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CLARK MEASURES AND A THEOREM OF RITT

ISABELLE CHALENDAR, PAMELA GORKIN∗,
JONATHAN R. PARTINGTON and WILLIAM T. ROSS

Abstract
We determine when a finite Blaschke productB can be written, in a non-trivial way, as a composi-
tion of two finite Blaschke products (Ritt’s problem) in terms of the Clark measure forB. Our tools
involve the numerical range of compressed shift operators and the geometry of certain polygons
circumscribing the numerical range of the relevant operator. As a consequence of our results, we
can determine, in terms of Clark measures, when two finite Blaschke products commute.

1. Introduction

A finite Blaschke product is an analytic function on the open unit disk D =
{z ∈ C : |z| < 1} of the form

B(z) = μ

n∏
j=1

z− aj

1 − ajz
, where |μ| = 1 and |aj | < 1.

Note that B maps D onto itself n-times and that B maps the unit circle ∂D =
{z ∈ C : |z| = 1} onto itself n-times. The degree of B is the number of zeros
{a1, . . . , an} of B repeated according to multiplicity. It is well known that the
composition of two finite Blaschke products is another finite Blaschke product
with degree equal to the product of the degrees of the two composites. We say
that B is decomposable if

B = C ◦D,
where B and C are (finite) Blaschke products of degree greater than one.
Otherwise we say that B is indecomposable. The condition “degree greater
than one” is to avoid trivial decompositions such as B = (B ◦ ϕ) ◦ ϕ−1 or
B = ϕ◦(ϕ−1◦B), whereϕ is a disk automorphism (which is a Blaschke product
of degree one). Clearly a Blaschke product of prime degree is indecomposable.

The complete answer to this question of decomposability has been known
for some time now, dating back to a 1922 paper of Ritt [19] (see also [17], [18]
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for a more recent treatment) where it was shown that B is decomposable if
and only if the associated monodromy group for B−1 is imprimitive. Though
an alternate, perhaps more readable, rendition of Ritt’s theorem was given
in [6], both treatments involve computing the monodromy group associated
withB−1 which, though quite beautiful and a complete answer to the question,
is impractical. Various, more practical, criteria were given in [8] that also yield
further insight as to what really makes a Blaschke product decomposable and
how to decompose it.

In this paper, we relate this decomposability problem to the Clark measure
naturally associated with a finite Blaschke product and convert the problem into
one of expressing this Clark measure in a certain way. The main result of this
paper is Theorem 4.1, though in order to state it, we need a few preliminaries
as well as interpolation results that are both interesting and useful on their
own. The interpolation results will be presented in Section 3. As a corollary of
Theorem 4.1 we also obtain results about commuting Blaschke products with
a fixed point in D and their associated Clark measures (Theorem 4.1).

Acknowledgements. The authors with to thank the referee for their
careful reading of this paper and for their useful suggestions.

2. Some preliminaries

We first make some normalizing assumptions. If ϕ is an automorphism of D,
i.e.,

ϕ(z) = μ
a − z

1 − az
, μ ∈ ∂D, a ∈ D,

then B is decomposable if and only if ϕ ◦ B is decomposable. Indeed,

B = C ◦D �⇒ ϕ ◦ B = (ϕ ◦ C) ◦D
and

ϕ ◦ B = C ◦D �⇒ B = (ϕ−1 ◦ C) ◦D.
Moreover, an automorphism composed (pre or post) with a finite Blaschke
product is again a Blaschke product. Therefore, we may assume thatB(0) = 0.

Forα ∈ D letψα denote the involutive (ψα(ψα(z)) = z) disk automorphism
defined by

ψα(z) = α − z

1 − αz
, z ∈ D. (2.1)

Thus we have

B = C ◦D �⇒ B = (C ◦ ψD(0)) ◦ ψD(0) ◦D. (2.2)
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Hence, whenever B is a composition of two finite Blaschke products C and
D, we can always assume that C(0) = D(0) = 0.

