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ON THE INTEGERS RELATIVELY PRIME TO n AND
ON A NUMBER-THEORETIC FUNCTION
CONSIDERED BY JACOBSTHAL

P. ERDOS
Dedicated to E. Jacobsthal for his 80th birthday

Let » be any integer. Jacobsthal [6] defines g(n) to be the least integer
so that amongst any g(n) consecutive integers a, a+1,...,a+g(n)—1
there is at least one which is relatively prime to n. He further defines

(1) maxg(n) = C(r)+1,

where on the left hand side the maximum is taken over all the integers
n with »(n) =7, »(n) denoting the number of distinct prime factors of =.
The growth of the function g(n) is very irregular and even the growth
of C(r) is very difficult to study. We have (throughout this paper
€1,Cy, - . ., denote positive absolute constants)

¢, r(logr)? logloglogr

(2

C3
(loglog1)? < CO(r) <cyre.
The left hand side of (2) is a result of Rankin [8] and the right hand
side follows easily from Brun’s method.
Jacobsthal asked (in a letter) if

(3) C(r) < cyr?

is true. The exponent ¢, can be reduced by Selberg’s improvement of
Brun’s method, but it seems hopeless at present to decide about (3).
Jacobsthal also informed me that for <10 the value of C(r) is deter-
mined by #,=2,3,...p,, the p’s being the consecutive primes, and that
this perhaps holds for all values of ». Possibly the value of g(n,’) for
n,' =T1}_,Ps;,, i8 already considerably smaller than C(r). In a previous
paper [4] I estimated g(n) for integers n of a certain special form, e.g.
if n is the product of the first r consecutive primes =3 (mod4).

It is easy to see that for almost all integers satisfying »(n) =r we have
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g(n)=r+1. To see this observe that the number of integers » <z with
v(n)=r is by a well known theorem of Landau (cf. [7, vol. 1, p. 211]).
logloga:)'-1
4 1+o(l))————————
(4) (100 = Pogs
Further Jacobsthal [6] observed that if »(n)=r and all prime factors
of n are greater than r, then g(n)=r+1. Now from (4) we obtain by a
simple computation that the number of integers n<z with y»(n)=r,
whose smallest prime factor is not greater than r, is less than (c; depends
on r)

(5) csz(loglog) -3[logx = o(x(loglogx) ~/logx) .
(4) and (5) complete the proof of our assertion.

In the present note we shall prove that for almost all integers n

(6) g(n) = (1+o0(1))n loglogn/p(n)

where g(n) denotes Euler’s p-function. In other words, for every ¢ the
density of integers for which

(1—¢)n loglogn/e(n) < g(n) < (1+¢)nloglogn/e(n),

is not satisfied, is 0. In fact we shall prove somewhat stronger theorems.
Denote by 1=a, <... <a,,=n—1 the p(n) integers relatively prime
to n. Some time ago I conjectured [3] that

o(n)—1
(7) kZl (@1 —a)? < cgn®lp(n) .
I have been unable to prove or disprove (7). In the present note I shall
outline a proof (Theorem III) that to every ¢ >0 and # >0 there exists
an A(e,n) so that for every A >A(e,n) the number of integersz, 1 <z <n,

for which
(1-e)4 < g (z,2+Anfp(n)) < (1+e)d,

is not satisfied, is less than #n. (p,(z,z+B) denotes the number of

integers # <m<xz+B with (m,n)=1). This result seems to indicate

that (7) is true, but (7) is deeper and I have not yet been able to prove it.
The following theorem easily implies formula (2) in [3].

TeEOREM 1. For all n

g(n) >——v(n)

(l & loglogv(n)) .
¢(n)

logv(n)
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First we need a lemma which is substantially due to Chang [1].

Lemma 1. Let 4 be any integer and q,,q,, . . . ¢, be any primes. Then
there exists an integer @, =x,(uy), u,=T1%_,q;, so that

k
(puk(xbxk'l'A) = 4 H (1 _qi_l) s
=1

@y, (Xp, T+ A) denoting the number of integers x, <m <z +A for which
(m, ) = 1.

We use induction with respect to k. Lemma 1 clearly holds if £=1.
Suppose that it holds for k—1. Then there exists an integer xz,_;,=

k-1
Xp_y(Ug—q), Up—y=TI;-19;, 50 that
k-1

Pup (@1, %1 +4) S AT (1—¢;7Y) .

