CONGRUOUS AND INCONGRUOUS ONE-TO-ONE CORRESPONDENCES

FREDERICK BAGEMIHL

In this note we first prove a general theorem concerning one-to-one correspondences between a set and itself, relative to decompositions of the set into subsets, and then obtain some related results dealing with more special correspondences involving real or rational numbers.

Let Γ be a one-to-one correspondence defined between the elements of the (not necessarily distinct) sets M and N, or a one-to-one transformation defined on M and mapping M onto N, and let $m \in M$ and $n \in N$ be (not necessarily distinct) corresponding elements under Γ . If $m \neq n$, we call m a free element of M, under Γ . There are obviously the same number of free elements, under Γ , in M as in N. We say that Γ has $\mathfrak k$ free elements, if the cardinal number of the set of free elements in M, under Γ , is $\mathfrak k$. Let $\mathfrak k$ be an arbitrary class of mutually exclusive sets, with $|\mathfrak K| \geq 2$, and let $\mathfrak k \geq 1$. If m and n belong to the same element of $\mathfrak K$, we call them a congruous pair of elements relative to $\mathfrak K$; if they belong to distinct element of $\mathfrak K$, we call them an incongruous pair of elements relative to $\mathfrak K$. We say that Γ is

- (a) congruous,
- (b) p-congruous,
- (c) at least p-incongruous,
- (d) p-incongruous,

relative to R, according as the following conditions are satisfied:

- (a) all pairs of corresponding elements are congruous relative to \Re ;
- (b) Γ is congruous relative to \Re , and every element of \Re contains exactly $\mathfrak p$ pairs of corresponding elements;
- (c) if $X \in \Re$, $Y \in \Re$, $X \neq Y$, then there are at least \mathfrak{p} incongruous pairs of corresponding elements relative to the class $\{X, Y\}$;
- (d) if $X \in \Re$, $Y \in \Re$, $X \neq Y$, then there are exactly \mathfrak{p} incongruous pairs of corresponding elements relative to the class $\{X, Y\}$.

Received May 4, 1953.

A \mathfrak{p} -decomposition ($\mathfrak{p} \geq 1$) of a set E is a class, \mathfrak{P} , of \mathfrak{p} nonempty mutually exclusive sets whose union is E.

C denotes an ordered set whose order type is that of the real numbers in their natural order. R denotes an ordered set whose order type is that of the rational numbers in their natural order, except in Theorem 5, where R stands for the set of rational points on a straight line.

By an interval of an ordered set S we mean either S itself, or the subset of S preceding some element of S, or the subset of S succeeding some element of S, or the subset of S between two distinct elements of S. A subset, S', of S is dense in S provided that every interval of S contains an element of S'.

THEOREM 1. Let \mathfrak{G} be a class of \aleph_{α} one-to-one correspondences each of which has at least \aleph_{α} free elements, E be the union of the sets between which the elements of \mathfrak{G} are defined, and \mathfrak{p} be a cardinal number with $2 \leq \mathfrak{p} \leq \aleph_{\alpha}$. Then there exists a \mathfrak{p} -decomposition, \mathfrak{P} , of E such that every element of \mathfrak{G} is at least \aleph_{α} -incongruous relative to \mathfrak{P} .

Proof: Consider \aleph_{α} replicas of every element of \mathfrak{G} , well-order the resulting complex of $\aleph_{\alpha}^{\ 2} = \aleph_{\alpha}$ one-to-one correspondences to form a sequence

(1)
$$\Gamma_0, \Gamma_1, \ldots, \Gamma_{\varepsilon}, \ldots \quad (\xi < \omega_{\alpha}),$$

and denote by M_{ξ} , N_{ξ} the (not necessarily distinct) sets between which Γ_{ξ} ($\xi < \omega_{\alpha}$) is defined. Let ϱ be the smallest ordinal number such that $|\varrho| = \mathfrak{p}$. The power of the set of all ordered pairs, (γ, δ) , of ordinal numbers with $\gamma < \delta < \varrho$, is not greater than \aleph_{α} . Consider \aleph_{α} replicas of each of these ordered pairs, and well-order the resulting complex of \aleph_{α} ordered pairs to form a sequence

