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ON GROUPS WITH FULL BANACH MEAN VALUE

ERLING FULNER

1. Introduction. In a recent paper [3, pp. 14-15] the author proved
the following

TurEoREM 1. Let L be any right-translation invariant linear space of
bounded real functions on a group G. A necessary and sufficient condition
that there exist a real functional Mf on L with the properties

inf, f(z) < Mf < sup, f(z)
M{f(wa)} = M{f(x)}
M{Af} = AMf (A real)
M{f+g} = Mf+Mg

is that sup, H(x) 2 0 for every function H(x) of the form
©) H(@) = Iy(@)—Iy(@ay) + . . . +hy(2) — ho(2a,)

where hy, ..., h, are arbitrary functions from L and a4, ..., a, are ar-
bitrary elements from G.

The functional Mf is called a right-invariant Banach mean value on L.

We shall say that ¢ has a full Banach mean value if there exists a
bi-invariant Banach mean value on the space of all bounded (real) func-
tions on G.

It is known [1, p. 116] that if there exists a right-invariant Banach
mean value M on all bounded functions on @, there exists also a bi-
invariant Banach mean value on all bounded functions on G, viz.

Mf = MM{f(ets)) .
In fact,
M {f(xa)} = MM {f(xsa)} = MM{f(z's)} = M,f
My{f(az)} = M M{f(ax-s)} = MM {f(es)} = M,f.
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The aim of the present paper is to characterize those groups @
which have a full Banach mean value.

We note (see for instance [3, pp. 7-9]) that every abelian group has a
full Banach mean value. For further orientation we shall prove now
three simple theorems. Only the first of them will be used in the sequel.

THEOREM 2. If a group G has a full Banach mean value M, then every
subgroup G* of G has also a full Banach mean value.

Proor. We choose an arbitrary, but fixed, element 2z, in each left
coset of G* different from G*. An arbitrary bounded function f(x) on
G* can then be extended to a funection f;(z) on G by defining f,(x) at the
element =y, ycG* by fi(x)=£(y) (while f,(x)=f(x) for « in G*). Ifa
is in G*, the function f(wa) extends in this way to the function fi(za).
Thus M, f=Mf, is a right-invariant Banach mean value defined on all
bounded functions f(z) on G*. Hence G* has a full Banach mean value.

TrEOREM 3. If a group G has a full Banach mean value M and H is o
normal subgroup of @, then the factor growp G/H has also a full Banach
mean value.

Proor. Let A(x) be the natural mapping of G' on G/H. Then
M\ f = M{f(h(z))}

can be used as a full Banach mean value on G/H.

THEOREM 4. Let H be a normal subgroup of the group G. A necessary'
and sufficient condition that G have a full Banach mean value is that both
H and the factor group G/H have a full Banach mean value.

Proor. It follows from Theorem 2 and Theorem 3 that the condition
is necessary. In order to prove that the condition is sufficient we assume
that H has a full Banach mean value M and G/H has a full Banach
mean value M,. Let again & (x) be the natural mapping of G on G/H.
For a bounded function f(z) on G we put

M,f= M, {M{f(“’%)}}
yeG/H zeH

where a,, is an arbitrary element in G for which A(a,)=y. The inner mean
value in the expression for M,f depends only on y, and not on a,, since
M is an invariant Banach mean value on H. Further

My {f (za)} =yf£}H{ ifH {f (za,a)}}

=M, { M {f(xayh(a))}} = M, { M{f(w“y)}} = My{f(2)},
yeG/H xeH yeQH xeH
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sinee M, is an invariant Banach mean value on G/H. Thus M,f is a
right-invariant Banach mean value defined on all bounded functions
f(x) on . Hence G has a full Banach mean value.

2. Statement of the Main Theorem. As mentioned above, our aim is
to characterize the groups which have a full Banach mean value. This
is done in the following theorem and remark.

Main THEOREM. A mecessary condition that a group G have a full
Banach mean value is that for every k in the interval 0 <k<1, and arbi-
trary, finitely many, elements a,, . . ., a, from G, there exists a finite subset
E of @ such that

(1) N(EnEa;,) 2 kNE) for ¢t =1,...,n,

where N ( ... ) denotes the number of elements in the set between the brackets.

