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SOME EXTREMAL
PROPERTIES OF LAPLACE TRANSFORMS

EINAR HILLE
To the Memory of HARALD BOHR

In the following we shall take up for discussion some of the problems
posed by G. Doetsch in his handbook on the Laplace transformation [3].
Several of these problems will be solved essentially by solving the corre-
sponding problems for Laplace-Stieltjes transforms. We take as our point
of departure a Dirichlet series studied by H. Bohr in his dissertation [2,
Pp- 32-34, Setning XVII].

1. Bohr’s series. This Dirichlet series is constructed with the aid of
four sequences of positive integers, {«,}, {8,}, {¥n}> {#.}, such that

<Yy << Y1 <A< o <y <Yy < P <V < g < e
Here
& 29, Bu=y limd, =0, limy,""=0, y’ =y,.
n—>00 N~>00
We set .
(1.1) p(2) = 2 a,m™,
m=1

where the partial sums of the series 27°a, are determined by the con-
ditions

S, =0, Gy E=2m< B, ,
Sm:mw": ﬂn§m§yn’
szl’ Y <M < 0y .

Since |S,,| = 1 and 8,, does not converge, the series (1.1) has the abscissa
of convergence f, = 0. Bobhr showed that the Lindel6f mu-function of
9(z), 2 = x4y, equals

1—uz, O<z<l,

(1.2) mx;w——-{ olEn

2
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Bohr derived this result from a detailed study of the asymptotic behavior

of p(x+1y,) as n — co. We shall need more details about this behavior as

well as some inequalities obtainable from the same considerations.
Suppose that y, <y < ny, and 0 < x =< 1—9J < 1. We have

<z)—ZS [m—(m+1)7]

and for |z| < m, hence certainly for m = §,, if » is large,
mP—(m-+1)" = 2m™ % + 2m T F(z, m)
with |[F(z, m)| < M, a fixed finite quantity. Thus

an—1

z)—ZS [m~ m—[—l‘z]+z2,Sm‘1‘z

m=py

+Z ‘ZTOO m —1—z+z2 Y F(Z m) —2—2

m=yp+tl m= ﬁn

:21—‘_22_}_2’13—{_24 *
Here
oan—1

(13) | =2 mT <2(1—a)" o, < 2(1—a) 1y, 107,
m=1

(1.4) ]23] =< (14ny,) 200’ mF < 2 1ny, 2,
m=yptl
(1.5) |2 = Q+ny, )2 M %;mﬁz—x

< M(14+ny,)? (1+z) 8,7 < 4Mn2y, -1 Hom==on,

Setting
yn
(1.6) o) = X m™",
m=fp
we get

O‘n(x) =zt [ﬂnﬂxw yn—z] =+ O(ﬂn~1_x)
=2 B, [1=(Buya™)" + 20(B,™)] .

Here the second term in the last bracket does not exceed y,~
Replacing = by z/k and noting that y,, " — 0 we conclude that for fixed «

x (1—0p)

(1.7) o (k) = kx-1y, Ok [110(1)], k=1,2,...,m,

as n - oo, uniformly with respect to k.
We have now

yn .
22 — (x + zy) 27 m—l—xﬂ(yn—y)'

m=4n
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If y == y,, this gives
2, = (a+iy,) o,(x) = iy, O [14-0(1)] .

It is clear that for this value of y the sum X, dominates the other sums
2, so that

(1.8) p(@+iy,) = ia 'y, " [140(1)]

for fixed . This is Bohr’s result save for the omitted factor x-1.
It is essential for the following that we may replace x by z/n in this
formula, obtaining

(1.9) @ (@[n4-1y,) = ina~ty, "I 14o(1)]

as n — oo, z being fixed, 0 < # < a < oo. This follows from the fact that
(1.7) holds and that the resulting value of X, still dominates the other
2’s for n large.

