hausdorff space.

It is shown that if Z has compact type manifold M then the function space
Co(X, M), consisting of all based maps from the one point compactification of
X to M (sending co to the base point of M), has a symmetric manifold structure
on the component of the base point.

Taking universal covers then gives the compact type symmetric manifold
associated to Cy(X, Z).

Results of this type for compact X are given in [6].
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Section two examines the Lie algebra of derivations on Cy(X, Z), for Z finite
dimensional, and shows it to be exactly the Lie algebra of bounded elements in
C(X,aut(Z)). This result was already known for Z = C.

In the final section, more precise information about the compact type symmet-
ric manifolds of the commutative C*-algebras, Co(X), is given. For example, it is
shown that, as in the finite dimensional case, the complex structure on the
symmetric manifold is induced by the action of a complex Lie group thus
realising the manifold as the quotient of a complex Lie group by a complex Lie
subgroup.

For background material on JB*-triples see [2] or [8].

Notation. For complex Banach spaces E and F, let #(E, F) denote the Banach
space of all continuous linear maps: E — F and let #(E) = £(E, E). We denote by
#*(E) the space of all continuous homogeneous polynomials: E — E of degree k.
Wesay T e #(E)is hermitian if ¢'*T is an isometry for all A€ R. Let Z be a complex
Banach space with continuous conjugate-linear mapping *: Z - £*(Z) and
write a* for *(a). For all g, b, z in Z define

{a,b,z}:= 3(b*(a + z) — b*(a) — b*(2))

and define a O b(z): = {a,b,z}, for all z in Z.
Then (Z, *) is called a J*-triple if

0 {aB,{x. . 2}} = {{&. B,x}, 3,2} — {x, {B, oy}, 2} + {x, 5, {e, B,2}} for all
o p,x,yand zin Z

and
(i) « O ae #(Z)is hermitian for all « in Z.
If, in addition, « O o 2 0 and |« D | = |ja||® for all  in Z we call (Z, %)

a JB*-triple.

A manifold M modelled locally on open subsets of complex Banach spaces
with biholomorphic coordinate transformations is called a complex Banach
manifold. Let TM denote the tangent bundle of M.

A mapping «: TM — R is called a norm on TM if the restriction of a to every
tangent space T, xe M, is a norm on T, with the following property: there is
a neighbourhood U of x in M which can be realised as a domain in a complex
Banach space E such that

cllall £ «(u,a) < C|jaf

for all (u,a)e TU > U x E and suitable constants 0 < ¢ =< C. We then refer to
(M, °f)’ or simply M, as a normed manifold. If (M, &) is another complex normed
manifold, we say that a holomorphic mapping ¢: M — M is an isometry if for all
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(z,v)e TM, &¢(z), ¢'(z)v) = a(z,v).

Let Aut(M) denote the group of all biholomorphic isometries of M.

A connected complex normed manifold M is called symmetric if for every
ae M there exists an involution s, Aut(M) having a as an isolated fixed point.

A morphism of the symmetric manifolds M and M is a holomorphic mapping
h: M > M such that hos, = Shex © b, for all x in M. The symmetric manifolds are
characterised by the following deep resultin [5]: The category of simply connected
symmetric complex Banach manifolds with base point is equivalent to the category
of J*-triples.

If (Z, *) is any J*-triple, the J*-triple (Z, — *) is referred to as the dual triple of
(Z, *). In particular, if (Z, *) is a JB*-triple its dual triple is no longer JB* and the
simply connected symmetric manifold associated to(Z, — *)is called the compact
type symmetric manifold associated to (Z, *). In finite dimensions these are
exactly the Hermitian symmetric spaces of compact type.

The set of all continuous mappings from a topological space Y to a topological
space W is denoted C(Y,W). Unless otherwise stated, C(Y, W) will have the
compact open topology and all subspaces will have the induced topology.

Given geC(Y,W) we define, for any topological space X,g,:C(X,Y)—
CX, W) by g, (/) =g° f.

We use the terminology of pairs of topological spaces; namely a pair (X, A)
(also denoted X ,) where X is a topological space and A < X is a subspace. When
A = {x} we write (X, 4) simply as X,. A mapping between pairs of topological
spaces (X, A) and (Y, B)is amapping f: X — Y such that f(4) < B. We denote the
set of all such continuous mappings as C(X 4, Yg).

We may consider homotopies of such mappings relative to the pairs i.e.
continuous mappings A: [0,1] x X, — Yz.

