THE MAXIMUM VALUE OF A FOURIER-STIELTJES TRANSFORM

EDWIN HEWITT and HERMAN RUBIN

1. Introduction. Let G be a locally compact Abelian group with character group G^* . Let (y, x) denote the function on $G \times G^*$ equal to the value of $y \in G^*$ at $x \in G$. Let φ be a bounded Radon measure on G, with Fourier-Stieltjes transform

$$\Phi(y) = \int_{\alpha} (y, x) d\varphi(x).$$

Let $|\varphi|$ be the total variation of the measure φ (see [2, p. 459]). That is,

$$|\varphi|(A) = \sup \sum_{\nu=1}^{n} |\varphi(A_{\nu})|,$$

the supremum being taken over all pairwise disjoint families $\{A_r\}_{r=1}^n$ of Borel sets whose union is the Borel set A. For other notation and terminology, see [3].

We are concerned in this note with the sets

$$A(\varphi) = E\left[y; \quad y \in G^*, \mid \Phi(y) \mid = \int_G d \mid \varphi \mid (x)\right]$$

and

$$M(\varphi) = E\left[y; y \in G^*, \Phi(y) = \int_G d|\varphi|(x)\right].$$

We shall establish the following results, which characterize the possible sets $A(\varphi)$ and $M(\varphi)$ completely.

- 1.1 Theorem. The following conditions on a subset E of G^* are equivalent:
 - 1.1.1 E has the form $A(\varphi)$ for some bounded Radon measure φ ;
 - 1.1.2 E has the form $M(\varphi)$ for some bounded Radon measure φ ;
- 1.1.3 E contains a non-void G_{δ} and is a closed subgroup of G^* or is a translate of such a subgroup, or E=0.

Received June 1, 1954.

1.2 THEOREM. The measure φ referred to in Theorem 1.1 can be chosen to be absolutely continuous with respect to Haar measure on G if and only if E is compact.

These theorems appear to be known for the case $G=G^*=$ the real line R under addition. The only compact subgroup of R being $\{0\}$, Theorem 1.2 implies that integrals

$$\int_{-\infty}^{\infty} e^{ixy} \ d\varphi(x)$$

for non-negative absolutely continuous measures φ are equal to $\varphi(R)$ for y=0 and are less than $\varphi(R)$ in absolute value for $y \neq 0$. The only proper closed subgroups H of R are of the form $\{n\alpha\}_{n=-\infty}^{\infty}$ $(\alpha \in R)$. The measure $\varphi = \frac{1}{2} \varepsilon_{n/\alpha} + \frac{1}{2} \varepsilon_{-n/\alpha}$ has the property that $A(\varphi) = H$. The measure $\varphi = \frac{1}{2} [\varepsilon_0 + \varepsilon_{2n/\alpha}]$ has the property that $M(\varphi) = H$. These observations show that 1.1.3 is sufficient for 1.1.1 and 1.1.2 in the case G = R.

- **2. Measure-theoretic observations.** We first prove some simple properties of $M(\varphi)$ and $A(\varphi)$.
- 2.1 Theorem. Let φ be a bounded Radon measure on G. Then there exists a bounded complex-valued Borel-measurable function h on G such that

$$d\varphi(x) = h(x) d|\varphi|(x) .$$

PROOF. Since $\varphi = \varphi_1 + i\varphi_2$, where φ_j is a real-valued measure and since φ_j is absolutely continuous with respect to $|\varphi|$, we can apply the Radon-Nikodym theorem ([1, p. 129 et. seq.]) to write

$$d\varphi_{i}(x) = h_{i}(x) d|\varphi|(x)$$
 $(j = 1, 2).$

We then take $h = h_1 + ih_2$.

2.2 Theorem. Let φ be a bounded Radon measure on G, and let y_0 denote an element of G^* . Then

$$y_0 \in M(\varphi)$$
 if and only if $d\varphi(x) = (y_0^{-1}, x) d\pi(x)$,

where π is a non-negative bounded Radon measure on G.

PROOF. It follows from 2.1 that

$$\int_{\Omega} (y_0, x) d\varphi(x) = \int_{\Omega} (y_0, x) h(x) d|\varphi|(x).$$

It is easy to see that the relation

$$\int_G (y_0, x) h(x) d|\varphi|(x) = \int_G 1 \cdot d|\varphi|(x)$$

holds if and only if $(y_0, x) h(x) = \text{ess sup } |h(x)|$ almost everywhere with respect to $|\varphi|$, the ess sup being taken with respect to $|\varphi|$. (See for example [4, Theorem 3.1.].) It follows that $h(x) = \beta (y_0^{-1}, x)$ with a positive constant β almost everywhere with respect to $|\varphi|$. Hence we take $\pi = \beta |\varphi|$.

