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ON THE NUMBER OF PRIME DIVISORS
OF A BINOMIAL COEFFICIENT

ERNST S. SELMER

It must have been observed independently by many people that a binomial
coefficient () can never be a prime power except in the trivial cases with k=1
or k=n—1. Strangely enough, the first proof of this fact was apparently not
published until 1968 by Hering [4]. Simpler proofs, all using the implication

n=>a<
k p=n,

have later been given by Stahl [8], Scheid [6] and Mignotte [5].

For given k>1 and sufficiently large n, the binomial coefficient (§) will
always contain at least k different prime divisors. In what follows, the number
of such divisors will be denoted by V(n, k).

Bounds for n and k were discussed by Erdos [2], who also pointed out that if
V(n,k)<k, then (1) implies that

) (Z) <t

Since the left hand side is a polynomial in n of degree k, we get a contradiction
for sufficiently large n.

This particular argument was improved by Mignotte [5], who (without
reference to Erdos) showed that V(n, k) =k if

3) nkl+k.

ey r

Since this condition may be written as
n
<k> > nn=1)... (n—k+2),

we get an improvement over (2). The improvement is not significant in terms of
the bounds involved, but (3) is of course much simpler to use.

—————
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2,
We shall improve Mignotte’s bound (3), and first give a simplified version of

his argument: He showed that if

(n) _n(r=1)...(n—k+1)

(4) k k! -= pilpgz s p;j 2

then each prime power p% must divide one of the factors of the numerator (this is
trivial only if p;> k). If j <k, there is consequently one factor of the numerator
which is a divisor of k!. In the “worst” case, we may have n—k+1=k!, which
immediately gives the bound (3).

If n—i=k!, i<k—1, one would get a slightly better bound (but of the same
order of magnitude). We will, however, not try to establish any such
insignificant improvement. It is the dominant term k! of (3) which we shall
reduce considerably.

Before doing so, we note the following fact (which was not pointed out by
Mignotte): To obtain all cases (4) with j <k, it is not necessary to examine all n
<k!+k, but only those n where one of the factors

5 nn—1,....,n—k+1

is a divisor of k!. This observation means a great reduction of the numerical
work involved. As an example, consider k=5, k!=120. Starting from the top, it
then suffices to consider the factorization of

(g), n = 120—124,60—64,40—44,30—-34,. .. .
It turns out that n=32 is the largest n with V(n,5)<5.

The improvement of (3) is based on the following obvious observation: The
factor, say K, in (5) which divides k! contains only prime divisors p<k. If p is
small compared to k, then several of the numbers (5) will contain p as a divisor,
possibly to varying powers. Removing such divisors from k!, we get a smaller
bound for K.

Thjs simple approach, combined with a certain amount of sophistication,
leads to a proof of the following

THEOREM 1. Let

Pk =11 »,

. sk
the product being taken over all primes p and all positive integers m. If the
binomial coefficient (7) contains less than k different prime divisors, then one of
the numbers
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nn—1,...,.n—k+1

must be a divisor of P(k). In particular, () will contain at least k different prime
divisors if

©) nz Pk+k.

We have thus replaced k! of (3) by P(k), which is of smaller order of
magnitude. In fact,

logP(k) = Y logp = y(k),
sk
the well known function from prime number theory. Since y(k)~k by the
prime number theorem, we have

P(k) = gk1+o(1) .

Let n(k) denote the largest value of n such that V(n, k) < k. Erd6s, Gupta and
Khare [3] showed that for given £>0, n(k)< (e+e¢)* for sufficiently large k.
Asymptotically, this yields the same result as our Theorem 1 (which is of
course much more useful in numerical applications).

It was also stated in [3] that Erdds and Szémerédi (unpublished) have
proved a slightly stronger result: There is an a<e such that n(k)<o* for
sufficiently large k.

A lower bound for n(k) was also given in [4], in the form

lim inf logn(k)
k-0 lOgk

v

e.

This led the authors to assume that n(k) might actually be of the order of
magnitude k°. In Section 4, we shall find further evidence supporting this
assumption. Thus our new bound {6), which means a great improvement over
(3), is probably still far too large.

3
We now turn to a proof of Theorem 1. Let p denote an arbitrary prime <k,
and determine the exponent x(p,k) by

px(p,k) <k < pX(PJ‘)*"
Then P(k) can be written as
P(k) = l—[ pﬂ(ﬁk)'

psk
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We assume that we have a factorization (4) with j < k. By Mignotte’s argument,
each prime power p§ must divide at least one of the factors (5). For each p;, we
select a factor which is divisible by the hiEhest power of p,. There is then at least
one “spare” factor in (5), which we denote by K, and which must divide k!.
Note that some of the p; may well divide K, but that there is always another
factor in (5) which is divisible by p; to at least the same power as is K.