As above, if g € C(Yg, W), for pairs (Y, B), (W, C) then for any pair (X, A), we
define g,: C(X 4, Yp) = C(X 4, Wc) by g4(f) =g- /.

1. Symmetric manifolds of compact type for Co(X, Z).

Let Z be a J*-triple and let M be the unique simply connected symmetric
manifold associated to Z with base point my. Let L = Aut(M) be the real Lie
group of biholomorphic isometries of M and denote by ¢ = aut(M) the Lie
algebra of all infinitesimal isometries of M. There is a decomposition

t=k®Dp
where k is the Lie subalgebra of all triple derivations of Z, also denoted aut(Z)

0 .
and p consists of all vector fields of the form X, = (¢ — {z,, Z})E forallain Z.
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(Recall that a linear mapping T: Z — Z is a triple derivation if
T({x,y,2}) = {T(x), .z} + {x, T(), 2} + {x,, T(2)}

forall x,y,zeZ)

Throughout, X will denote a locally compact Hausdorff space and
X = X U o its one point compactification. Clearly, the Banach space Co(X, Z)
with the pointwise defined triple product is again a J*-triple.

The aim of this paper is to determine the form of the symmetric manifold
associated to Cy(X, Z).

The following lemma is immediate.

LEMMA 1.1. The space
7:= C(Xy, ) = {feCX,2) f(0) €k},

with Lie product defined pointwise on C(X, ¢) and with the supremum norm, is areal
Lie algebra. Moreover £ = C(X, k) @ Co(X, p).

We look for a corresponding Lie group.
LeEMMA 1.2. The space
Q =C(X,,Ly) = {feCX, L) f(0) e K}
has the structure of a real Lie group with Lie algebra .

ProoF. Itis wellknown that C(X, L)is a Lie group with Lie algebra C(X, #) (cf.
[6]). Moreover, if exp:/ — L is the exponential mapping then the exponential
mapping on C(X, ¢) is exactly exp,: C(X,¢) - C(X, L).

The group Q is a closed subgroup of C(X, L) for which the Lie algebra

{feC(X,¢) exp,(tf)eQ forall teR}
is a split subspace of C(X, ). In fact,
¢ ={feC(X,¢).exp,(tf)eQ forall teR}

and satisfies C(X,#) = 7 @ p, where elements of p are identified with constant
magpings inC(X, 7). Asa consequence (cf. [8] Prop. 8.13) Qis a Lie subgroup of
C(X, L) with Lie subalgebra 7.

In fact, the charts on Q are exactly those induced by the mapping exp,. To be
precise, let U and V be neighbourhoods of 0 e # and the identity e € L respectively,
such that exp: U — V is bianalytic. Then

exp,: CX,U)n? - CX,V)nQ

=U, 1=V

*
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is a homeomorphism, so that (V,,exp, ') is a chart of Q about e. Using the
multiplicative structure of Q, we get a chart about every point f € Q as follows.
Since Q is a topological group, the mapping: Q — Q given by: g+ fg is a homeo-
morphism and hence fV, is an open neighbourhood of f in Q which is homeo-
morphic to U, in 7.

We define a pointwise action of C(X,L) on C(X,M) as follows. Let
rL x M - M denote the action of L on M. Identifying C(X,L x M) with
C(X,L) x C(X, M) in the natural way, then r,: C(X, L) x C(X, M) - C(X, M)
where, as above,

(9, m)(x) = r(g(x), m(x))

for all ge C(X, L) and me C(X, M). It is not difficult to see that r, is continuous.

Let p: L - M be defined by p(f) = r(f,m,), for all feL. Let m, denote the
constant mapping in C(X, M) sending X to my.

Then, p,: C(X, L) —» C(X, M) and p, is continuous.

The restriction of r, to Q X C(X, M) and the restriction of p, to Q are also
continuous and are again denoted by r, and p,.

Throughout, we let Co(X, M):= C(X ws Mu,), With base point the constant
mapping m.

It is clear that p,(g9)e Co(X, M) for all ge Q. We examine the range of the
mapping p,: Q — Co(X, M). The following result is Lemma 1.2 of [6].

LEMMA 1.3. The mapping p: L - M is a locally trivial fibre bundle with fibre K.

The path-connected component of a base point in a topological space Y is
denoted by Y°. The base point of a Lie group is its identity element.

For convenience, L:= C(X,, Ly)® and M:= Co(X, M)°.

Note that, since M is simply connected, K is connected and hence path
connected. Therefore, identifying elements of K with constant mappings in
C(X,,Lg), we have K < L.

