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THE MAXIMUM VALUE OF A FOURIER-STIELTJES
TRANSFORM

EDWIN HEWITT and HERMAN RUBIN

1. Introduction. Let G be a locally compact Abelian group with char-
acter group G*. Let (y, ) denote the function on G'x G* equal to the
value of yeG* at zeG. Let ¢ be a bounded Radon measure on G, with
Fourier-Stieltjes transform

o) = {0, 2) dole).
G

Let |p| be the total variation of the measure ¢ (see [2, p. 459]). That is,

i¢l(4) = sup g I9(d,)]

the supremum being taken over all pairwise disjoint families {d,})"_, of
Borel sets whose union is the Borel set A. For other notation and ter-
minology, see [3].

We are concerned in this note with the sets

Ap) = Bly; year, o) = {digi)]
el
and
Mip) = Blys ye6*, 9) = {digl(o)].
e
We shall establish the following results, which characterize the possible

sets A(p) and M(g) completely.

1.1 TueorREM. The following conditions on a subset E of G* are equi-
valent:

1.1.1 E has the form A(p) for some bounded Radon measure ¢;

1.1.2 E has the form M(p) for some bounded Radon measure ¢;

1.1.3 E contains a non-void G5 and is a closed subgroup of G* or is a
translate of such a subgroup, or B =0.
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1.2 THEOREM. The measure @ referred to in Theorem 1.1 can be chosen
to be absolutely continuous with respect to Haar measure on G if and only
if B is compact.

These theorems appear to be known for the case G=G*= the real
line R under addition. The only compact subgroup of R being {0},
Theorem 1.2 implies that integrals

o0

et do)

—00

for non-negative absolutely continuous measures ¢ are equal to @(R) for
y=0 and are less than ¢(R) in absolute value for y<+0. The only proper
closed subgroups H of R are of the form {n«}, _, (x€R). The measure
@=4%¢&,,+%e_,, has the property that A(p)=H. The measure ¢=
#[eo+£24;,] has the property that M(g)=H. These observations show
that 1.1.3 is sufficient for 1.1.1 and 1.1.2 in the case G=2R.

2. Measure-theoretic observations. We first prove some simple proper-
ties of M(p) and A(gp).

2.1 TaEOREM. Let ¢ be a bounded Radon measure on G. Then there
exists a bounded complex-valued Borel-measurable function h on G such

that
do(@) = h(x) d|gp|(z) .
ProoF. Since ¢ =g, +1p,, where ¢; is a real-valued measure and since

@; is absolutely continuous with respect to |p|, we can apply the Radon-
Nikodym theorem ([1, p. 129 et. seq.]) to write

dojx) = hy@) digl(z) (G =1,2).

We then take h=h, +ih,.

2.2 TuEOREM. Let ¢ be a bounded Radon measure on G, and let y,
denote an element of G*. Then

Yo M(p) if and only if do(x) = (3,7, z) da(x) ,
where 7 18 a non-negative bounded Radon measure on G.

Proor. It follows from 2.1 that

o 2) dp(a) = (90, 2) 1) gl @)
4] G
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It is easy to see that the relation

o, 2) @) dlpl(@) = (1-dipl(e)
[e] G

holds if and only if (y,, x) &(x)=ess sup |h(z)] almost everywhere with
respect to |p|, the esssup being taken with respect to |p|. (See for
example [4, Theorem 3.1.].) It follows that A(zx)=p (y,~, ) with a
positive constant f§ almost everywhere with respect to |p|. Hence we
take 7= g|p|.

2.3 THEOREM. Let ¢ be a bounded Radon measure on G, and let vy,
be an element of G*. Then

Yo Alp) if and only if dp@)=x (¥, @) dn(2) ,

where 7 is a non-negative bounded Radon measure on G and |o|=1.

Proor. We have

| o 2) dg@)
Q

=\ i@
Q

if and only if there is a number § of absolute value 1 such that
o, 2) dl09)@) = {d109i(e);
Q @

this brings us back to Theorem 2.2, and we may take o =41,

2.4 THEOREM. Suppose that M(¢)+0. Then the set M (p) is a closed
Gy and is a subgroup or a translate of a subgroup of G*.

Proor. Since M(p) is the set where the continuous function @ as-
sumes a fixed value, it is clearly a closed 5. It remains only to show
that it is a subgroup or a translate of a subgroup. Applying Theorem 2.2,
we can multiply dp by a character and suppose that the measure ¢ is
non-negative and that accordingly the identity of G* lies in M(p). This
of course amounts simply to translating M(¢). Under these hypotheses,
yeM(p) if and only if (y, x)=1 almost everywhere with respect to ¢.
The set of such y clearly forms a subgroup of G*.

2.5 THEOREM. Suppose that A(@)+0. Then A(p)is a closed Gy which
is either a subgroup of G* or a translate of a subgroup of G*.

