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ON AN EXTENSION OF THE CONCEPT OF DEFICIENCY
IN THE THEORY OF MEROMORPHIC FUNCTIONS

OLLI LEHTO

1. Let f(2) be a non-constant meromorphic function in the domain
|2] < B =< oo. We use the standard notations (see [4]):

27

m(r, a) = (27)" S log | f(re'?)—a|-1dg (@ == o),

0
27r

m(r, ) = (2 {log |f(re™)| dp,

0

N(r,a) = Sn(r, a)dlogr,
0

n(r, a) being the number of the roots of the equation f(z) = a in the disk
|z| =< r, each root being counted according to multiplicity. Then

T(r) = m(r, oo)+N(r, co)

is Nevanlinna’s characteristic function for the function f(z).
The foundation of the modern value distribution theory for meromor-
phic functions is provided by Nevanlinna’s first fundamental theorem:

(1) m(r, a)+N(r, a) = T(r)4-0(1).

In addition to its intrinsic interest, this relation gives rise to the consid-
erations which lead to Nevanlinna’s second fundamental theorem and in
particular to the definitions of deficiency and of normal and exceptional
values.

However, the relation (1) is interesting only in case 7'(r) is unbounded,
and the above-mentioned consequences lose all meaning if 7'(r) is bounded.
In order to avoid this disadvantage we shall derive in this paper a rela-
tion which is closely related to (1) but is so formulated as to be of interest
also for functions of bounded characteristic. Thus we are able to define
the deficiency, and hence the normality or anomaly of a value, in a uni-
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fied manner for functions of both bounded and unbounded characteris-
tic. Since we shall deal with the theory of functions of bounded character-
istic in another paper, we here confine ourselves to some short remarks
concerning the consequences of the relation obtained.

2. In order to establish the desired relation we start from the argument
principle. By this principle,

2n ( e/‘q))__
§d arg <§z:e—w)jz_) = 2a(n(r,a)—n(r,)),

where a and ¢ are arbitrary complex numbers. By the Cauchy-Riemann
equations, this relation can also be written:

d (& ) )
(2) "5{ S (log |f(re’®) —a| — log | f(re")—L|) dgv} = 2a(n(r, a)—n(r, )).

Let u be a completely additive set function defined for all Borel sub-
sets of a closed set S. Multiplying (2) by du and integrating over § with
respect to £, we conclude that

(3) __{\“(f(re”)dqv Iz S)S log |f(re”) “Idw}
= n(r, a) u(S) — Sn(r, 8)du(?)

where

u(uw) = —\ log jw—{] du(0)
S

denotes the logarithmic potential corresponding to the set function u.
Let us suppose u(w) is continuous at w = f(0). Dividing (3) by » and
integrating with respect to » we then finally get the relatlon (cf. Frost-
man [1])

2n 2n

u(f(0)) — @) u(f(re®) dip -+ {log | (0)—al - 22+ {Log |f(re")—al dp) w(S)
®) =\ ¥, 0 du0) — N 0us) (@ 100),

S

which offers a convenient starting point for several studies in value
distribution theory, in addition to the questions dealt with in this paper.

3. Let G be an arbitrary domain in the w-plane whose boundary C is of
positive capacity. We apply the relation (4) to f(z), choosing the point a
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in the region G and taking as set S the boundary of G. For the set function
© we put
,u(e) = w(a, e, G) H

where w(a, e, @) is the value of the harmonic measure of the set ¢ at the
point a, with respect to the domain @. For this choice of y,

(5) uw(lS) = w(a, C,G) =1
and
_ |~ log lw—a| — g(w, a, G)
u(w) = {— log jw—al ,

where g(w, a, ) is the Green’s function of ¢ with pole at w = a, and
where the upper equation holds if w lies in G and the lower holds if w
is a regular point of C' (with respect to Green’s function) or an inner point
of the complement of @ (if such points exist).

For simplicity, we first suppose that the boundary of G consists of
regular points only. Letting g*(w, a, G) equal g(w, a, @) or zero, according
as w belongs to G or to the complement of G, we may write, for every w,

(6) u(w) = — log [w—a| —g*(w, a, G) .
By (5) and (8), it now follows from (4) that
M P a) N a) =\ N, 8 dole, 2, 6)+9'(a,(0), 6),
c

where

B(r, a) = (22) "\ g*(f(re"), a, @) dp .

oY

The integral

plr, @) =\ N(r, £) dofa, ¢, €)
¢
represents a non-negative function which is harmonic in G and possesses

the boundary values N(r, ) on C. Since @ = 0, we conclude from (7)
that the function

P(?", a) - p(ra G/) + g+(a’: f(O), G)
is a harmonic majorant for the subharmonic function N(r, a). It follows

at once from the boundary behaviour of P(r, @) that P(r, a) is the least
harmonic majorant of N(r, a) in G.