LEMMA 1.4. The real Lie group L acts transitively on M.

Proor. Fix feM arbitrary. There exists A: [ x X — M continuous with
A0, x) = mg and A(1, x) = f(x)for all xe X,and At, 0) = moforalltel = [0,1].
Since p: L— M is a locally trivial fibre bundle, we have a solution to the
homotopy lifting problem posed by the following commutative diagram

X —-¢ L
o 1
IxX -* M

where iy(x) = (0, x) for xe X
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Namely, there is a homotopy u of e, u: I x X — L such that poyu = 4. In
particular, u(t,0)ep ™ '(mo) = K, for all tel and hence u is a path in Q. Let
ge C(X, L) be given by g(x) = p(1, x) for all xe X. Then ge Q° and p,(9) = f.

We denote the action of L on M again by r,. For geL and me M we let
g(m):= r,(g,m) and for W = M we let g(W):= {g(w): we W}.

PROPOSITION 1.5. M has the structure of a symmetric complex manifold on which
the real Lie group L acts transitively as a group of biholomorphic isometries.

ProoOF. The isotropy subgroup, K, of L at m, in M is contained in C(X, K).
From Lemma 1.4 we may identify I/K and M under the mapping gK — g(m,),
for ge L. We may therefore consider M as a topological space for the quotient
topology which it inherits under this identification.

The quotient topology thus described on M is finer than the compact open
topology on M (that is, the topology induced on M from the compact open
topology on C(X, M)). Although the compact open topology on M is the most
natural one in this instance, we first show that M with the quotient topology has
the desired structure. It will later be an easy matter to show that this structure is
also compatible with the compact open topology on M.

The following result is well known: for any Lie subgroup P of a Lie group Q the
space N:= Q/P has a manifold structure such that the canonical projection:
Q — Nisan analytic submersion. Moreover, for any Banach space splitting of the
Lie algebra g of Q as g = p @ m, where p is the Lie algebra of P, there is a chart
(x,U,m) of N about ny:= P such that y(exp X(n,)) = X, for all X in some
neighbourhood of Oem.

The underlying real analytic structure of the complex manifold M is isomor-
phic to that of L/K and we have £ = k @ p, is homeomorphic to Z via a real-
linear mapping ¢.

From the above therefore, there exists a chart (¢, U, Z) of M about m, such that
@ (exp X(my)) = &(X), for all X in some neighbourhood of O p.

Now, M with the quotient topology is homeomorphic to /K, so M has the
structure of a real analytic manifold such that the canonical projection: I — M is
areal analytic submersion. The splitting 7 = C(X, k) ® Co(X, p) then gives rise to
a chart Y of M about m, such that

¥ (exp A(mo)) = {y(4)

for all A in some neighbourhood of 0 Cy(X, p).
For x in X, we have

¥ (exp Amo))(x) = £4(A)(x) = &(A(x) = ¢ (exp A(X)(mo)) = ¢ (exp A(mo))x).

In other words, there is a neighbourhood U, of my in M and a chart
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Y: Uy = Co(X, Z) such that Y(f)(x) = ¢(f(x)), for all fe U, and all xe X. In our
notation ¥ = ¢, and we may assume that U, = C(X,U)n M, so that
(¢4 Uy, Co(X, Z)) is the real analytic chart of M about m,,.

Charts given elsewhere are translates of this. Since L acts real analytically on
M, the mapping Y, = ¢y og 'ong(U,)isachart of M about m = g(m,),forge L.

On the other hand, it is easy to see that if M is given the compact open
topology, the mapping ¢,.: U, — Co(X, Z) described above is still a homeomor-
phism onto its image. Moreover, for geL, the mapping: M — M sending
m — g(m)is a homeomorphism for the compact open topology so that M with the
compact open topology has the real analytic structure described above.

In fact, the charts just described give M a complex manifold structure on which
the elements of L act as biholomorphic mappings.

To see this, we must show that for all g, hin Lsuch that W = g(U,) ~ h(U,) + @
then Y, oy, Ly (W) — ¢, (W) is a biholomorphic mapping.

It suffices to consider the case g(U,) n U, + 0, for g el.

Fix g arbitrary in L such that W = U, n 9(U,) + 0. We have the following
commutative diagram

w f - g few
19+ Lo,
(W) du(f) = dulg™ )Yy (W)

where A = Yot = pyog tod, .