To abbreviate, put x(p, k)=x. For any prime p such that

™ K,

p cannot divide any other factor in (5) to the same power (since (5) contains k
consecutive integers, and p**!>k). Hence p cannot be any of the prime
divisors p; of (3). On the other hand, we shall see that (7) implies

(i)

a contradiction. Consequently p* is the highest power of p which can divide K,
and we conclude that K| P(k). The theorem will then be proved when we have
established the contradiction (8).

Let p* | k! (“exactly divide”), where

B 2]

Let further p*|n(n—1)... (n—k+1). Since this product consists of k
consecutive integers, it contains at least [k/p] factors divisible by p,[k/p*]
factors divisible by p?,. . ., until at least [k/p*] factors divisble by p*, and finally
one factor (namely K) divisible by at least p**!. Hence

k k k
e [ o]t =
p p p

/
which implies (8).

® p

4.

We shall consider a numerical application of Theorem 1. The reduction of
calculations described in connection with (5) of course also applies when we
use the smaller bound (6).

We have already introduced the notation n(k) for the largest value of n such
that V(n,k)<k. Let further K (defined as above) refer to this particular
V(n(k), k). Some preliminary numerical results for k<15 are given in Table 1.
For larger values of k, there may be several of the numbers (5) dividing P (k).
For k<15, however, there is only one such number K for n=n(k).
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Table 1. Comparison of k!, P(k) and n(k) for some small values of k.

k P(k) K/PKR) ~ n(k) K PW/K
2 2 1 3 ) 1
3 6=2-3 1 8 6 1
4 12=23 2 14 12 i
5 2 3B 30 2

60 = 22-3-
6! 33 2 6 60 1
7 420 =22-3-5-7 12 87 84 5
8 840 = 23-3-5.7 48 169 168 5
9 I 144 132 126 20

o} 250=2%3%57 1440 367 360 7

1 C3az.cn 1440 389 385 7

] 27720=22357.11 17280 510 504 55

13 17280 394 390 924

14} 360360 = 23-32-5.7-11-13 241920 512 S04 715

15 3628800 512 504 715

The quotient k!/P(k) in Table 1 shows the improvement by (6) over (3), and
the quotient P(k)/K indicates how much the new bound (6) differs from the
“best possible” result. The growth of P(k)/K seems to confirm the belief, stated
earlier, that the bound (6) is still too large.

Since Theorem 1 is such a strong tool in numerical applications, it was
decided to extend Table 1. The necessary calculations were performed on the
UNIVAC 1110 at the University of Bergen. I am greatly indebted to Svein
Mossige for accurate and efficient programming of the problems.

The resulting Tables 2 and 3 represent many hours of computing time, on
one of the world’s fastest computers. To indicate its speed, we may mention
that Mossige wrote a FORTRAN program which produced the complete
factorization of all natural numbers <10° (the range of the British Association
factor table) in 40 seconds!

The word length of UNIVAC 1110 allows for representation of
integers $3.4-10'°. Since P(27) exceeds this bound, a complete calculation
based on Theorem 1 was performed only for k <26. The computation for each
k started “from the top”, determining the integral quotients K=P(k)/i, i
=1,2,3,. .., then forming the binomial coefficients () with K+k—12n2K,
and stopping when a V(n,k)<k was first obtained. .

Since multiple precision calculations would require excessive computing
times, we decided to “cheat” for k=27. The computation was then started
“from the bottom”, counting whether V(n, k) was <k or 2k, and stopping
when a certain multiple of the last n=no with V(no, k)<k was reached.. The
bounds 10n, and 5n, were used for 27k =50 and 51 £k <100, respectively.
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Table 2. The largest n=n(k) such that (}) contains~less than k distinct prime
divisors
(not completely guaranteed for n=27, cf. the text).