4. In the preceding section we have assumed that all boundary points
of G are regular with respect to the Green’s function. If G possesses ir-
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regular boundary points, no essential difficulties are encountered. This is
due to the fact that by a theorem of Frostman [1], the set of irregular
boundary points always is of capacity zero. Provided that w = f(0) is
not an irregular boundary point of @, it is therefore easily seen that all
the above conclusions remain valid.

The case in which w = f(0) is an irregular boundary point of G requires
a little more consideration. We introduce a sequence of complex numbers
t,,v=1,2, ..., where each {, is of modulus less than one, ¢, - 0 for
v - oo, and every point w = f(t,) lies in G. Approximating f(z) by the
functions

2+, )

1412

we again find that @4 N equals the least harmonic majorant of N.
Summarizing the above results, we obtain the following

710 =1

THEOREM. Let f(z) be a mon-constant meromorphic function in
|2| < B < oo, and let G be an arbitrary domain whose boundary ts of posi-
tive capacity. Let g*(w, a, G) equal g(w, a, G) or zero, according as w belongs
to G or to the complement of G, and form the function

2n
D(r, a) = (27) ’15 gt (f(re®®), a, G)dp,
0
which measures the convergence in the mean of f(z) towards the value a on
|2| = r. Then, for every a in @,

(8) D(r, a)+N(r,a) = P(r,a),

where P(r, a) is the least harmonic majorant of N(r, a) in G.

5. Let us consider this theorem first for the case in which f(z) is of un-
bounded characteristic. It follows immediately that, 1rrespect1ve of the
choice of the domain G,

D(r, a) = m(r, a)+0(1) .
Hence, by (1) and (8),
(9) T'(r) = P(r,a)+0(1),
no matter how the domain @ and the point @ (= f(0)) are chosen.
The equation (9) is of double interest. On the one hand, it provides a

new characterization of the function 7'(r), and on the other hand, it yields
information about the asymptotic behaviour of P(r, a) for r - R.

6. Suppose now that w = f(z) is of bounded characteristic. Since f(z)
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is non-constant, we must assume R < oo, and it is well known that f(z)
possesses boundary values almost everywhere on |z| = R.

Let I' be a closed point set in the w-plane containing the boundary
values w = f(Re') for almost all . For instance, I may be the closure
of all boundary values of f(z). By a well-known theorem of Nevanlinna
and Frostman, I" always is of positive capacity. We assume that the
complement of I is not void; it then consists of open domains.

We have previously proved [3] that, regarding the distribution of values
of f(z), only the following two alternatives can occur: If D is any one of
the above-mentioned domains outside I', then f(z) either takes no value
which belongs to D or it takes every value in D, except perhaps a set of
capacity zero. Supposing that the latter alternative is true, we choose, in
the above theorem, G = D. Because 7'(r) is bounded, the passage to the
limit, r —~ R, can be performed in (8), and we obtain

(10) O(R,a)+N(R,a) = P(R,a).

As above, P(R, a) is the least harmonic majorant of N(R, a) in D.

Now we can prove (this will be done in a forthcoming paper) that
@(R, a) = 0, except perhaps for a set of values a of capacity zero. Hence,
up to such an exceptional set, N(R, a) is harmonic in D. This implies that
if D’ < D and if we construct the least harmonic majorant for N(R, a)
in D', we have for every a in D’,

(11) P(R,a,D) = P(R,a, D).

In view of the result that @ = 0 up to a set of capacity zero and con-
sidering (11), it is natural to define the deficiency d(a) of the value a for
a function of bounded characteristic in the following manner:

o) — 1 YR
a) = 1— .
P(R, a)
By (9), this definition corresponds to the classical definition
N(r, a)

bla) = 1= e
for functions of unbounded characteristic.

In analogy with the case that f(z) is of unbounded characteristic we
call a value @ normal if §(a) = 0, exceptional if é(a) > 0 or if a belongs
to a domain outside I' which does not contain any value of f(z).
This division of the values of functions of bounded characteristic into
two categories is further justified by the fact that the normality of a
value does not depend on the conformal mappings of |z| < R onto itself.

14*
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It appears from (10) that if for a value a the deficiency d(a) > 0, then
f(z) strongly approximates this value in the neighbourhood of |z| = R.
In fact, we can prove that for a function of bounded characteristic such
an exceptional value is an asymptotic value.
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