MATH. SCAND. 1 (1953)

ON THE ITERATION OF ANALYTIC FUNCTIONS

HANS RADSTROM

The problem to be discussed and solved in the present note is the
following : The theory of iteration developed by Fatou and Julia is con-
cerned with rational and entire functions. What is the most general
class of analytic functions to which the main results of this theory can
be extended ?

1. Introduction.

1.1. Let f be a function defined in a region (open connected set) D of
the complex number sphere S and meromorphic in D. We call D the do-
main of fand f(D) (which is also a region if f is not constant) the range of f.
If € D is such thatalso f(x) € D, then f2(x) = f(f(x)) exists. If also f2(x) € D,
then this procedure can be iterated at least once more. We define f"(x)
by f%x) =« and f""(x) = f(f"(x)). For a given € D two cases may
occur: Either f*(x) e D for all » = 0,1, 2,..., or there is a number N
such that f"(x) € D for 0 < n < N but f¥*(x) ¢ D. In the second case
f" isnot defined at « for n = N2, and we say that the point « is of order
N+41.If no such N exists, then x is said to be of infinite order. Denote by
D,, the subset of D consisting of all points of order at least » and by D, the
set of points of infinite order. Then D =D, > D,> D,>...>D,=ND,,
and it is also clear that D, is the domain of f*. We observe that although
the sets D, are open, this is not necessarily true for D,. We have
f(D,,,) <D, and f(D,) < D,

1.2. In the sequel we require that D have the following property:
If 8—D contains an isolated point, then this point is an essential singula-
rity of f. On the other hand, we allow f to be continuable across other parts
of the boundary of D.

This assumption is made for reasons of convenience only. If b is an
isolated point of S—D at which the analytic continuation of f is regular
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or has a pole, then we can always adjoin b to D and consider the continua-
tion of f to this enlarged domain instead of considering f itself. This shows
that our assumption is no essential restriction.

1.3. If D, is non-vacuous, then the problem of studying the behaviour
of the infinite sequence f” of functions on D, arises. If D, = 8§, then the
function f is obviously rational. This case was thoroughly studied by
Fatou [1], [2], [3], and Julia [5]. If D, = S—{co}, then f is entire, a case
which was studied by Fatou [4].

The main problem in the theory of iteration is to decide whether the
sequence f" behaves ‘“wildly’’ or regularly. It is therefore natural to ask
for conditions under which the family {f"} is normal in the sense of Mon-
tel. In the two cases treated in the above mentioned papers by Fatou
and Julia it is shown that D, always contains points where {f"} is not
normal.

The purpose of this paper is twofold. Firstly we show that there is a third
case in which {f"} is non-normal in D, namely the case in which D, =
8—{a, b} where a and b are different points of S. We also show that in
all other cases except the three cases just mentioned, the family {f"} is
normal in the interior of D,. Secondly we extend some of the funda-
mental theorems of Fatou and Julia to the third case mentioned above.

1.4. If f*(x) = y, we say that x is a predecessor of y and y a successor
of z, in both cases of order n.

If g is a one-to-one meromorphic mapping of D u f(D), then the func-
tion & defined by hg = gf with domain g(D) and range gf(D) is called the
transformation of f by g. For g we shall use only functions of the form
g(x) = (ax+b)/(cx+d) (M6bius transformations).

2. The set D_.

2.1. LEMMA. The set S—D, consists of the points in S—D and all the
predecessors of these points.

Proor. Let x € S—D,. Then either x € §—D, in which case the lem-
ma is proved, or « € D, in which case there is a number n with x € D,,
x ¢ D,.,. Thus f"(x) is defined and ¢ D, which shows that « is a prede-
cessor of order » of a point in §—D. Conversely, let f"(x) € S—D for a
value n = 0,1, 2,.... Then f*!(z) is not defined at x and, therefore,
the sequence of iterates of x is not infinite. Thus x € S—D,, and the
lemma is proved.

w?
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2.2. THEOREM. If 8— D, contains more than two points, then it contains
no isolated point.