$$(2) p_0, p_1, \ldots, p_{\xi}, \ldots (\xi < \omega_{\alpha}).$$

Let $m_0 \in M_0$, $n_0 \in N_0$ be free corresponding elements under Γ_0 . Suppose that $0 < \xi < \omega_{\alpha}$, and that elements $m_{\sigma} \in M_{\sigma}$, $n_{\sigma} \in N_{\sigma}$ have been defined for every $\sigma < \xi$. If we put $V_{\xi} = \{m_{\sigma}\}_{\sigma < \xi} \cup \{n_{\sigma}\}_{\sigma < \xi}$, then $|V_{\xi}| < \aleph_{\alpha}$. Let $m_{\xi} \in M_{\xi} - V_{\xi}$, $n_{\xi} \in N_{\xi} - V_{\xi}$ be free corresponding elements under Γ_{ξ} ; they exist because Γ_{ξ} , by hypothesis, has at least \aleph_{α} free elements. The set $V_{\omega_{\alpha}} = \{m_{\xi}\}_{\xi < \omega_{\alpha}} \cup \{n_{\xi}\}_{\xi < \omega_{\alpha}}$ is thus defined by transfinite induction.

We express $V_{\omega_{\alpha}}$ as the union of $\mathfrak p$ mutually exclusive sets B_{π} $(\pi < \varrho)$, as follows: Suppose that $\xi < \omega_{\alpha}$. The terms of (1) which are identical with Γ_{ξ} but whose subscripts are less than ξ , form a subsequence, of some order type $\tau_{\xi} < \omega_{\alpha}$, of (1). If $p_{\tau_{\xi}} = (\gamma, \delta)$, assign m_{ξ} to B_{γ} and n_{ξ} to B_{δ} .

Math. Scand. 1.

Express $E-\left(\{m_\xi\}_{\xi<\omega_\alpha}\cup\{n_\xi\}_{\xi<\omega_\alpha}\right)$ in an arbitrary manner as the union of $\mathfrak p$ mutually exclusive sets $B_{\pi}{'}$ $(\pi<\varrho)$, and put $A_\pi=B_\pi\cup B_\pi{'}$ $(\pi<\varrho)$. The class $\mathfrak P=\{A_\pi\}_{\pi<\varrho}$ is a $\mathfrak p$ -decomposition of E.

Now let $\Gamma \in \mathfrak{G}$, and suppose that A_{γ} and A_{δ} ($\gamma < \delta < \varrho$) are any two distinct elements of \mathfrak{P} . This Γ appears \aleph_{α} times in (1); let

$$\Gamma_{\mu_0}, \Gamma_{\mu_1}, \ldots, \Gamma_{\mu_{\xi}}, \ldots \qquad (\xi < \omega_{\alpha})$$

be the subsequence of (1), whose terms are identical with Γ . The ordered pair (γ, δ) appears \aleph_{α} times in (2); let

$$p_{\nu_{\alpha}}, p_{\nu_{\gamma}}, \ldots, p_{\tau_{\beta}}, \ldots$$
 $(\xi < \omega_{\alpha})$

be the subsequence of (2), whose terms are identical with (γ, δ) . According to the definition of the sets B_n $(\pi < \varrho)$, we have $m_{\mu_{\nu_{\xi}}} \in B_{\gamma}$, $n_{\mu_{\nu_{\xi}}} \in B_{\delta}$ $(\xi < \omega_{\alpha})$, which means that Γ is at least \aleph_{α} -incongruous relative to the class $\{A_{\gamma}, A_{\delta}\}$. This completes the proof of Theorem 1.

THEOREM 2. Let $2 \leq \mathfrak{p} \leq 2^{\aleph_0}$. Then there exists a \mathfrak{p} -decomposition, \mathfrak{P} , of C, such that every antisimilarity or nonidentical similarity between two (not necessarily distinct) intervals of C is 2^{\aleph_0} -incongruous relative to \mathfrak{P} .

PROOF: Let \mathfrak{G} be the class of all antisimilarities and nonidentical similarities between all pairs of (not necessarily distinct) intervals of C. There are 2^{\aleph_0} intervals of C, and 2^{\aleph_0} antisimilarities and nonidentical similarities defined between every pair of these intervals. It follows that $|\mathfrak{G}| = 2^{\aleph_0}$. Every element of \mathfrak{G} , since it is not the identity, has a whole interval of free elements. If we now put $\aleph_\alpha = 2^{\aleph_0}$ and E = C, then the hypotheses of Theorem 1 are satisfied, and Theorem 2 is an immediate consequence of the conclusion of Theorem 1.