We know that A is real analytic, indeed real bi-analytic. To see that A is
biholomorphic we must simply show that A'(a) is a complex linear mapping for all
ac g (W)

Fix a = ¢,(f) € ¢,(W) arbitrary and fix x arbitrary in X.

Then g(x)U n U % @ in M and the mapping &, = ¢pog(x) "' o ¢! defined by
the following commutative diagram is holomorphic.

Ungx)U m —="="" gx)"'meU
I l¢
$(m) -8 d(g(x) ™ (m)

By definition A(a)(x) = &.(a(x)).

The mapping &,: Co(X, Z) = Z, given by &,(z) = z(x), for all ze Co(X, 2), is
complex linear.

Define a mapping A,: ¢ (W)= Z by A(w) = AW)(x) = {;0ex(w), for all
We @ (W)

The mapping 4, is clearly holomorphic. Moreover, for we ¢,(W),
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14x(a + w) — Ai(a) — (A(@)w)x]| I4a + w)x — Ala)x — (X(a)w)x||

li = lim
— Il —0 Wil
< i V@t ) = Ha) — (@)
o Wl
=0.

By definition then, 2 (a)(w) = (1'(@)w)x.

Since 4, is holomorphic, 4’(a) is complex linear and as this holds for all xe X,
A'(a) is a complex linear mapping. Therefore A is holomorphic and thus clearly
biholomorphic. It follows that M has a complex manifold structure on which the
elements of L act on M as biholomorphic mappings.

Now fix h arbitrary in C(X, K) and fix x arbitrary in X.

The identification T,,,01\7I > Co(X,2) identifies h'(my) and A4'(0) where
A=@yohodp, L

In identifying T,, M and Z we identify h(x)(my) and £ (0) where &, =
¢ohlx)op™".

In particular, for we Cy(X, Z),

) 12 Owl = Sup 1A O)w)x|| = Sup 14,0wll
= sup 15O W)l

Since for all x € X, h(x) acts as anisometry on M, &,(0) is an isometry for the norm
on Z and hence ||(0)(w)|| = |jw|, for all we Cy(X, Z).

In other words, the norm on Cy(X, Z) is invariant under the action of h'(m,), for
all hin theisotropy subgroup K < C(X, K)and we may therefore define a tangent
norm on M as follows.

For (m, v)e TM, chose g € L with g(m) = m, and define a(m, v) = ||g’(m)v||. Then
o: TM - R* defines a tangent norm on M which is invariant under the action of
L.

In particular, M becomes a normed complex manifold for which the elements
of L act as biholomorphic isometries.

Let s,,, € L be the symmetry of M at my. It follows easily from (1) above that Smgp
viewed as a constant mapping in L, is the symmetry of M at m,. Since L acts
transitively on M as a group of biholomorphic isometries, it follows that M is
a symmetric manifold.

PROPOSITION 1.6. If the J*-triple associated to M is Z then the J*-triple
associated to the symmetric manifold M = Co(X, M)° is Co(X, Z) with the usual
pointwise defined triple product.

ProoOF. From Proposition 1.5, M is a symmetric manifold with local coordi-
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nates in Co(X,Z) and 7= C(X, k) ® ColX,p) = aut(M). It is known that
aut(M)=t@p where = {Aeaut(M):Ad(sy)4) = 4} = {Acaut(M):
A(mg) = 0} and p = {A eaut(M): Ad (Sm,)4 = — A}, where Ad denotes the natu-
ral adjoint action.

It follows that Cy(X, p) < p. Asis well-known, there are real linear homeomor-
phisms & p — Z and & p - Co(X, Z).

Clearly, £, maps Co(X, p) into Co(X,Z) and is a real linear isomorphism.
Hence j = Co(X, p).

We recall the following (cf. [5]).

For all ain Z there exists a unique X in p such that X“(m,) = a. Define vector
fields Y* = $(X* — iX*)and Z* = {(X* + iX'*)in p @ ip. Then the triple product
on Z arises as follows: for all a, b, ¢ in Z, {a, b, c} is that element of Z with

Y = 4[y%, 2%, Y°].

Let ae Co(X,Z). We use P% Q% and R”* respectively for the vector fields on
M corresponding to X°, Y?and Z° on M. By uniqueness, P%(x) = X** and hence
0%x) = Y*™ and R%(x) = Z*™), for all xe X. In particular, for a, 8, y € Co(X, Z),
and xe X,

Yla b v — Q(‘" B, 7)(x)

= 3[[Q*(x), R (x)], Q"(x)]
— %[[ Ya(x)’ Zﬂ"‘)], Yv(x)]

= Y&, px), v(x)}

In other words, the triple product defined by M on Co(X, Z) is the usual point-
wise defined triple product.