Suppose now that y,, < y < ny,. We have then

(1.10) ]22| < lz+tiy|o,(x) = 2nx_1yn1’(1+"")”

for n > n,, independently of z, x > 0. Combining (1.3)—(1.5) with (1.10)
one getsforO0<z <k, 1=k <n,

lp((@+ing,)[k)] < 2k(k—a) 1y, 20 + 2ha ny, 120k
@ n Yn Yn

+ AMn2 ynl—(1+6n)x/k—6n + nkx! ynl—(lJrén)z/k‘;
whence for large n

(1L.11) |p((x+iny,) k)] < Cn2x-1y,Otowel=D  p— 1 2 .., n—L
(p n yn

The assumption that 0 < x < 1 is clearly not necessary since the series
(1.1) is absolutely convergent for x > 1 so that the estimate (1.11) is
trivially true for x > 1. Cf. (1.12) below?.

Finally we note the trivial but useful estimate

(1.12) lp(2)] < |22, x> 0.

This follows immediately from the representation of ¢(z)/z as a Laplace
integral.

2. Maximal order of Laplace integrals on vertical lines. It is known that
a Laplace transform is at most o(|y|) on vertical lines. The following
theorem shows that this is the best possible estimate thus answering a
question posed by G. Doetsch [3, p. 175].

1 The author is indebted to Dr. Erling Folner for calling his attention to errors in the
original argument used in proving (1.9) and (1.11).
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THEOREM 1. There ewists a Laplace transform q(z), converging for
Re(z) > 0, such that

1—=x, O<ax <1,
(2.1) M%m—{o, 1=

We use Bohr’s function ¢(z) and define

(2.2) q(2) = ¢(2)(log (2+2))~".

The function (log (2+2))~? is holomorphic for Re(z) > —1 and is a La-
place transform in this half-plane. In fact, from
(F((X))_l S e—(z—‘r2)tt<x——-1dt — (7«+ 2)—a’
0
one obtains by integration with respect to «
(2.3)  (log (=-+2))t =\ e‘”{e“” 5 £ (I(x)™ da} dt = 3 e L(1)dt
.(l) 0 0
which is the desired representation. Here L(¢) is real positive. We have
then

o

(2.4) 1) =\eQuar
with ,’

(2.5) Q(t) = SL(tws)dA(s)
if "

(2.6) p(z) = Se‘z"dA(t) .
Here '

(2.7) 40 = X ay =S

It is clear that (2.4) converges for Re(z) > 0 as the product of two con-
vergent Laplace-Stieltjes integrals of which one is absolutely convergent
and the value of u(x;q) equals that of u(x; @) which is given by (1.2).

3. Laplace transforms of maximal order in a half-plane. Actually we
can do much more with Bohr’s function than is indicated in Theorem 1.
On p. 181 of [3] Doetsch raised the question of the existence of a Laplace
transform bounded in no right half-plane. In the mean time P.H.Bloch
[1] has constructed such a function, but we shall find one with still more
extreme properties.
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TarOREM 2. There exists a Laplace transform f(z), converging for
Re(z) > 0, such that

(3.1) pz f)=1, x>0.

For the construction we use Bohr’s series again, but it is convenient to
specify the basic sequences of integers. We shall take, for instance,

(3.2) “nz =Yn» Yn= 22”2’ Yn= ynz’ 0, =27".

This choice is evidently consistent with the conditions imposed in section 2.
We then set .

(3.3) 9@) = 2 Y1 pl2[n).

n=1

In view of (1.12) the series converges absolutely and uniformly in every
sector |z| = ¢, |arg 2| =< dn—e, e > 0.

Since -
pleln) =\ etdAa ),
0
we have -
9 = X g\ ead )
n=1 '0
and, formally, -
(3.4) () = \ e dG(1)
0
with o
(3.5) Gt) = y, ;1A (nt).
n=1

The series (3.5) converges for 0 =< ¢ < oo, uniformly in every finite in-
terval, since |4A(nt)] < 1. Further

Vi[dms)] = 3 ja,) =2 3 1< 2™,

logm < nt logm=<=nt

so that

78

-1 ,nt

Vot[G(s)] =2 Yna "€

=1
and G(t) is of bounded variation in every finite interval. On the other
hand, the variation grows faster than any function e®® as ¢ — +oo. It
follows that the integral in (3.4) converges for Re(z) > 0 but has no half-
plane of absolute convergence. It is a simple matter to verify that the
integral actually represents g(z), for instance, by computing the saltus
corresponding to ¢ = n~log m and comparing it with the coefficient of
m~*" in the double series
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0 0
2 yn—l_lz7 amm—zm'
n=1 m=1