Proor. If f is constant, then either D, is vacuous (if f(D)¢ D) or
D, = D (if f(D) < D). In both cases the theorem is true, in the second case
because of 1.2. We may therefore assume that f is non-constant. It follows
that f and all its iterates are open mappings. Suppose that a is an isolated
point of §—D,. There are two cases.

Assume first that a ¢ D. Then obviously a is an isolated point of S—D,
and by the condition imposed on D in section 1.2 we see that « is an iso-
lated essential singularity of f. By Picard’s theorem and the fact that
S—D,, contains more than two points it follows that there is a point in
S—D,_, whose predecessors of order one accumulate at a. But these pre-
decessors are themselves € §— D, by Lemma 2.1. This is a contradiction.

Secondly, assume that a € D. Then there exists a number n such that
aeD,,a¢ D,,,. Thus f*is defined at a but f*! is not. Put b = f"*(a).
Since f"*!(a) is not defined, we have b ¢ D.

Now, the set U = {a} u D, is a neighborhood of a since a is isolated
in S—D,. We observe that f* is defined at all points of U. Since f" is an
open mapping, it follows that f*(U) is a neighborhood of b = f"(a). But
fMU) = {b} u fM(D,) and the set f*(D,) < D,. Thus {b} U D, is a neigh-
borhood of 4. If we combine this result with the result b ¢ D, we see that
b is an isolated point of S—D, . We can now use the result obtained in
the first case.

Thus the theorem is completely proved.

2.3. Using Theorem 2.2 we see that only the following cases can occur:

I: §—D, contains no point
II: 8—D, contains one point
III: S—D, contains two points

IV: 8—D, is dense in itself.

In the case I it follows that D, = S. Thus D = § and f has to be ra-
tional. Conversely, if f is rational and D = S, then f" is defined every-
where and rational, and D, = §.

In the case II we have D, = S—{a}. Then either D = S or
D = S—{a}. The first case is impossible as f would then be rational and
therefore also D, = S. Thus D = S—{a} and it follows from 1.2 that a
is an essential singularity of f. It is also clear that a is not a value of f.
Suppose namely that a has a predecessor b of order one. Then b + a since
a is not a predecessor. But by Lemma 2.1 the point b would be € S—D,,
and this set would therefore contain two points.—By a Mdobius transfor-
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mation of f we can move a to . The transformed function is defined in
the entire plane and does not assume the value co. Thus it is entire but
not a polynomial.

In the case III the set D, = S—{a, b}. In the same way as in case II
we see that D = § is impossible. Thus there remain two possibilities:

IIT a: S—D contains one point
IIT b: S—D contains two points.

We treat first III a, and assume that S—D = {a}. By 1.2 the point @
is an essential singularity of f. By Lemma 2.1 it follows that b is a pre-
decessor of a, say f*(b) = a. But then f(b) is also a predecessor of @ and,
therefore, f(b) € S—D,,. Thus either f(b) = b or f(b) = a. In the first case
f™(b) = b for all n, hence b € D,. Thus we see that f(b) = a. It also
follows that b is not a successor. In fact, suppose that f"(c) = b. Then
ceS—D, (Lemma 2.1 again) and, since @ has no successors, we obtain
¢ = b, which gives the contradiction f*(b) = b, b € D, as before. Finally
we observe that b is the only root of the equation f(x) = a. By a Mdbius
transformation we can move a to infinity and & to the origin. The trans-
formed function has an essential singularity at oo, a pole at the origin,
and is holomorphic at the rest of the sphere. It does not take the value
0. Thus it is of the form

x—neF(m)
where 7 is a positive integer and F is entire and non-constant. Con-
versely, every Mobius transform of such a function belongs to the class
IIT a.