As the following example shows, the symmetric manifold Co(X, M)° is not, in
general, simply connected and it is thus necessary to pass to the universal
covering manifold to get uniqueness.

ExaMpPLE 1.7. Let 8":= {xe R"*':||x| = 1}. For topological spaces X and Y,
[X, Y] denotes the space of all homotopy classes of based mappings from X to
Y and m,(X) = [S", X] the nth homotopy group of X, n > 0. Let X = §* and
Z = C. Since M = C is homeomorphic to S? we have that Co(X, M) is homeo-
morphic to C(S*, $2). The space C(S*, $?) is path connected since its space of path
components is

mo(C(S*,8%) = [$*,5%] = my(8%) = 0.
It is not simply connected, however, as

7,(C(8Y, 8%) = [S4, C(S*, §%)] = [S* x 51,821 = n5(5%) # 0.
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COROLLARY 1.8. Let M be the unique simply connected symmetric manifold
associated to the J*-triple Z.

The unique simply connected symmetric manifold associated to Co(X, Z) is the
universal covering manifold of Co(X, M)°.

COROLLARY 1.9. If M is the compact type symmetric manifold associated to the
JB*-triple Z then the compact type symmetric manifold associated to Co(X, Z) is the
universal covering manifold of Co(X, M)°.

COROLLARY 1.10. If h: M| —» M, is a morphism of the symmetric manifolds M,
and M, then h, is a morphism of the symmetric manifolds M, = Co(X, M,)° and
Mz = Co(X, Mz)o.

ProoF. If m, is the base point of M, we assume without loss of generality that
h(m,) is the base point of M,. Then, using the same techniques as in Proposition
1.5, we see that h,: M, — M, is holomorphic.

Fix m arbitrary in M, and consider the symmetry of M, at m, s,,€ L, (where L,
is to M, as Lis to M in Proposition 1.5).

Since $,u(X) = Spx), for all xe X and since h: M; — M, is a morphism of M, and
M,,

hoSmx) = Symepoh forall xeX

implies that h, os,, = s, mo°h, and hence h,: M; — M, is a morphism of the
symmetric manifolds M, and M,.

ReEMARKS. When X is a compact Hausdorff space, oo is an isolated point of
X and it is not difficult to see that the results of this section then imply the results
presented in section one of [6].

2. Lie algebras of vector fields on Cy(X, Z), for Z finite dimensional.

We first examine the Lie algebra of all JB*-triple derivations on Cy(X, Z), for
Z finite dimensional. For Z = C, the following result is already part of the
folklore.

PROPOSITION 2.1. Let Z be a finite dimensional JB*-tripie. Then
aut(Co(X, Z)) = Cy(X, aut(Z)) = C(BX,aut(2)),

where Cy(X,aut(Z)) denotes all elements of C(X, aut(Z)) which are bounded in the
supremum norm, BX denotes the Stone-Cech compactification of X, and = denotes
isometric isomorphism of Lie algebras (where Cy(X , aut(Z)) and C(BX, aut(Z)) have
the pointwise defined Lie algebra product).

PROOF. Take A eaut(Co(X,Z)) and fix x arbitrary in X.
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As before let e,: Co(X,Z) > Z by ¢,(f) = f(x), for all feCy(X,Z). Let
A*: Z — Z be the mapping defined by the following commutative diagram.

Co(X,2Z) —ex Z
1A 1#
Co(X, Z) —)Ex Z
To show that 1* is well defined, it suffices to prove that A(a)(x) = 0 whenever
a(x) = 0, for ae Cy(X, Z).
Fix ae Cy(X, Z) with a(x) = 0. The element a*/® € Cy(X, Z) is well defined via
the functional calculus and a = {a'/3,a'/3, a'/3}.
Therefore

/1((1) — 2{A(a1/3)’a1/3’a1/3} + {al/3, A(aI/S),alﬂ}.

If a(x) = 0 then a*/3(x) = 0 and hence A(a)(x) = 0 and A* is well defined.

It is easy to see that 1*eaut(2).

Define 1: X — aut(Z) by A(x) = 4%, for all xe X.

To prove that 1 is continuous we must show that 1~ (U) is open in X for
U < aut(Z) open.

Fix xoe A~ Y(U) arbitrary.

Since U is open in aut(Z), there exists ¢ >0 such that if peaut(Z) and
lu — A*|| < & then ueU.