2.3 Theorem. Let φ be a bounded Radon measure on G, and let y_0 be an element of G^* . Then

$$y_0 \in A(\varphi)$$
 if and only if $d\varphi(x) = \alpha (y_0^{-1}, x) d\pi(x)$,

where π is a non-negative bounded Radon measure on G and $|\alpha|=1$.

Proof. We have

$$\left| \int_{G} (y_0, x) \, d\varphi(x) \right| = \int_{G} d |\varphi|(x)$$

if and only if there is a number δ of absolute value 1 such that

$$\int_{G} (y_0, x) d[\delta \varphi](x) = \int_{G} d|\delta \varphi|(x);$$

this brings us back to Theorem 2.2, and we may take $\alpha = \delta^{-1}$.

2.4 THEOREM. Suppose that $M(\varphi) \neq 0$. Then the set $M(\varphi)$ is a closed G_{δ} and is a subgroup or a translate of a subgroup of G^* .

Proof. Since $M(\varphi)$ is the set where the continuous function Φ assumes a fixed value, it is clearly a closed G_{δ} . It remains only to show that it is a subgroup or a translate of a subgroup. Applying Theorem 2.2, we can multiply $d\varphi$ by a character and suppose that the measure φ is non-negative and that accordingly the identity of G^* lies in $M(\varphi)$. This of course amounts simply to translating $M(\varphi)$. Under these hypotheses, $y \in M(\varphi)$ if and only if (y, x) = 1 almost everywhere with respect to φ . The set of such y clearly forms a subgroup of G^* .

2.5 THEOREM. Suppose that $A(\varphi) \neq 0$. Then $A(\varphi)$ is a closed G_{δ} which is either a subgroup of G^* or a translate of a subgroup of G^* .

PROOF. Similar to the proof of Theorem 2.4.

Theorems 2.4 and 2.5 show that 1.1.3 is necessary for 1.1.1 and 1.1.2.

- 3. Group-theoretic observations. Let S be a subset of G. The set N(S), the annihilator of S, is the set of all $y \in G^*$ such that (y, x) = 1 for all $x \in S$. It is obvious that N(S) is a closed subgroup of G^* and it is well known that N(N(S)) = S if S is a closed subgroup of G.
- 3.1 THEOREM. Let S be a subset of G. If S contains a non-void G_{δ} , then N(S) is σ -compact.

PROOF. Let $\{Q_n\}_{n=1}^{\infty}$ be a sequence of open subsets of G such that

$$0 \neq \bigcap_{n=1}^{\infty} Q_n = T \subset S.$$

Let x be any element of T. Then there exists a sequence of open sets $\{U_n\}_{n=1}^{\infty}$ such that $x \in U_n$, $U_n \subseteq Q_n$, U_n^- is compact $(n=1, 2, 3, \ldots)$ and $U_n^- \subseteq U_{n-1}$ $(n=2, 3, 4, \ldots)$. Now let δ be a positive real number less than $\frac{1}{10}$, and let

$$V_n = E[y; y \in G^*, |(y, x) - 1| < \delta \text{ for all } x \in U_n^-]$$

 $(n=1, 2, 3, \ldots)$. It is known that V_n^- is compact in G^* . Hence

$$W = \bigcup_{n=1}^{\infty} V_n^{-}$$

is σ -compact. We now show that $N(S) \subseteq W$. In fact, if

$$y \in N(S) \cap W'$$
,

then for every positive integer n, there exists $x_n \in U_n^-$ such that

$$|(y, x_n) - 1| \geq \delta.$$

Since $x_n \in U_m^-$ for $m \le n$, there is a point

$$x_0 \in \bigcap_{n=1}^{\infty} U_n^- \subset T \subset S$$

such that every neighborhood of x_0 contains an infinite number of the points x_n . It follows that $|(y, x_0) - 1| \ge \delta$, and this is inconsistent with the relation $y \in N(S)$. Thus N(S) is contained in a σ -compact set. Since N(S) is closed, it follows that N(S) is σ -compact.

We note also that the annihilator of a σ -compact subgroup of G is a G_{δ} .