A sufficient condition that a group G have a full Banach mean value is
that there exists a number ky in the interval 0 <k, <1 such that for arbi-
trary, finitely many, not necessarily different, elements a4, . .. , a, from @
there exists a finite subset K of G such that

2) w1 3 N(EnHay) 2 k,N(E).
=1

REMARK. Obviously the inequality (1) implies the inequality (2) with
ky=Fk. Hence it follows from the Main Theorem that either of the two
conditions in the Main Theorem ts actually both necessary and sufficient
that G have a full Banach mean value.

3. Proof of the sufficiency part of the Main Theorem. In this section
we shall prove the second part of the Main Theorem, i.e., we shall prove
that the condition (2) is a sufficient condition that G have a full Banach
mean value. Thus we assume the condition (2) fulfilled: There exists a
k, in the interval 0 <k, < 1 with the property that for any, finitely many,

not necessarily different, elements a,, . . .,a, from G there exists a finite
subset ¥ of G with
n
(2) n-1 3 N(EnEa;) 2 kyN(E) .
i=1

On account of Theorem 1 and the remark following it we have to show
that sup,H(x) 2 0 for every H(x) of the form (0) where now %, ..., %,
are arbitrary bounded functions on G.

We assume, to the contrary, that there exists an g,>0 such that
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H(z)< — ¢, for all . To each expression of the form (0) we associate
the number K = K(H)=2n.J, where J is the largest one of the » numbers
sup, |k;(x)| (=1, ..., n). Obviously |H(z)| < K for all x.

We shall show that starting with H(x) it is possible by a certain
procedure, to be indicated below, to arrive at a new function H,(x) of the
type (0) with Hy(x) < —¢, for all x and K(H,;) < (1 ko) K(H).

By using the same procedure on H,(x) instead of H(z) we arrive at a
new function H,(x) of the type (0) with Hy(z)< —¢g, for all z and
K(H,) < (1-k)K(H,) < (1—kp)*K(H).

Continuing in this way we obtain functions H,,(x) of type (0) satisfying
H, ()< —¢yforall z, and K(H,,) = (1 -k,)™K(H). Since |H,(x)| < K(H,,)
for all « we have

—(I—k)" K(H) = Hy(x) = ~¢

for all . This is a contradiction for m sufficiently large, as (1 —k,)™—0
for m—>co.

We shall now indicate the procedure by which we get from H(z) to
H,(x) (and more generally from H,_,(x) to H,(x)). To the elements
a, ..., a, which occur in the expression (0) for H(x) we determine the
set £ as indicated in (2) and put

2 (hi (xy)—hy (x?/ai)) .

n
1=1 yekl

Hy(x) = N(E)"IZI;H(W) = N(@&)™
ye

By computation for fixed ¢ of the inner sum 2, .5, many terms cancel.
Indeed, N(ZnEFa;) of the terms hxy) will cancel N (EnEa,;) of the
terms — A (xya;). The reduced expression for H,(x) is also of the type
(0). Further n
K(H,) < 2 3 (N(E)-N(EnKa,;))JNE)™
i=1

= 2 3 (1-NEnBa) NE) )] < 2(n—km)J = (1~ko) K(H).
=1

Finally, from the definition of H,(x) we see that H,(x)< —¢, for all x.
This completes the proof of the sufficiency part of the Main Theorem.

4. Finite systems of linear inequalities with a finite number of vari-
ables. For the proof of the necessity part of the Main Theorem we need
the following

LemMA. The finite system of linear inequalities with a finite number of
variables
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(3) e e

has at least one solution Xy=(x,°, ..., x,%) if there does not exist an “‘ob-
vious contradiction” between the inequalities, t.e., if there does not exist non-
negative constants dy, ..., d, such that both d,L,(X)+...+d, L, (X) s
identically equal to 0 and d,b,+ ... +d,b,, > 0.

The analogous theorem for a system of linear inequalities with the
sign >, instead of Z, is due to W. B. Carver [2, Theorem 3]. The proof
is simple and algebraical. The Lemma can be proved in a similar way.
The analogous theorem for a system of linear relations with arbitrary
signs =, <, >, £, Z (not necessarily the same for all relations) is given

by Th. Motzkin [4, Theorem D 2, p. 48]. The Lemma is a special case
of this theorem.

5. Proof of the necessity part of the Main Theorem. In this final
section we shall prove the first part of the Main Theorem which states
that (1) is a necessary condition that G have a full Banach mean value.

Let G have a full Banach mean value. We shall prove that given a k
in the interval 0 <k <1 and arbitrary, finitely many, elements a,, ..., a,
from @, there exists a finite subset F of G such that

N(EnEa,) = EN(E) for ¢1=1,...,m.