This being accomplished we shall verify that

(3.6) wxg) =1, x>0,
For this purpose we write
n—-1 0
9(z) =kZ' Y1 P[5 4+ Y p(2[0) +k 2 Yot 'p(2[E)
=1 =n+1

and choose z = z+-tny,. For n large we can then use (1.9) and obtain

(3.7) Ynoa “pl@[ntiy,) = 1 y, Ty, "0 [140(1)]
— ,l:x-l ynl—(l+0n)ﬂv/n—2én2 [1 +0( 1 )] .

The finite sum is estimated with the aid of (1.11) which shows that it is
small in comparison with the contribution from the nth term. The infinite
remainder is estimated using (1.12) and is found to be dominated by a
constant times n/x. Combining the three estimates one gets

(3.8) gle-tiny,) = iz "y, w2 (14 o(1)]

uniformly in z, 0 <z =< w < oo. It follows that for every fixed p,
0 = p < 1, and fixed z, 0 < z < oo, one has
lim sup ¢ |g(z+1y)| = +oo.
Y—>+00
Hence u(z;9) = 1. But the converse inequality must hold in the half-
plane of convergence of a Laplace-Stieltjes transform. This proves (3.6).
We now form

(3.9) 1@ = 9(2) (tog (z+2)) " =\ Fe)a
with ¢ 0
(3.10) Pt — SL(t——s)dG(s) .

0

By the analogue of Mertens’ theorem the integral in (3.9) converges for
Re(z) > 0. It follows that f(z) is a convergent Laplace transform satisfying
(3.1) and the theorem is proved.

4. Summable Laplace transforms of maximal order in a half-plane.
On p. 333 of [3] Doetsch raised the question if the estimate f(z4iy) =
o(ly|**!) is the best possible for x = f, ¢ if f(z) is representable as a
Laplace transform, summable (C, k) for > §;. We shall show that this
is indeed the case for integral values of £.
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THEOREM 3. For each positive integer k there exists a function f, (z) which
18 representable by a Laplace integral, summable (C, k) for x > 0, such that

(4.1) uls fr) =k+1, x>0,
We set
(4'2) fk(z) = [f(z)]lﬁ—l, k = 1: 2) 3, ey

where f(z) is the function defined by (3.9). Obviously it satisfies (4.1).
For k = 1, f,(z) = f(2)f(2) is the product of two convergent Laplace inte-
grals. Consequently we have formally

(4.3) ) =\e=F @
with ¢ '
(4.4) Fy(t) = SF(t—u)F(u)du .

0
Here the integral (4.3) cannot converge for any z since f,(x+1iy) is not
o(|y|). But by a well-known theorem (see Doetsch [3], p. 351) the product
of two convergent Laplace integrals is certainly summable (C, 1) so that

oo t
(4.5) file) =2 g ot \ Fy(s)dsdt
o 0
the integral being convergent for Re(z) > 0. Since |fi(x-+iy)| is not
o(ly|*"*) for any « < 1, it follows that (4.3) cannot be summable (C, x)
with an « < 1. This settles the case k£ = 1.
Since

Jina(?) = f(2)fu(2) 5

we can apply an obvious induction argument based on the fact that if
two Laplace integrals are summable (C, x) and (C, ) respectively, then
their product is summable (C, -+ [(--1) at least. The details may be left
to the reader.