k n(k) k n(k) k n(k) k n(k) k n(k)
21 1 885 41 10 667 61 25 002 81 67 248
2 3 22 2102 42 10 667 62 26 263 82 61 682
3 8 23 3470 43 10 668 63 24 714 83 55 859
- 4 14 24 3470 44 11 710 64 34 520 84 61 685
5 32 25 4 805 45 11 711 65 33 365 85 61 685
6 62 26 4 806 46 12 799 66 33 366 86 65 600
7 87 27 4 806 47 12 800 67 33 367 87 74 771
8 169 28 3475 48 12 799 68 33 780 88 74 771
9 132 29 4 806 49 15 673 69 36 497 89 74 772
10 367 30 4 938 50 20 365 70 36 498 90 74 776
11 389 31 4 939 51 20 366 71 _ 40 047 91 65 606
12 510 32 5 108 52 20 367 72 36 497 92 75 997
13 394 33 5119 53 20 369 73 38 345 93 113 196
14 512 34 6271 54 20 369 74 40 050 94 113198
15 512 35 5122 55 20 187 75 41 215 95 113198
16 . 1880 36 5 869 56 20 187 76 44 235 96 113 200
17 1 880 37 10 663 57 26 959 77 44 285 97 113201
18 1 882 38 10 663 58 26 959 78 40 047 98 113201
19 2099 39 10 663 59 26 960 79 44 285 99 102 485
20 1879 40 7 421 60 23 814 80 46 459 | 100 - 111 863

We feel it is a safe bet to assume that the n, thus obtained is really n(k), but we
stress that this is not guaranteed by Theorem 1.

The resulting values of n(k) for k <100 are listed in Table 2. In most. cases, it
turned out that V(n(k),k)=k—1, but V(n(k),k)=k—2 for k=88,95.

Erdos, Gupta and Khare [3] introduced the smallest number n=n, such that
V(n, k)= k, and tabulated n, for k <25. They showed that for given ¢>0, n,> (1
—e)k?logk for sufficiently large k, and that

log n,
li <e
HwPlogk =

Since the necessary programs had already been developed by Mossige, we
decided to put also the determination of n, on the computer. The results for
k<200 are given in Table 3 (no “cheating” was necessary here).

As in [3], denote by m, the smallest number n=m, such that V (n, k) exactly
equals k. (The existence of m, for all k has in fact not been proved.) Usually, of
courge, one would expect m,=n,. In the range of Table 3, we have the
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Table 3. The smallest n=n, such that (}) contains at least k different prime

divisors.
. k n k n, k n, k n ko m

1 2 41 1 834 81 11 585 | 121 35697 | 161 72 851

2 4 | 42 2147 | 82 11586 | 122 35719 | 162 72854

3 9 | 43 2263 | 83 12327 | 123 39353 | 163 72855

4 10 44 2 519 84 12939 | 124 41 410 | 164 81 548

5 22 45 2 519 85 13 642 | 125 43 362 | 165 72 855

6 26 46 3021 86 14 171 | 126 35723 | 166 92 596

7 40 47 3 306 87 14174 | 127 41 410 | 167 92 597

8 50 | 48 3306 | 88 15622 | 128 41410 | 168 93 685

9 54 | 49 3427 | 89 16827 | 129 41410 | 169 90 161
10 55 | 50 3441 | 90 16827 | 130 43365 | 170 93 686
11 78 51 3 445 91 16 836 | 131 43 365 | 171 93 692
12 115 | 52 380 | 92 16837 | 132 44448 | 172 95794
13 123 53 4 075 93 18 551 | 133 43371 | 173 101 106
14 154 | 54 3445 | 94 19367 | 134 44429 | 174 99 333
15 155 | 55 4350 | 95 20257 | 135 44429 | 175 102379
16 209 56 4560 96 20 257 | 136 44 454 | 176 96 730
17 288 | 57 4346 | 97 20305 | 137 44455 177 96 730
18 220 | 58 4347 | 98 20304 | 138 51832 (178 102 383
19 221 | 59 4348 | 99 20304 [ 139 44457 | 179 105 205
20 292 60 5071 | 100 18 410 | 140 44 457 | 180 106 168
21 301 | 61 5568 | 101 20305 | 141 51837 | 181 106 169
22 378 | 62 6006 | 102 20304 | 142 55282 | 182 108 490
23 494 | 63 6767 | 103 20305 | 143 55283 | 183 108 491
24 494 | 64 5786 | 104 20305 | 144 57 541 | 184 108 491
25 551 | 65 5786 | 105 20305 | 145 58008 | 185 112 056
26 715 | 66 6772 | 106 23506 | 146 60010 | 186 112 056
27 670 | 67 7316 | 107 26611 | 147 58 014 | 187 112 057
28 786 | 68 7833|108 26572 | 148 62891 | 188 112 058
29 805 | 69 7429 | 109 27069 | 149 62937 | 189 112 065
30 803 | 70 8385 | 110 26574 | 150 58 017 | 190 112 066
31 1079 | 71 8387 | 111 27265 | 151 62894 | 191 128 757
32 966 | 72 8388 | 112 27267 152 62894 | 192 128 781
33 1190 | 73 8654 | 113 28274 | 153 69 746 | 193 112 066
34 1222 | 74 9744 | 114 31919 | 154 66 316 | 194 128 783
35 1274 | 75 10064 | 115 32338 | 155 66309 | 195 112066
36 1274 | 76 11259 | 116 32339 | 156 66 309 | 196 128 782
37 1276 | 77 10557 | 117 32337 | 157 66310 | 197 128 783
38 1771 | 78 11573 | 118 33467 | 158 72850 | 198 144 989
39 183 | 79 11583 | 119 35697 | 159 72851 | 199 144 991
40 1807 | 80 11583 [120 35696 | 160 72850 | 200 128 785
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following exceptions with m,>n,:

k

| st

| 57 | 79 | 1499 | 181 | 185

m, | 3446 |4 865 |12 368 | 62 938 | 106 171 | 112 065

In all these cases, V(n,, k)=k+1.

As already mentioned in Section 2, there are reasons to suspect that n(k)
might be of the order of manitude k°, and similarly for n,. To verify this, we
have calculated n(k)/k® and n,/k® for the values of Tables 2 and 3. The results
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Values of m/k® for 20 <k < 200.



ON THE NUMBER OF PRIME DIVISORS OF A BINOMIAL COEFFICIENT 279

are plotted in Diagrams 1 and 2, which seem to confirm the suspicion. As a
matter of fact, the diagrams may justify the following

CoNIECTURE. Weaker form: There are constants b, B, ¢, C, with
03 <b<B<05 0065<c<C <0085,
such that

n(k)

b
<

<B, ¢c<—=<C

Sor sufficiently large k.
Stronger form: There are constants B,y such that

n(k) ~ Bk¢, n, ~ yk°.

Even the weaker form is stronger than the conjecture

. logn(k) . logn,
—_— == l =
:}g?o log k kg?o logk

made in [3].

The stronger form of the conjecture is probably too strong. One reason to
believe this is given by the strings of dots sloping down to the right in both
diagrams. These strings correspond to values of n(k) or n, which are (nearly)
equal for several values of k. This phenomenon is not unexpected: If V(n, k) is
particularly small or particularly large, the same is likely to happen for
V(ny, k) with n,~n, k, ~k.

In Table 2, some of the “stable” values of n(k) have large clusters of primes
just below n(k), for instance

k = 16, 17, 18, 20, 21:
primes 1867, 1871, 1873, 1877, 1879;
k = 25,26, 27, 29:
primes 4783, 4787, 4789, 4793, 4799, 4801 .

S.

It is clear from the above that the (extended) argument of Mignotte is useful
both in theoretical and numerical applications. Some further such applications
are described by the author in [7]. We mention the following



280 ERNST S. SELMER

THEOREM 2. The binomial coefficient () contains at least k different prime
divisors if the product of the first t—k+1 composite numbers larger than t
exceeds t!.

A similar result holds for arbitrary (§). In [7], this is used to obtain a
substantial reduction of a calculation by Ecklund and Eggleton [1]. Their
purpose was to show that () always contains a prime divisor >t for n=2t.
The following by-product of these calculations in [7] may be worth while
mentioning:

Erdos [2] showed that for given £>0 and t>1t,(g), n=2t, we have

tloga

V(nt) > (1—e) Jogt

This of course implies that for n=2t,
Vint) = ()

for sufficiently large t. It turns out, however, that this inequality holds for all .
In other words, the binomial coefficient (}), n=2t, contains at least as many
different prime divisors as its denominator t!.

We conclude with another result, also prompted by a remark of Erdos [2]. It
is clear that on the average, ¥ (n, k) will be an increasing function of both n and
k. Erdos noted that, for given k, there exist values of n such that

) V(ink) > V(n,k+1),

and gave k=35, n=78 as an examplé. (There are simpler cases, the smallest one
being k =4, n=10.) He also conjectured that for sufficiently large n>n,, there is
always a k satisfying (9).
It turns out that much more can be said about the analogous inequality
V(nk) > V(n+1,k).

Let w(m) denote the number of different prime divisors of m. We then have the
following result, the proof of which is found in [7]:

THEOREM 3. For given positive integers k. and d, there are infinitely many n
satisfying
Vink)—V(n+1,k) = d..
For given k, there is only a finite number of n satisfyihg
Vink)—V(nk+1) = wk+1).
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For given k, there are infinitely many n satisfying

Vink)—V(nk+1) = ok+1)-1.
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