The proof is indirect. We assume that for a certain &, 0 <k <1, there
exist finitely many elements a,, ..., a, from G with the property that
for every finite subset £ of G we have

(4) N(#nkFEa;) < kN(E)  for some .

From this assumption we shall prove that there exist n functions
hy, - .., h, on the denumerable subgroup G* of G, which is generated by
the elements a4, ..., @, such that

(5) lhx) =4, i=1,...,n,

and

(6) H(z) = hy(x) —Rky(xa))+ ... +b,(x) =R, (2za,) S —1

for all « in G*, where A=(1—k)-!. Thus by Theorem 1 the group G*
will not have a full Banach mean value, and by Theorem 2 we have
arrived at a contradiction.
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We shall prove below that if F is an arbitrary finite subset of @ we
can find » functions f;, ..., f, such that f;(x) is defined on FuFa, with

|filx)] £ A4, t=1,...,n,
and such that the relation

Hil@)=fil@a) + .. +fu (@) —fulea,) = -1

holds for all z in F.

This will be the salient point of our proof. With the result at our
disposal it is easy to find functions A,, ..., k, on G* which satisfy (5)
and (6) for all x in G*. We choose a sequence of finite sets

Fic...cF,<c ...

which exhaust G*. By using the above-stated result we choose a function
fi™)(x) on F,UF, a, with

Ifi(m)(x)l = A: 1= 1, ...,mn,
and such that the relation
fi(x) - fi(@ay) + . . .+ f, ™ (x) - fr,™(2a,) = —1

holds for all z in F,, m=1,2,.... Next we choose a subsequence
my < ... <my, < ... of the sequence of natural numbers so that the
sequences f;""?(z) converge for every x in G*. The limit functions A,(z)
are defined on G* and satisfy (5) and (6) for all  in G*.

Let F be an arbitrary finite subset of G. We shall prove that there exist
n functions f, ..., f, such that fi(x) is defined on FUFa; with

i) £ 4, +=1,...,n
and such that the relation

fil@) —fi(xay) + . .. (@)= fulza,) S -1

holds for all x in F.

In order to do this we shall introduce some notions.

Let E be an arbitrary finite subset of ¢. By an open a;-chain in E
we understand a finite sequence of different elements of the form
x, xay, ..., ze}"! which all belong to # and so that za,~* and za; do not
belong to K. The first element of the sequence is called the origin of the
open a;chain in E. By a subchain of the open a;-chain in E we understand
a finite sequence of the form «, za,, ..., xa~! where » < A. They all have
the origin of the open @;-chain in £ as first element.

If a; has the finite order y, there may also exist closed a;-chains in E.
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By a closed a;-chain in E we understand a finite sequence of elements
of the form z, xa,, ..., za#~! which all belong to £. On each closed a;-
chain we choose an element as origin of the closed a;-chain. Let the origin
of a closed «,-chain in F be x,. By a subchain of the closed a,-chain in E
we understand a finite sequence of the form xy, zya,, ..., To@~* where
this time » <u. They all have the origin of the closed a;-chain in F as
first element.

Let p;(E) denote the number of open a@;,-chains in E. Plainly, any
closed a;-chain in ¥ will as a whole pass into itself under right-translation
by a;. Thus, for a closed a;-chain C; in E we have N (C;nC;a;)=N(C,).
For an open a;-chain O, in K we have N(0;,n0;a;)=N(0;,)—1. Now E
is the union, for fixed 7, of the open and the closed a,-chains in ¥, and
these chains are disjoint; further, when one of the open a;-chains in #
is right-translated by a,, the translated chain cannot intersect any of
the other a,-chains in E. Hence we get

N(EnEa) = NB)—pi(E), i1=1,...,n.
Combining this with our assumption (4) we get
NE)—-(1—-k)py(f) < 0  for some 1.
Since A =(1—k)~1, we see that for every finite subset E of G we have
(7) NE)-A(p(B)+ ... +p,(B)) < 0.