We now turn to the case III b. Then both a and b are essential singu-
larities of f, and none of them is a value of f. Suppose namely f(c) = a.
Then c e S—D, by Lemma 2.1, but this is impossible as ¢ would then
be a or b, i.e. singular. By a Mobius transformation we move a to infinity
and b to the origin. The transformed function must have the form

" eF(z)JrG (i)

where n is an integer and F and G are entire non-constant functions. Con-
versely, every Mobius transform of such a function belongs to class III b.
We observe that if f belongs to III a, then f™ for n > 1 belongs to ITI b.

3. Normality of {f"}.

3.1. In this section we review some known results of the theory of
iteration, which we need in the proof of Theorem 3.2.
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If f"(*) = x,n % 0, we say that x is a fixed point. If » > 0 is the
smallest number for which f"(x) = «, then » is called the order of x and
the set {x, f(x), f2(x),. .., f* ()} is called the cycle of .

Let ¢ = f(c) = o be a fixed point of order one of f. Then c is called
attractive, indifferent, or repulsive in the cases |f'(c)] <1, =1, or > 1
respectively. It is well known that if there exists a neighborhood of ¢
in which the family {f"} is defined and normal, then ¢ is either attrac-
tive or indifferent. Conversely, if ¢ is attractive, then such a neighborhood
exists. An indifferent fixed point ¢ for which such a neighborhood exists
is called a center.

If ¢ is attractive and U is a connected neighborhood of ¢, then the se-
quence f” converges to the constant value ¢ in U uniformly on every com-
pact subset of U.

If c is a center, then there exists a sequence f™(z) converging uniformly
on every compact subset of U to the function «. (Cf. Fatou[2], pp. 55-56.)

3.2. Fatou and Julia proved that in the cases I and II the set D, con-
tains infinitely many points where the family {f"(z)} is not normal (in
case I, of course, with the exception of functions f of the form f(x) =
(ax—i—b)/(cx—l—d)). The following theorem shows that this is true also in
case III but not in case IV.

THEOREM. In the case III the set D, contains infinitely many points at
which the family {f"} is not normal, whereas in the case IV this family is
normal at every interior point of D .

Proor. Case III. Suppose that the number of points where {f"} is
non-normal is finite. Then the subset U of D, in which {f"} is normal
is open and connected.

Let the two points of S—D_  be @ and b. We know that at least one of
them is an essential singularity of f, and that neither f(x) = a nor f(x) = b
has infinitely many roots. In case III a, one of them has one root and the
other none, and in case III b, they have no roots at all. It follows from
Picard’s theorem that the equation f(x) = x has infinitely many roots
which accumulate at one (case III a) or both (case III b) of the points
a and b. Then all of these roots except a finite number are elements of U.
Let ¢ and d be two of these. Then c is either attractive or a center.

Suppose first that ¢ is attractive. Then the sequence f" converges to
¢ everywhere in U. Thus f*(d) - ¢ in contradiction to the fact that
fr(d) = d.

Secondly, suppose that ¢ is a center. Then there exists a sequence n,
such that f™(z) — x in U. Let ¢ = ¢ be an element of U satisfying f(e) = c.



90 HANS RADSTROM

Such a point exists since f(zr) = ¢ has infinitely many roots. We have
f™(e) — e. But this contradicts the fact that f"(e) = ¢ for » = 1. This
proves the theorem for the case III.

Case IV. We know that in this case the set S— D, consists of more
than two points. Since f*(D,) < D, we see that the points of S—D, are
not taken as values by f* in D,. Thus {f"} is normal at every interior
point of D . This completes the proof of the theorem.

4. Some results for the case III.

4.1. We suppose in this section that f belongs to the class ITI, and we
denote by F the set of points of D, at which the family {f"} is not normal.
It is easy to see that F is completely invariant under f, i. e. if a point
belongs to F, then all its successors and predecessors are also in F.

TueorEM. In the case III let @ and b be the points of S—D,, let t € F,
and let g be a function meromorphic at t but not one of the two exceptional func-
ttons p(x) = a and p(x) = b. Then t is a point of accumulation of roots of
the equations p(x) = f"(x).