In particular, if ||A* — 1*°|| < & then ye A~ (V).

Let Q be a compact neighbourhood of x, in X and let W be any open set in
X containing Q. Since X is locally compact there is an open set V in X such that
V is compact with Q c V< V< W. By Urysohn’s Lemma there exists
ag€ C(X, [0, 1]) such that aplo = 1 and ag|xy = 0. Since ay vanishes off the
compact set ¥ then agye Co(X, [0, 1]).

Forany ze Z we define e Co(X, Z) by Z(x) = zay(x), for all x € X. In particular,
Z(x) = z,for all xe Q and |Z]| = ||z|.

Let B:= {ze Z: ||z| < 1} and write B for its closure. For yeQ,

sup [|2%(z) — A*(2)I| = sup [A(F)y — AE)xoll.

zeB zeB
Now
[AW®)y — AW)xo | < |AW)y — U] + 1AE)y — A@)xoll + A(E)x0 — ADF)Xo |
< 2[1A08) — 4@ + 4@y — AE)xoll.

Since derivations are automatically continuous (cf. [ 1]), the mapping: z — A(2)
is continuous and there exists a neighbourhood A, of ze Z such thatfor allwe A4,,
|AW) — A®)|| < ¢/4. Moreover, for z fixed, A(2) is continuous, and hence there
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exists a neighbourhood B, of x, in X such that [[A(2)y — A(2)x,| < &2 for all
ye€ B,. In other words, for we A, and y € B, (we assume without loss of generality
that B, = Q) we have ||[A(W)y — A(W)x, | < e.

By compactness of B, there exists zy, ..., z,€ Bsuch that B = U?_, A, . The set
W =B, n...n B, is an open neighbourhood of x, in X. Then, for all zeB,
A2y — AME)x,| < & whenever ye W.

Therefore, for all ye W, |2 — A*| < eand hence W < 1~ }(U). In other words,
A is continuous.

As it is clear that ||| < ||4|| we have that A€ Cy(X, k) where k = aut(Z). The
mapping A — / therefore maps aut(Co(X, Z)) into Cy(X, k).

In the opposite direction, we define for each ueCy(X,k), i Co(X,Z) —
Co(X, Z) by a(f)(x) = u(x)(f(x)), for all xe X and f e Co(X, Z).

Itis easy to see that jiis a continuous linear mapping on Cy(X, Z) which acts as
a derivation for the triple product structure and ||z|| < |||
The mapping: u — j therefore sends C,(X, k) into aut(Co(X,Z)) and satisfies
4 = Afor all Aeaut(Co(X, Z)). It is then easy to see that this mapping gives an
isometric Lie algebra isomorphism between aut(Cy(X, Z)) and C,(X, k).

Finally, since aut(Z) is finite dimensional, we may identify C,(X, aut(Z)) and
C(BX,aut(2)).

Animportant complex Lie algebra, g%, is associated to a JB*-triple E as follows

(cf. [S]):
=9t @i gt

0z
in #*(E), and finally,

0
where g& | = {a_:aeE} 95 = {q(z)—(;?—: qge W}, where W is the closure of E*
Z

0
gt = {A(z)g: A is linear and [4, g¥] = gf}
We realise the Lie algebra, g“°*:2 as a Lie algebra of bounded continuous
mappings from X into g7, using techniques similar to the above.
PROPOSITION 2.2.
gt D = Co(X, 9% ,) ® Co(X, %) ® Co(X, g?).

PROOF. Let g:=g” and let §:= g®*-2, Let g,:= g% and §,:= gc*-? for
ie{—1,0,1}.

We make the following natural identifications §_, = Co(X,Z2) = Co(X,9-1)
and g, = Co(X, gy).

To examine the subspace g, we apply the techniques of Proposition 2.1.
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For A€§o, [4,4:] < §, and therefore, for all xe Cy(X, Z),

[)'(Z)a {Z: a, Z}] € CO(X, gl)
In other words,

2.3) M{z,0,2}) — 2{Mz), &, z} € Co(X, 1)

for all ae Cy(X, Z).
Fix A€§, and x in X, arbitrary.
As before, A*: Z — Z is defined by the following commutative diagram.

Co(X,2) »ex Z
1 1#
ColX,Z) - Z
Fix a arbitrary in Cy(X, Z) with a(x) = 0.
Letting « = a'/? in (2.3), there exists ge Cy(X, g,) such that

Mz,a',2}) = 2{A(z),a'?, 2} + q(2),
for all ze Co(X, Z). In particular, for z = a'/?, we have
A(a) — 2{1(‘11/3)’“1/3"11/3} + q(al/.‘S)'

As a(x) = 0, it follows that a*/3(x) = 0 and hence g(a'/3)(x) = 0.