1=1

Denote by ,_,+j, 1=<I<r, r<A I1*-}(1-q,~!) the integers in
(@1, %p—y + 4) which are relatively prime to u;,_,. At least one residue
class (modg,) contains at least r/q;, of these numbers, let this residue
class be «;,. Let now

T, = ¥y (moduy_,), T = —ogt+ o (modgy) .

In (x;,z; + A) there clearly are at least /g, integers which are relatively
prime to u;,_, and are multiples of ¢;. Thus

k
Pu @+ A) £ 4 I__Il (1-¢;71),

which proves Lemma 1.

Proor or THEOREM I. Let p,<...<p,, be the distinct prime
factors of » and let p, be the largest prime factor of n which is less than
v(n). From the prime number theorem (or from the more elementary
results of Tschebycheff) we easily obtain by a simple computation that

rm s loglogv(n)

(8) (I-p ) 2 JT(A-r7) > 1—cg———"—
i-—].;cl;rl ‘ z=I_I1 ’ logv(n)

where r, <7, <..., are the consecutive primes =»(n). Put

_n G loglogv(n)
5™ (g )

From (8) and Lemma 1 it follows that there exists an integer (or rather
a residue class modv,, v,=II% ,p;) for which
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2
Poy (xk’xk“‘A) <4 1:_[1 (I—Pi_l)

(9) @(n) loglogv(n)\ ~*
<4 (l—cs logv(n) )

2
< »(m) (l—logv(n)> <yn)—k

for sufficiently large c,. The last inequality of (9) follows from the fact
that
2v(n)

ks n(vin) < ogvin)

Denote now by ;. +j;, 1 1< T <»(n)—k the integers in (z;, 2, + 4) with
(@ +Jpve)=1. By T <»(n)—k there clearly exists an integer z, satisfying

(10 z =1z, (mody,), x+j;=0 (modp,,), 11T.

From k+ T <v(n) it follows that none of the integers in (z,x+4) are
relatively prime to n, and this completes the proof of Theorem I.

Next we show that Theorem I is best possible for every »(n). Let
g1 <¢y <...<q, be the r consecutive primes greater than r. Put
n,=TI;_,9;. Clearly g(rn)=r+1 and a simple computation (as in (8))

shows that logl
n, >1+c9 ogogr-

¢(n,) logr
n, , (1 €10 loglogr)
¢(n,) logr

if ¢, is sufficiently small, which shows that Theorem I is best possible.
It is much harder to get a good upper bound for g(n). We prove

Thus

gln,) = r+1 <

TuareoreM II. For almost all n

g(n) = 2 v(n) + o(logloglogn) .
¢(n)

Since by a well known theorem of Hardy and Ramanujan (cf. [5,
Pp. 356-358]) »(n)=(1+o0(1)) loglogn for almost all », Theorem II
implies (6).

To prove Theorem II we need some simple and well known lemmas.
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LEMMA 2. For almost all n
»(n) = (1+o(1)) loglogn .

This is the theorem of Hardy and Ramanujan mentioned above (cf.
[5, pp. 356-358]).

LeMmMA 3. For almost all n
> 1= (1+0(1))loglogloglogn .
p<(1§s|::»gn)4

Lemma 3 is known (cf. [2]) and can be deduced by the method of
Turan [10] used in the proof of the Hardy—-Ramanujan theorem.

LeMmMA 4. For almost all n

nfp(n) = o(log,n),
where log,n denotes loglogloglogn.

LemMa 4 is also known and follows immediately from

nlp(n) < cyx.
1

iMs

The function log,n in Lemma 4 could of course be replaced by any
function tending to infinity.
First we prove that for almost all »

(11) g(n) < (n/p(n))»(n)+elogloglogn = A(e,n),
for every ¢ >0. To prove (11) let

P <Py < ... <py = (loglogn)* <pey < ... <D

be the prime factors of ». From the sieve of Eratosthenes we evidently
have (v, =TI!.2;)

(12) Po(T, 2+ A(e,n)) > A(e,n) ]'k]_' (1—p; 1) —2F
i=1
> A(e,n)(p(n)/n) — 2%
= »(n) + ¢(logloglogn)(¢(n)/n) — 2% > v(n) .

The last inequality of (12) follows from lemmas 3 and 4.
The interval (z,xz+ A(e,n)) can clearly contain at most one integer
which is a multiple of p,,, since

Pr+i > (loglogn)t > A(e,n) .
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Thus from (12)
oa(@, 2+ A(e,n)) > v(n)—(v(n)—k) =k >0,

which proves (11).