Remark: We say that a function ¢ is exceptional in a region if the
equations f"(x) = ¢(x) have no roots in this region.

Proor. 1. We assume that ¢ is not a point of accumulation, and carry
this assumption to a contradiction.

Since {f"} is non-normal at ¢ and there exist two exceptional functions,
there exists no third such function. Therefore ¢ is non-exceptional. It
follows that to any neighborhood of ¢ there exist infinitely many equations
f" = @ which have roots in this neighbourhood. Choosing a fundamental
system U, of neighbourhoods of ¢, we can therefore construct an increas-
ing sequence n, of integers and a sequence #, of points so that f™(t,) =
@(t,) and lim ¢, = ¢. (In fact, let », be choosen > n,_, and such. that the
equation f™(x) = ¢(x) has a root ¢, in U,.) Thus ¢ would certainly be a
point of accumulation if infinitely many ¢, were different from ¢.

From the assumption made it follows therefore that f, = ¢ for all
» = N. Put ny =k and ny,, = I. Then I > k and we have f¥(t) = ¢(t)
and fY(t) = ¢(t). It follows that

o) = fH(H0) = £ = o),

i.e. that ¢(t) is a fixed point. Hence the theorem is proved under the added
assumption that ¢(t) not is a fixed point.
2. Our next step will be to use this preliminary result to prove the
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theorem under another and weaker additional assumption, namely that
F contains a point # which is not a fixed point.

From the result just proved it follows that the equations f* = u have
roots which accumulate at ¢. (In fact let p(z) = const. = u in the result
above. Then ¢(f) = u is not a fixed point.) Let «, —~ ¢ be a sequence of
such roots with u, == ¢. Since the points u, are predecessors of u e F,
they are also elements of F'.

Returning now to the given function ¢ of the theorem we observe
that ¢ is meromorphic in some neighbourhood of #, whence it follows
that it is meromorphic at «, for all large ». Consider now such a point
u, instead of ¢ and retrace the beginning of the argument in part 1 of this
proof. It follows that w, = lim, , u,, where the numbers u, , are
roots of equations f* = @. It is immediate that ¢ is then a point of accu-
mulation of the set {u, ,}.

Thus the theorem is proved under the assumption that F contains a point
which is not a fixed point.

3. The assumption that the theorem is false thus leads us to conclude
that F consists of fixed points only. Now let z, € F. Then z, is a fixed
point of a certain order n. Let x, be a predecessor of x,. Then x, € F' and
therefore x, is also a fixed point. Now «; is a successor of x, and there-
fore contained in the cycle of x,. It follows that this cycle coincides with
that of x,.

This shows that any predecessor of order one of z, is equal to f"'(x,),
i.e. that the equation f(x) = x, has only one root, a fact which contra-
dicts Picard’s theorem since we already know that the two equations
f(@) = a and f(x) = b have a finite number of roots.

Thus Theorem 4.1 is proved.

4.2. In this section we establish some results which follow easily from
Theorem 4.1 and which are counterparts in the case III of fundamental
results by Fatou and Julia in the cases I and II. We give them in the
form of corollaries to Theorem 4.1.

CoROLLARIES. In the case III let the two points of S—D, be a and b.
Then

1° If ¢ 18 not equal to a or b, then every point of F is a point of accumu-
lation of the predecessors of c.

2° Every point F is a point of accumulation of fixed points.

3° The set F' U {a, b} is perfect.

Proors. 1° follows directly from 4.1 by specializing ¢ to ¢(z) = c.
Similarly 2° follows by choosing ¢(x) = «.
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In order to prove 3° we observe that both @ and b are in the closure
of F. For the function f2 has both these points as singularities. Thus if
¢ € F, the roots of f2 = ¢ accumulate both at @ and at b by Picard’s theo-
rem. Furthermore, by 1° every point of F is a point of accumulation of
predecessors of c. But every such predecessor is in F. This shows that
every point of F' U {a, b} is a point of accumulation of F. Since F u {a, b}
is obviously closed, 3° follows.
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