Let R' be a set which is similar to R, R be the union of the mutually exclusive sets A_{ν} ($\nu < \varrho$, $1 \leq \varrho \leq \omega$) each of which is dense in R, and R' be the union of the mutually exclusive sets A_{ν}' ($\nu < \varrho$) each of which is dense in R'. According to Skolem [1, pp. 30–36], there exists a similarity mapping, Γ , of R onto R', such that $\Gamma(A_{\nu}) = A_{\nu}'$ for every $\nu < \varrho$. Let B_0 be a subset of A_0 which is cofinal with A_0 and has order type ω . One can obtain 2^{\aleph_0} subsets of A_0' each of which is cofinal with A_0' and has order type ω . Let B_0' denote one of these subsets of A_0' . Then it is not difficult to see that the Γ in Skolem's theorem can be chosen so as to have the additional property that $\Gamma(B_0) = B_0'$. Furthermore, each choice of B_0' leads to a different Γ . Thus, as an immediate consequence of Skolem's theorem, we have

Theorem 3. Let \mathfrak{P} be a \mathfrak{p} -decomposition of R, where $1 \leq \mathfrak{p} \leq \aleph_0$, such that every element of \mathfrak{P} is dense in R. Then, between any two (not necessarily distinct) intervals of R, there exist 2^{\aleph_0} similarities which are \aleph_0 -congruous relative to \mathfrak{P} .

Theorem 3 may no longer hold if we drop the condition that every element of \mathfrak{P} be dense in R. To see this, it suffices to well-order the elements of R to form a sequence, $r_0, r_1, \ldots, r_r, \ldots (r < \omega)$, put $A_r = \{r_r\}$ for every $r < \omega$, and take $\mathfrak{P} = \{A_r\}_{r < \omega}$. Then every similarity (except the identity) defined on any interval of R is 1-incongruous relative to some infinite subclass (depending on the similarity) of \mathfrak{P} . If, however, \mathfrak{P} is finite, then it is possible to obtain the following result:

THEOREM 4. Let \mathfrak{P} be a \mathfrak{p} -decomposition of R, where $1 \leq \mathfrak{p} < \aleph_0$. Then, between every interval of R and itself, there exist 2^{\aleph_0} similarities which are congruous relative to \mathfrak{P} .

PROOF: Let I be an arbitrary interval of R. Since R is the union of the finitely many elements of \mathfrak{P} , there exists an interval, I_1 , of I such that, for some element, say A_1 , of \mathfrak{P} , $A_1 \cap I_1$ is dense in I_1 . Let A_2, A_3, \ldots, A_o , where $|\varrho| = \mathfrak{p}$, be the remaining elements of \mathfrak{P} , in case $\mathfrak{p} > 1$. We define an interval I_{ϱ} , by induction, as follows: Suppose that $1 \leq \nu < \varrho$ and that the intervals $I_1 \supseteq I_2 \supseteq \ldots \supseteq I_r$ have been defined so that, if $1 \le \tau \le \nu, A_{\tau} \cap I_{\nu}$ is either dense in I_{ν} or empty. If there exists an interval, J, of I_r such that $A_{r+1} \cap J = 0$, we define I_{r+1} to be J; otherwise, we put $I_{r+1} = I_r$, in which case $A_{r+1} \cap I_{r+1}$ is dense in I_{r+1} . Let $B_{\nu} = A_{\nu} \cap I_{\rho}$ ($1 \leq \nu \leq \varrho$); evidently B_{ν} is either dense in I_{ρ} or empty, and B_1 , certainly, is dense in I_o . According to Theorem 3, there exist 2^{\aleph_0} similarities between I_o and itself, which are congruous relative to that subclass of \mathfrak{P} consisting of those elements A_{ν} for which the corresponding set B_{ν} is not empty. Each of these similarities when extended to I so as to be the identity on $I-I_o$, is congruous relative to \mathfrak{P} , and hence the proof of the theorem is complete.

Let R be the set of rational points on a straight line. There are \aleph_0 displacements between R and itself, and at most 2 displacements between two (not necessarily distinct) congruent intervals of R if these intervals are different from R. If such a displacement is not the identity, it has \aleph_0 free elements. A simple application of Theorem 1 yields

THEOREM 5. If $2 \leq \mathfrak{p} \leq \aleph_0$, then there exists a \mathfrak{p} -decomposition, \mathfrak{P} of R, such that every nonidentical displacement between two (not necessarily distinct) congruent intervals of R is \aleph_0 -incongruous relative to \mathfrak{P} .

REFERENCE

Th. Skolem, Logisch-kombinatorische Untersuchungen über die Erfüllbarkeit oder Beweisbarkeit mathematischer Sätze nebst einem Theoreme über dichte Mengen, Skrifter utgit av Videnskapsselskapet i Kristiania, I, matematisk-naturvidenskabelig Klasse, 1920 Nr. 4, 1–36.

INSTITUTE FOR ADVANCED STUDY PRINCETON, N.J., U.S.A.