5. On the theorem of Landau. It was proved by E.Landau [4, p. 546],
cf. Doetsch [3, p. 153], that if the Laplace transform f(z) = Q{F} of a
positive function F(t) has a half-plane of convergence, Re(z) > §,, then
the point z = f§, is a singular point of f(z). On p. 331 of [3], Doetsch raised
the question of the character of the point z == f,, if it is known that
Q{F} does not have a half-plane of convergence, f, = 4o, but there
exists a & > 0 such that the integral is summable (C, k) for Re(z) > 5,,
P < oo, F(t) being ultimately positive.
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We shall show that this case cannot arise. It is no restriction to assume
that F(t) = 0 for all ¢. By assumption

w

(5.1) lim sup o' log S Ft)dt =

@—>00
0

If @®{F} converges for some k > 0 and some real & > 0, we would have
for this x (see [3, p. 315, formula (3)])

oo 12
(5.2) f@) = & (D4 1)) 5 e—wt\ (t—s)* F(s)ds dt
o 0
and w ¢
(5.3) lim sup -1 logs s)dsdt < x < oo
w—>00 ©
00

Suppose that 4 is given arbitrarily large but at least > 2x. By as-
sumption we can find arbitrarily large values w such that
\F(t) dt > e*e,
0
But this says that there are intervals (w, 2w) with arbitrarily large values
of w such that

u

\F(t)dt >et® for w=<u=<20.
0
Next we observe that

t t—.l
g (t—s)* F(s)ds > SF(s)ds S ¢AeD
0 0
for w+1 =t < 2w--1. Hence
2w+1 ¢ 2w+1
g S(t—s)’“F(s)dsdt > S AVt > wel
;) 0 w+1
so that
2w+1 f
(20+1) log S S(t——s)’“F(s) dsdt > (20+17" Ao + (2041 log o.
0 0

It follows that the superior limit of the left side for w — o is at least
34 > x. This is a contradiction and shows that g, = +oo for every £%.

6. The abscissas of finite order and of holomorphism. Let f(z) = {F}
be a Laplace transform with z = f, < +oo as abscissa of convergence.
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If there is no singular point on the line x = f,, it may happen that for
some k > 0 the abscissa of (C, k)-summability g, is less than §,. Since §,
is a decreasing function of %

(6.1) lim 8, = B,

k—>oc0

exists and n < B, where % is the abscissa of holomorphism of f(z), that
is, every strip n—e < x < 7 contains at least one singular point of f(z).
Here g, is also characterized by function theoretical properties of f(z);
indeed, f, is the abscissa of finite order, that is, |f(z-+iy)| = O{y|"}
for x = f.+¢, & > 0, but ceases to be of finite order in any half-plane
z = f—e. On p. 331 of [3] Doetsch asked if 5 could be less than g, and,
if so, that an example should be found. This will be done here.

THEOREM 4. There exists an entire function f(z) such that B, is identi-
cally zero, 0 < k < +oo.

For the proof we use the function of Mittag-Leffler of order «

3

(6.2) E,(z) = 3 2" (I'(14-an))™".

It is known that "

(6.3) |B,(2)| = My(x), 3dnx < argz = 2a—jax,
(6.4) B, (2)— a7 < (2| My (o), Jarg 2] < .

Here we take o« = } and form the function

(6.5) f() =21 [B(w2)—1], o =",
This is an entire function so # = —oo. Further
(6.6) \lfatinray =0, =zo0,

by virtue of (6.3). By a well-known theorem (see Doetsch [3, p. 422]),
f(z) is then the Laplace transform of a function F(f) in L,(0, o) so that
Bo = 0. Now (6.4) shows that for x < 0

(6.7) flatiy) = 2(@+iy)H £ 10(1)

so that f = 0. This completes the proof.

Addendum (October 24, 1953). Dr. Felner has kindly called my atten-
tion to a paper by Tim Jansson, Uber die Grissenordnung Dirichletscher
Rethen, Arkiv for Mat., Astr. o. Fysik, 15, no. 6 (1920), 11 pp. In this
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paper Dr. Jansson used Bohr’s method to construct a Dirichlet series
with 4, = log log n, convergent for 2 > 0 and having u (x) = 1. Moreover,
he used the same device to construct a continuous function whose La-
place transform has u(xr) =1 and he observed that the square of the
transform is summable (C, «) for « = 1 but not for « < 1. Thus the prob-
lems that I set out to solve in sections 3 and 4 were solved years ago.
The observation that multiplication by [log (z-+2)]™" or a similar slowly
decreasing logarithmico-exponential function carries a Laplace-Stieltjes
integral into a Laplace integral with the same mu-function, is possibly
new, however. Perhaps the publishing of this paper will bring back to
light some more forgotten results.
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