This relation plays a decisive role in the sequel.
In order to prove the existence of the above-mentioned functions
Jfi - --» [, we introduce the nV(#') unknowns

Y:c,i =fi(x)_fi(mai)! i = 1’ ey n;xEF‘

OQur functions fy, ..., f, will exist if it is possible to find a solution
Y,.(i=1,...,n;2eF) of the system of relations
n
(8) Y, s -1, zel,
i=1
(9) 2 Yw,i = O »
xeCs
(10) PRMEVE
xesS;
where (9) is to hold for all closed a,-chains C; in F,7 =1, ...,n, and

(10) is to hold for all subchains S; of all open and closed a;-chains in
F,i=1, ..., n. In fact, if we can find a solution

Y, t=1..,n,z€eF,
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of the system of relations (8), (9), (10), we choose f;(x) equal to 0 at all
the origins of the open and closed a;-chains in F and determine f;(x)
recursively from the ¥,; by using the relation f;(xa;)=f;(x)—Y,,
This gives no contradiction for z on the closed a;-chains in ¥ on account
of (9), and f;(x) will be defined on FuFa;, i=1, ...,n On account of
(10) we shall have |f;(z)| <4 on FuFa,; and finally, on account of (8)
we shall have
h@) —filea)+ ... +fu@) —fulwa,) S —

for all z in F.

We write the system of relations (8), (9), (10) as a system of inequali-
ties of the type occurring in the Lemma.

n

(8) %(_Yw,i)zl: zel,

(9') ¥ 20 all C;, alli,
(9") S(-Todz0,  alC ali,
(10') DY, oz -A allsy i,
(10") ZS' (=Y, = -4, alg, alqi.

On account of the Lemma, a necessary and sufficient condition that
this system of inequalities has at least one solution is that there exists
no ‘“obvious contradiction” between the inequalities. Thus we have
to show that whenever with non-negative coefficients d, [, r, ¢, s

34,3 (~Y,) +

ceF =1

(11) +2 Zl(Oz))J Y, +22r(01)2(

zeC; zeCy

+2 ZQ(Si)ZYzz +2 28(81)2(_ :m)

xS xeS;

is identically equal to 0, then
(12) Y, -4 Xq) -4 Ya(S) 0.
zel t=1 8 i=1 8

In the proof we may assume that r(C;)=0. In fact, if z is the last
element of C; before its origin, the variable Y, in (11) gets the total
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coefficient —d,+(C,)—7(C;)=0. Thus [(C;)—r(C,)20, and we can re-
place (C;) in (11) by U(C;)—7(C,) and #(C,) by 0.

In the proof we may further assume that for each S, either ¢(8;)=0
or s(8;)=0. In fact, if ¢(8;)=s(8;)>0 we replace ¢(S;) in (11) by
q(S;)—s(S;) and s(S;) by 0, and if s(8;)>¢(S;)>0 we replace g¢(8,) in
(11) by 0 and s(S;) by s(S;)~q(8;); if (12) is satisfied after this change
has been made in (11), then (12) must be valid also before the change,
for the change has diminished ¢(S;) and s(8,).

Let D, < ... < Dy be the different values of d, which occur in (11).
Let Fp denote the set of those « for which d,=Dp, P=1, ..., ¢, and
F, ., the empty set. In particular F;=F.

By using the fact that the expression (11) vanishes identically, we
shall see in the course of the proof of (12) that the coefficients ¢(S;),
s(8;), and (C;) can be determined from the coefficients d,.

We first determine the coefficients ¢(S;) and s(S;) for all subchains S,
of a given open a;-chain O, in F (see the figure). Let x, be the origin of O,,
and let x be an arbitrary element of O,. By ' we denote the element
which follows z in O, if such an element exists (i.e., if « is not the last
element of 0,;). By (xy,z) we denote the subchain S; of O, which has z
as last element.

If 2’ does not exist, and « is in F,,, but not in F,,,, then

q(xo,x) = 'DM = (DM—DM—1)+ e +(D2—D1)+D1 .

In fact, when z is the last element of O,, the total coefficient of Y, ; in
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(11) is —d_ +q(xp,x)— (2, x)=0, and taking into account that either
¢ (%o, 2) =0 or 8(ixy,x) =0 we get q(,,x) =d,= Dy, (and 8(xg,2)=0).

If 2’ exists and is in F,, but not in Fy,,, and z is in Fj,, but not in
Fpiq, then

q(2,x) = Dyy—Dy = (Dyy—Dy 1) +... + (Dya—Dy) i M >N,

q(Zg, ) =38(2p,x)=0if M =N, and s(xg,x)=Dy—D,, if M <N. In fact,
the total coefficient of ¥, ; and the total coefficient of ¥, ; in (11) are

0, that is, ,
—d, + (Q(Si)—s(*si)) =0
8§D (zo, )
and
—dy + 3 (Q(Si)_s(‘gi)) =0
8iD (@, x)

(where S;> (x,,x) indicates that S; is a subchain of O; which contains x).
Now d,=D,, and d =D, so that by subtracting the above relations
we get (%, &) —8(%g, %) =Dy — Dy, and our statement follows.