- 3.2 Corollary. A closed subgroup of G contains a non-void G_{δ} if and only if it is a non-void G_{δ} .
- 3.3 Theorem. Let H be a closed σ -compact subgroup of G. Then there exists a non-negative bounded Radon measure φ on G such that:

- 3.3.1 $\varphi(A) > 0$ for every non-void relatively open subset A of H;
- 3.3.2 $\varphi(H) = 1$;
- 3.3.3 $\varphi(H') = 0$.

Proof. Let λ be a Haar measure on the group H (H is certainly a locally compact Abelian group). Since H is σ -compact, the measure λ is σ -finite. This implies that

$$H=\bigcup_{n=1}^{\infty}P_n,$$

where the sets P_n are pairwise disjoint and $0 < \lambda(P_n) < \infty$ (n = 1, 2, 3, ...). Let the function f on H be defined by the relations

$$f(x) = 2^{-n} [\lambda(P_n)]^{-1}$$
 for $x \in P_n$ $(n = 1, 2, 3, ...)$.

It is clear that $f \in \mathfrak{Q}_1(H)$ and that

$$\int_A f(x) d\lambda(x) > 0 \quad \text{if} \quad \lambda(A) > 0.$$

For an arbitrary Borel set $Q \subseteq G$, let

$$\varphi(Q) = \int_{Q \cap H} f(x) \, d\lambda(x) \, .$$

It is obvious that this set-function satisfies all requirements of the present theorem.

3.4 THEOREM. If the subgroup H of Theorem 3.3 is also open, then the measure φ of Theorem 3.3 can be taken as absolutely continuous with respect to Haar measure on G.

PROOF. This follows immediately from the fact that Haar measure on an open subgroup H of G is simply Haar measure on G relativized to H.

- 3.5 Remark. Theorem 3.3 is not true for general locally compact σ -compact Hausdorff spaces. Let D denote a countably infinite discrete space and let βD denote the Stone-Čech compactification of D. Then, as Nakamura and Kakutani have shown [5], the compact Hausdorff space $\beta D \cap D'$ contains a continuum of pairwise disjoint non-void open sets. It is clear that no Borel measure on $\beta D \cap D'$ can assign positive measure to every non-void open set.
- **4.** Completion of the proof of Theorem 1.1. We shall now show that given a set $E \subseteq G^*$ which contains a non-void G_{δ} and is a closed subgroup

or a translate of such a subgroup, there exists a bounded Radon measure φ on G such that $A(\varphi) = M(\varphi) = E$. Upon translating E if necessary, which is equivalent to multiplying $d\varphi(x)$ by a character, we may suppose that E is a subgroup of G^* . Now consider $N(E) \subseteq G$. By Theorem 3.1, N(E) is a σ -compact subgroup of G. Consider the measure φ described in Theorem 3.3, for H = N(E). Since N(N(E)) = E, we have $\Phi(y) = 1$ for all $y \in E$. Conversely, if $|\Phi(y)| = 1$ for an element y of G^* , there exists a complex number β of absolute value 1 such that

$$\int_{a} \beta(y, x) d\varphi(x) = 1 ,$$

and $\beta(y, x) = 1$ almost everywhere with respect to φ . Accordingly, $(y, x) = \beta^{-1}$ for all $x \in N(E)$, and as (y, e) = 1 (e the identity of G), we find $\beta = 1$ and $y \in N(N(E)) = E$. This proves that $|\Phi(y)| < 1$ for $y \notin E$, and establishes Theorem 1.1.

To prove Theorem 1.2, we note that if E is compact, then N(E) is open, and then apply Theorem 3.4.

BIBLIOGRAPHY

- 1. Paul R. Halmos, Measure theory, New York, 1950.
- Edwin Hewitt, Remarks on the inversion of Fourier-Stieltjes transforms, Ann. of Math. (2) 57 (1953), 458-474.
- 3. Edwin Hewitt, Representation of functions as absolutely convergent Fourier-Stieltjes transforms, Proc. Amer. Math. Soc. 4 (1953), 663-670.
- Edwin Hewitt and Isidore Hirschman, Jr., A maximum problem in harmonic analysis, Amer. J. Math. 76 (1954), 839–852.
- Masahiro Nakamura and Shizuo Kakutani, Banach limits and the Čech compactification of a countable discrete set, Proc. Imp. Acad. Tokyo 19 (1943), 224–229.

THE UNIVERSITY OF WASHINGTON, SEATTLE, WASH., U.S.A. AND

STANFORD UNIVERSITY, STANFORD, CALIF., U.S.A.