Therefore A(a)(x) = 0. It follows that A* is well defined.

Clearly A*e g, for each xe X.

Define 4: X — g, by A(x) = 4%, for all xe X. As in Proposition 2.1, we may
prove that 1 is continuous and bounded (in fact, | 1] < [|A]).

The linear mapping: A — A maps g, injectively into C,(X, go). Again, exactly as
in Proposition 2.1, we can show that this mapping is an isometric Lie algebra
isomorphism.

REMARKS. Proving Proposition 2.2 first would give Proposition 2.1 as an
immediate corollary. As k = aut(Z) = {A€go:[4 p] < p} then aut(Co(X, Z)) =
{A€go:[4,p] = p}. Since p = Co(X, p), it then follows by proposition 2.2 that

aut(Co(X, Z)) = {Le Cy(X, go): [A%,p]1 = p, forall xeX} = Cy(X,k).

3. The special case, Cy(X).

We show that the structure on the compact type manifolds of the commutative
C*-algebras, Co(X), may be described by the action of a complex Lie group, as in

the finite dimensional case.
Let M, denote the group of all complex 2 x 2 matrices and let I denote the
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2 x 2 identity matrix. For any subgroup G of M, we use PG to denote the
quotient G/{ +1}.

The compact type symmetric manifold associated to C is C. The real Lie group
Aut(C) is identified with PSU,(C) where SU,(C):= {AeM,: det(4) =1,
A* = A™'} and its Lie algebra aut(C) is identified with su,(C):= {4de M,:
A* = — A, trace(4) = 0}.

The complex Lie algebra, g°, associated to C, is isomorphic as a Lie algebra to
sl;(C): = {4 € M;: trace(4) = 0} via the mapping

¢<(a + 2bz + c22)52—> = (_bc _ab).

Also, SL,(C):= {A € M,: det(4) = 1} is a simply connected complex Lie group
with Lie algebra sl,(C), which acts transitively on C as a group of biholomorphic
mappings.

In this way, C may also be realised as the quotient manifold of the complex Lie
group SL,(C) by its isotropy subgroup

Ig,:= {(z l(/)a): ceC,ae C\{O}}.

Moreover, the isotropy subgroup Ig; , has Lie algebra

. b 0
i, = {(C —b): c,beC} = g5 ® g5.

It follows from Proposition 1.5 that M = Co(X, C)° is a symmetric complex
manifold on which the real Lie group I. = C(X, SU,(C)x)° acts transitively as
a group of biholomorphic isometries, where

a 0
K.-{(O a).aeC and |a|=l}.

For comparison, see [3], where the automorphism group of the open unit ball of
C(X) is determined.
From Proposition 2.2

0
gco® = {(a + bz + czz)é;: a,ce Cy(X), ber(X)},

where Cy(X) denotes all complex-valued functions on X which are bounded in
the supremum norm. Let

g= { feC(X,sl,(C)): f = (b a ) with be Cy(X), a,ceCo(X)}.

¢c —=b
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Then g, with the pointwise defined Lie algebra product, is a complex Lie algebra
and the mapping y: g - § defined by

v ((a +2bz + czz)—a—a;> = ( _bc _“b)

is a Lie algebra isomorphism.
Using the techniques of Lemma 1.2, the group

0
Z) with b,ceCy(X),a,de C,,(X)}

G= { feC(X,SL,(C)): f = (‘c’

may be given the structure of a complex Lie group having Lie algebra 4.

Let g: SL,(C) x C— C denote the natural action of SL,(C) on C. Then
4,: C(X,SL,(C)) x C(X,C) - C(X, ).

Denote the restriction of g, to G x M again by g, and consider g,: G x
M - C(X,C).

To see that this will give an action of G on M we must first show that
g(m):= q,(g,m)e Co(X, C), for all ge G and m e M. The transitivity of this action
will then follow using the techniques of Lemma 1.4.