We find in particular that the above expressions for q(xyx) contain
the term Dp—Dp_;, where P=1, ..., Q is a given number and Dy=0, if
and only if x is in Fp and x’" 18 not in Fp (or does not exist). The number
of such elements x is equal to the number of open a,-chains in Fp which
are contained in O,.

We next determine the coefficients ¢(S;) and s(S;) for all subchains 8,
of a given closed a,-chain C, in F. Also the coefficient I(C;) will be deter-
mined. Let R be chosen so that the last element z of C; before the origin
9, of C; lies in F, but not in Fy , (see the figure). Plainly !(C;)=Dy, for
the total coefficient of ¥, , in (11) is —d,4+1(C;)=0, and d,=Dp. Let x
be an arbitrary element of C; different from 2, and let 2’ denote the ele-
ment which follows z in C,. By (y,,z) we denote the subchain §; of C,
which has « as last element.

If "=z, and x+zis in F,,, but not in F,,,,, we get

9(Yos%) = Dy—Dp = (Dyy—Dyry)+ ... +(Dpna—Dp) it M > R,
9(Yo,%) = 8(Yp,%) = 0 it M=R,
8(Yp®) = Dg—Dyy = (Dp—Dgp_y)+... +(Dyy—Dy) it M < R.
In fact, the total coefficient of ¥, ;in (11) is
—dz+4(Yo, %) —8(Y0,2) +1(Cy) = 0,

where d,=D,, and [(C;)=Dg. Hence q(yo,x)—8(yqx)=Dy —Dp, and
our statement follows.
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If 'z is in Fy, but not in Fp,,, and z +2 is in Fy,, but not in Fy,,
then

99, 2) = Dyy—Dy = (Dyy—Dyr))+ ... +(Dya—Dy) if M >N,
9(Yo: %) = $(ypx) = 0 . if M=N,
8(Ypx) = Dy—Dy = (Dy—Dy4)+ ... +(Dyn—Dy) i M < N.

In fact, the total coefficient of Y ;
in (11) are O, that is,

-d,+ (Q(Si)—S(Si))‘i'l(Ci) =0

8D o, 0

and the total coefficient of Y, ;

and
—dy+ 3 (Q(Si)_s(‘gi))+l(0i) =0.
8 D Yo, )
Now d,=D,, and d,=D,, so that by subtracting the above relations
we get q(¥o,%) — (Yo, ) =Dy — Dy, and our statement follows.

We find in particular that the above expressions for q(y,,x), x=+2z, con-
tain the term Dp—Dp_y, where P=1,...,Q 18 a given number and
Dy=0, if and only if x is in Fp and &’ is not in Fp. The number of such
elements x is equal to the number of open a,-chains in Fp which are con-
tained in C,, except when z is in Fp and y, 18 not in Fp.

Furthermore, the above expressions for s(yq,x), x+z, contain the term
Dp—Dp_;, where P=1, ..., Q is a given number and Dy=0, if and only
if ' isin Fp and x is not in Fp. The number of such elements x is equal
to the number of open a;,-chains in Fp which are contained in C;, except
when y, 18 in Fp and z is not in Fp.

Since every open a;-chain in Fp, P=1, ..., @, is contained in some
a;-chain in F, open or closed, and since these a,-chains are disjoint for
fixed 7, we obtain the following relation from the results stated in italics:

zelF
< {D\N(F{)+ (Dy—Dy)N(Fy)+ ... +(Dg —DQ—l)N(FQ)}"

- {DIA(pl(Fl) o D (F)+ (Dz"Dl)f‘l(Pl(Fz) +... +'pn(F2))+
+ oo+ Do=Do)A(Dy(FQ)+ . . . + 2, (F o))}
= DI{N(FI) —A(pl(Fl) +... +pn(F1))} + (Dz_Dl){N(F2) “A(pl(Fz) +
oot pF)} o+ (Do =D ) {N(Fo)—A(ps(F )+ . . . +pulFQ))} -

By applying (7) to this, with E=F,, ..., Fg, the inequality (12) follows.
This completes the proof of the Main Theorem.

Sd,-A ): /Ssqwi)—Aé X's(5)
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