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A NOTE ON FOURIER-STIELTJES TRANSFORMS
AND ABSOLUTELY CONTINUOUS FUNCTIONS

CARL-GUSTAV ESSEEN

1. Let F(x) be a real or complex-valued function of the real variable «
and of bounded variation on the whole real axis —oo < & < o0

OSJ!dF(oe) =V < o,

Let f(u) be the Fourier-Stieltjes transform of F(«):

o0

(1) g " dF (x

u being a real variable. In connection with a problem concerning the
unique determination of certain Fourier-Stieltjes transforms the author
[1, p. 19] has earlier proved the following theorem: If f(u) is equal to
zero on an interval of infinite range, then F(«) is absolutely continuous.
The condition that f(u) is equal to zero on an infinite interval o may,
however, be replaced by the weaker one that f(u) belongs to the Lebesgue
class L? on w. In fact, in this paper we shall prove the following theorem :

TrEOREM. If f(u) is the Fourter-Stieltjes transform of a function F(x)
of bounded variation on (—oo, 00) and if f(u) belongs to L? on an interval
of infinite range, then F(«) is absolutely continuous.

Before proving the theorem we remark that if f(u) € L?(—oo, ) the
theorem is an immediate consequence of well-known properties of Fou-
rier integrals. Further, if F(«x) is a real-valued function, then f(—t) =
f() and f(t) € L¥(—oo, o0) if f(t) belongs to L? on an infinite interval w.
Thus, in the particular cases where w = (—oo, ) or F(«) is real, the
theorem is trivial.

Further we note that if {,|f(u)|?du < oo, p < 2, then {,|f(u)2du < oo
and hence F(«) is absolutely continuous. If, however, Sw[ f@)|Pdu < oo,
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p > 2, then F(«) is not necessarily absolutely continuous as may be
shown by examples (see [3, Section 8]).

2. Proor oF THE THEOREM. Without loss of generality we may sup-
pose w = (—oo, 0), that is,
0
@) S If(w)2du = K < oo
In order to prove the absolute continuity of F(x) we start from (1) and
the Fourier inversion formula and consider

(o 9)

(27)-1 S i f () du

—0Q

This integral, however, does not necessarily exist and instead of it we
form the convergent integrals

=4

(3) fiz) = 2wy 1\ et uf(u)du, Imz>0,

3

(4) fa(2) = (2m)

e~tuf(u)ydu, Imz<O0.

ce 3

Here 2 = x4 iy is a complex variable. The function f,(z) is analytic in
the upper half-plane y > 0, f,(2) is analytic in the lower half-plane y < 0.
Observing that

—i(x—z)"1 =\ eT¥eiudy Imz> 0,

—i(x—z)"1 el gy Imz<o0,

I

c 3 émc

we easily obtain from (1), (3), and (4) the following expression:

< f1(z) if Imz>0,
(5) (20v8) S (x—2)1dF(x) = l
% —fo(z) if Imz<O.

Let us first consider the function f;(z). From (3) we get

0

Hlatiy) = @\ emvep@ydn,  y>o0.

—0Q
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Hence, by (2) and the Parseval relation it follows that

(6) {In@+inide = @ayr (e f@yzan = @)1k
for all y > 0.

Then, according to a well-known theorem [2, Theorem 2.1], there exists
a function f,*(x) with the properties:

0 Slfl 2)2de < K (27)-1;

2° lim fi(x+ty) = fi*(x) almost everywhere on the real axis;
Y—>+0

[o9)

3° limggfl(xﬂy — f*@)dz = 0;

—>+0
Y—=>+0

(7)  4° lim gfl(x—{— 1y)de = gfl*(z)dx on every finite interval 1.

y—>+0y b
As to the limit of f,(x +iy) for y — —0 we shall prove the existence of

a function f,*(x) with properties corresponding to 2° and 4° above. This
function f,*(x however need not belong to L2. Let us form

8) Aty + folr—iy) =2 5 Y [(n—2)2+ g2 dF(x) ,

where y > 0. It follows that

2

(e +in) + fe—ipide = { 1aFe) = ¥ < .

For a finite interval (—a, a) we thus obtain
\ e —iy)lde =\ e +iy)lde + 7,

or by (6) and Schwarz’ inequality:

9) (1o —inide < Gt 4+ v, y>o,



156 CARL-GUSTAV ESSEEN

k being a constant. We now consider the function ¢(z) = f,(2)(z—1)~
which is analytic for Imz < 0. By partial integration, assuming y < 0,

we get

SI (x+1y)|d \ falx+iy) (@ 41y —1)-2|dx

=\l +inlie+1)1de

3 :

a

— (a*+1) 1\'|f25+zy|d5+2

—a

If2(§+zy)!d§} (@24 1)2da ,

le——3s
ot oy

or on account of (9):
Vot +ig)lde = @+ 1) ((ka)t + V) + 2{ ((0lal)? + V)2 1) 2

—a —-a

Hence, letting a — oo,

(10) lp(x+1y)|de < K, for y<oO,

émg

K, being a constant independent of y. By (10) it follows that the theorem
mentioned above [2, Theorem 2.1] may now be applied to ¢(z). Thus
there exists a function ¢*(x) such that

1 \pr@)ide < K;;
2°  lim @u(x+ty) = ¢*(x) almost everywhere on the real axis;
y—>—0

3 lim { lpye+iy) — g*@de = 0;

y—>—0 2

4°  lim g%(x—{—iy)dx = \.qa*(x)dx on every finite interval I.
y=>07 by
If fy*(x) = (x—1)2 p*(x), it results immediately that f,*(x) belongs to L
on every finite interval I and that
1°  lim fy(x+ty) = fy*(x) almost everywhere;

y—>—0

an 2 lm {petinde = frede.

y=>-07% 7
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By partial integration we obtain from (8):

[o.0]

d
fil@+1y) + folx —iy) = —a? g F(x) o {y[(x—2)? + 921} do

Now let £ and &, be two arbitrary points where F(«) is continuous. By
integration we get

o

(file+1y) + folx —1y)) dx

2 . o .
= 7t | F) yla—87 49t do — a7 | ) yl(s—Eu 497 das.

Letting ¥y — +0 in (12) we obtain by (7), (11), and well-known proper-
ties of the kernel z~1y[(ax—&)2+y?]~! that
2
\(r*@) + fer@)de = F&) — Fi&o).-
é
Hence F(&) is absolutely continuous and the theorem is proved. The
special choice of & and &, is, of course, unimportant.
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