Proor or THEOREM II. To complete the proof of Theorem II we
would have to prove that for almost all »
n

g(n) > v(n)— ¢ logloglogn .

¢(n)
In fact we shall prove very much more. We shall show that for almost
all n

(13) g(n) > (n/p(n))(v(n) — (1 +¢) logyn) = B(e,n) .

We will only outline the proof of (13) since it is very similar to that of
Theorem I. From lemmas 3 and 4 we can show by a simple computation
that there exists an integer z; (determined mod v,) so that

k
Pui(®, 2+ B(e,n)) < B(e,n) I_Il (1-p)

= Ble,n) p(n)n +o(1)
< v(n)—(1+ 3¢) logyn < v(n)—Fk.

Thus as in the proof of Theorem I we can find an x with (2,2 + B(e,n)) =0,
which proves (13) and completes the proof of Theorem II.
Very likely for almost all »

g(n) > (n/p(n))r(n),

but I have not been able to prove this.

The upper bound in Theorem II can also be considerably improved
by using Brun’s method, but I was unable to calculate the distribution
function of g(n)—(n/@(n))»(n), or even to prove its existence. In fact I
can not guess the scale in which to measure the growth of this function,
On the other hand from (6) and the well known existence (cf. [9])
of the distribution function of =n/p(n) it immediately follows that
g(n)[loglogn has a distribution function (which in fact is the same as the
distribution function of n/p(n)).

THEOREM III. To every ¢ >0 and 5 >0 there exists an Ay=Ay(e,n),
so that for every A >A(e,n)

(14) (1-e)d < g,(m,a+Anfp(n) < (1+e)4

for all n, 1 Sx <n, except possibly for ym integers x.
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We use the method of Turan [10], but we will suppress some of the
details of the proof. Theorem III will clearly follow immediately from

(4 >Ay(e,n))
(15) Im,4) = 3 (pu(x, 2+ Anjp(n) — A)? < ne2d®n,
x=1
since (15) clearly implies that the number of integers x, 1<z <=, for
which (14) does not hold is less than #m. Thus we only have to prove
(15). We evidently have
n x
In,A) = 3 g (2,7 + Anjpn))2—24 3 @, (2,2 + Anfp(n)) + nA?
=1 n=1
(16) n
=Y @u(x, 2+ Anfpn)2—nd?+x,nd ,
x=1

where |«,| <2, since by interchanging the order of summation we have

S pa(e.a+ Anfip(n)) = Lnfoln)lp(n)
B = An—0,p(n), 0=6,<l1.

Let now (u,n)=(v,n)=1, 0 <v—u < An/p(n). Then the pair (u,) occurs
in [An/p(n)]—v+u intervals (z,z+ An/p(n)). Denote by k() the num-
ber of solutions of

1su=<mn, (u,m) = (v,n) = 1, vV—U = 1.

Then by interchanging the order of summation we have
Z (@, + An]p(n))?

[An/p(m)]
=2 21 ([An]p(n)] —5) hy(n) + [An/p(n)]p(n) .

Clearly by the sieve of Erastothenes

(18) him) = n IT (1-2p71) IT (1-p7).
pp}ni plG,n)
Thus from (17) and (18)
(19) Z <ir)n(9wc+An/<p(n))2
[An/p(n)]
= 2n 21 ([An/e( n)]—%)I'I(l 2p~1) ¥I)(1 —p7) + [Anfp(n)]p(n) .
t= plG,n
ph

Math. Scand. 10 — 12
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Now it can be shown that for every 6 >0 if D >D,(6) we have for a
certain |f,| <d

D
(20) > (D-9) 11 (1-2p™) JT (1-p7) = (3 +B,)D*p(n)*[n?.
i=1 pln p|G,m)
pti
I suppress the proof of (20) since my proof is fairly indirect, inelegant
and complicated and I feel that a much simpler proof can be found.
From (19) and (20) we evidently have by a simple calculation by putting

[An/p(n)]=D for A >A(e,n) (if 6 is sufficiently small)
n
(21) > gu(z, 2+ Anfp(n))? = A®n+0,ne24% ,
z=1

where [0,| <3. From (21) and (16) we finally obtain
[I(n,4)] £ 10,me24%n|+ |x,An| < n24%n

for A >A(e,n). This proves (15) and hence the proof of Theorem IIT is
complete.
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