Proor. Similar to the proof of Theorem 2.4.

Theorems 2.4 and 2.5 show that 1.1.3 is necessary for 1.1.1 and 1.1.2.

*
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3. Group-theoretic observations. Let S be a subset of @. The set
N(8), the annihilator of 8, is the set of all ye G* such that (y, z)=1 for
all zeS. It is obvious that N(S) is a closed subgroup of G* and it is well
known that N(N(S))=S if § is a closed subgroup of G.

3.1 THaEOREM. Let S be a subset of G. If S contains a non-void G,
then N(S) is o-compact.

Proor. Let {Q,},., be a sequence of open subsets of & such that
0+ N@=TcS8.
n=1

Let = be any element of 7. Then there exists a sequence of open sets
{U,}m_, such that zeU,, U,<@Q,, U,” is compact (n=1,2,3,...)
and U, <U,; #=2,3,4,...). Now let 4 be a positive real num-
ber less than 5%, and let

V. = Ely; yeG* |(y,x)—1|<4d for all xzeU,"]
(n=1,2,3,...). It is known that V,” is compact in G*. Hence
W = D Va~
n=1

is o-compact. We now show that N(S)= W. In fact, if
yeNS)nW’,

then for every positive integer n, there exists x,eU,~ such that
Iy, xa)—1] 2 6.

Since z,e€U,,” for m <n, there is a point

ze[NU,~ =T <8

n=1
such that every neighborhood of x, contains an infinite number of the
points z,. It follows that |(y, %) — 1|29, and this is inconsistent with
the relation ye N(8). Thus N(S) is contained in a o-compact set. Since
N(S) is closed, it follows that N(S) is g-compact.
We note also that the annihilator of a o-compact subgroup of G is a G,.

3.2 CoroLLARY. A closed subgroup of G contains a non-void Gy if and
only if it is a non-void G,.

3.3 TaroreEM. Let H be a closed o-compact subgroup of G. Then there
exists a non-negative bounded Radon measure ¢ on G such that:
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3.3.1 @(4)>0 for every non-void relatively open subset A of H;
3.3.2 ¢H)=1,
3.3.3 @H')=0.

Proor. Let 1 be a Haar measure on the group H (H is certainly a
locally compact Abelian group). Since H is o-compact, the measure A
is o-finite. This implies that

H=UP,,
n=1
where the sets P, are pairwise disjoint and 0<A(P,)<e (n=1,2,3,...).
Let the function f on H be defined by the relations
f@) = 2-»[AP,)]* for zeP, (n=123,...).

It is clear that fe &,(H) and that

Sf(x)dl(w)>0 i Ad) > 0.

For an arbitrary Borel set @ <@, let

#@) = | f@) di@).

QNH

It is obvious that this set-function satisfies all requirements of the present
theorem.

3.4 THEOREM. If the subgroup H of Theorem 3.3 is also open, then
the measure ¢ of Theorem 3.3 can be taken as absolutely continuous with
respect to Haar measure on G.

Proor. This follows immediately from the fact that Haar measure on
an open subgroup H of @ is simply Haar measure on @ relativized to H.

3.6 REMARk. Theorem 3.3 is not true for general locally compact
o-compact Hausdorff spaces. Let D denote a countably infinite discrete
space and let SD denote the Stone-Cech compactification of D. Then,
as Nakamura and Kakutani have shown [5], the compact Hausdorff
space BDND’ contains a continuum of pairwise disjoint non-void open
sets. It is clear that no Borel measure on fDNnD’ can assign positive
meagure to every non-void open set.

4. Completion of the proof of Theorem 1.1. We shall now show that
given a set £ < G* which contains a non-void G, and is a closed subgroup
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or a translate of such a subgroup, there exists a bounded Radon measure
@ on G such that A(¢p)=M(p)=E. Upon translating E if necessary,
which is equivalent to multiplying de(x) by a character, we may suppose
that ¥ is a subgroup of G*. Now consider N(E)<(G. By Theorem 3.1,
N(E) is a o-compact subgroup of ¢. Consider the measure ¢ described
in Theorem 3.3, for H=N(¥). Since N(N(E))=E, we have ®(y)=1
for all ye E. Conversely, if |@(y)| =1 for an element y of G*, there exists
a complex number § of absolute value 1 such that

\ b, =) dgt)=1,
G

and fB(y, #)=1 almost everywhere with respect to ¢. Accordingly,
(y, z)=pF"1 for all xze N(¥), and as (y,e)=1 (e the identity of @), we
find =1 and yeN(N(E)):E. This proves that |D(y)| <1 for y¢ L, and
establishes Theorem 1.1.

To prove Theorem 1.2, we note that if Z is compact, then N(&) is
open, and then apply Theorem 3.4.
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