PROPOSITION 3.1. The complex Lie group G acts transitively on the symmetric
manifold Co(X, C)° as a group of biholomorphic mappings.
~ b
ProoF. Fix g arbitrary in G. Then g = <z d)’ where a,de Cy(X) and

b,ceCy(X) and ad — bc = 1 on X. We must show that the function g(0) = b/d
vanishes at infinity.
Suppose that b/d does not vanish at infinity. Then there exists ¢ > 0 such that

[b(xp)| .
dxp) 2 ¢. Since be Cy(X)

d
then for every 6 > 0, there exists P; & X compact, such that |b(x)| < —;— for all

for all P = X compact, there exists xp€ X\ P with

xe X\P;. We may assume, without loss of generality, that for all xe X\P;,
|b(x)c(x)] < 1/2. Moreover, for each § > 0, there exists x;e X\P; such that
|b(x )l
ld(x5)l

In other words, for all 6 > O there exists x;€ X such that |a(xs)] > 1/0. As
a vanishes at infinity, this is impossible.

Therefore g(0) € Co(X, C), for all geG.

Now L = G (L as above) and it is not difficult to see that the restriction of g,, to
L x M coincides with the action of L on M as described in section 1 (and denoted

2 &. Since a(x;)d(xs) = 1 + b(x;s)c(x;) then |a(x;)d(x;) > 1/2.
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there by r,). In particular, (Lemma 1.4), given any m € M there exists f € L such
that f(0) = m.

Fix m arbitrary in M and let f € G satisfy f(0) = m. Then, for ge G arbitrary,
g(m) = gf(0) and it follows from the above that g(m) e Co(X, C) and hence in M.In
other words g,: G x M — M and the mapping is onto.

Since SL,(C)acts on C as a group of biholomorphic mappings and g, is exactly
this action applied pointwise on Co(X, C)°, the techniques of Proposition 1.5 can
again be used to prove that G acts on M as a group of biholomorphic mappings.

REMARKS. We can use the action of the complex Lie group G on Co(X, C)° to
endow Co(X,C)° directly with the structure of a complex manifold and this
complex manifold structure will then coincide with that induced by the action of
the real Lie group L.

Denote by H the isotropy subgroup of G at 0e Co(X, C)°.

Then H is a complex Lie subgroup of G with Lie algebra

h= { feCX,sl,(C): f = (_bc _0b>: beC,,(X),ceCO(X)}.

In particular, identifying g and § gives h = §o @ 4.

COROLLARY 3.2. The symmetric manifold Co(X,C)° may be realised as the
quotient manifold of the complex Lie group G by its complex Lie subgroup H.

COROLLARY 3.3. Let M be the unique simply connected compact type symmetric
manifold associated to Cy(X).

Then M is the quotient manifold of a complex Lie group G and a complex Lie
subgroup H suchthat G has § as its Lie algebra and H has Lie algebra b = §o, @ §,,
where § = g©X,

ProoF. By corollary 1.9 M is the universal covering manifold of M =
Co(X,C)°. Let my: M — M be the covering projection. Let G be the universal
covering manifold of G, with covering projection n5: G — G. Then G is a Lie
group with Lie algebra § and the action of G on M (denoted by qs)may belifted to
giveanaction of G on M (denoted by §) which satisfies the following commutative
diagram.

GxM -7 M
nG XM l l""
GxM -»% M

Since G acts transitively on M, G acts transitively on M.

Choose as base point of M a 6en,"(0). Let H be the isotropy subgroup of G at
6. Then H is a complex Lie subgroup of G and
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M = G/H.
Since M is simply connected, it follows that H is connected. Then, from the
commutative diagram above, it is clear that H = =g '(H).

In other words, H is a covering group for H and H therefore has the same Lie
algebra as H.

Let

a

J= { feC(X,SU,(C)): f = ( 5 _bd> with aeCy(X), be CO(X)}O.

It is easy to see that J is a real Lie subgroup of G which acts transitively on
o 0

Co(X, C)° with isotropy subgroup I = { feC(X,SU,(C)): f = (g d)}' Note
that J contains L as a subgroup. Again, as in Proposition 1.5, it can be shown that
J induces a complex manifold structure on Co(X, C)° which coincides with that
induced by G and L above.

In particular, we may realise Co(X, C)° as the quotient manifold J/I;. The Lie
algebra of J is

. i a

j={fecE sm@ys=( 1 ) acCo) and peCuxR)

and the Lie algebra of I5is

i = {fe C(X,su,(C): f = (lg _Ol.ﬁ>, with fe Cy(X, R)}-

Since aut(C) = k @ p, where we make the identifications

ol e e s 3o

then j = Cy(X, k) ® Co(X, p) and i; = Cy(X, k). By Proposition 2.1,
i; = aut(Co(X,Z)) and hence j = aut(Co(X,C)°)
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