Next, we define the Clark measure associated with a finite Blaschke product.
For each λ ∈ ∂D, the function

z �→ Re

(
λ+ B(z)

λ− B(z)

)
= 1 − |B(z)|2

|λ− B(z)|2

is a positive harmonic function on D and thus, by a classical theorem of Her-
glotz [9, p. 2], there is a unique, finite, positive Borel measure μλB on ∂D
satisfying

1 − |B(z)|2
|λ− B(0)|2 =

∫
∂D

1 − |z|2
|ξ − z|2 dμ

λ
B(ξ), z ∈ D. (2.3)

The integral on the right-hand side of (2.3) is the Poisson integral of the measure
μλB . With the additional assumption that B(0) = 0, one can show [4, p. 204]
that μλB is a probability measure and

μλB =
n∑
j=1

1

|B ′(βj )|δβj , (2.4)

where {βj : 1 � j � n} ⊂ ∂D are the distinct solutions to the equation
B(β)− λ = 0 and δβ is the unit point mass at β. Observe that the identified
points {βj : 1 � j � n} are distinct since B is analytic in a neighborhood of
D (the closure of D) and a computation shows that

|B ′(eiθ )| =
n∑
k=1

1 − |ak|2
|eiθ − ak|2 > 0, θ ∈ [0, 2π ].

Thus the multiplicity of each of the zeros of B − λ is one. The fact that the
βj are distinct (and certainly that B ′(eiθ ) �= 0 for all θ ) will be important
throughout this paper.

The family of measures

{μλB : λ ∈ ∂D}
is called the Clark measures associated with B and appears in many contexts
(perturbation theory, mathematical physics, and composition operators to name
a few [4]). As we will see shortly, being able to write μλB in a certain way will
determine whether or not the given Blaschke product B is decomposable.
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Given two measure spaces (X1, �1) and (X2, �2) and a measurable map-
pingf fromX1 toX2, the push forward measuref∗μ associated with a measure
μ:�1 → [0,∞] is the measure on �2 defined by

f
μ(E) = μ(f −1(E)), E ∈ �2. (2.5)

Following Gau and Wu [10], we let Sn denote the class of all completely
non-unitary contractions on Cn with rank(I − T 
T ) = 1. Via unitary equival-
ence, Sn is the same as the class of operators Sφ , where φ is a finite Blaschke
product of degree n,

Sφ :H 2 
 φH 2 → H 2 
 φH 2, Sφf = Pφ(zf ),

and Pφ is the orthogonal projection of H 2 (the Hardy space) onto the model
spaceH 2 
 φH 2. The operator Sφ is called the compression of the shift (mul-
tiplication by the independent variable) to the model space H 2 
 φH 2. Note
that the spectrum σ(Sφ) of Sφ is

σ(Sφ) = φ−1({0}). (2.6)

In other words, the eigenvalues ofSφ are the zeros of the finite Blaschke product
φ.

For a bounded linear transformation (operator) T on a Hilbert space, the
numerical range W(T ) of T is defined to be

W(T ) := {〈T x, x〉 : ‖x‖ = 1}.
The Toeplitz-Hausdorff theorem says that W(T ) is a convex subset of C and,
since we will be working in finite dimensions, W(T ) will also be compact.
These facts along with other basic information about the numerical range can
be found in [13, Chapter 1].

If φ1 is a finite Blaschke product, set φ(z) := zφ1(z). For λ ∈ ∂D, let

Pλ := convex hull of φ−1({λ}),
(which is just an (n+ 1)-gon whose vertices are at the distinct n+ 1 identified
points φ−1({λ})). Then

W(Sφ1) =
⋂
λ∈∂D

Pλ. (2.7)

See Figure 1 for a demonstration.
This fact comes from [10, Corollary 2.8] along with the following three

other important facts.
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1

Figure 1. ForB(z) = (
z−1/2
1−z/2

)(
z−1/3
1−z/3

)
, we plot the intersections of the convex

hulls of the solutions to zB(z) = eiθ , θ ∈ [0, 2π] (in this case triangles). The
result is W(SB), the numerical range of the compressed shift SB .

1
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Figure 2. A demonstration of Theorem 2.1: a given 5-gon and an inscribed
W(T ) for T ∈ S4.

Theorem 2.1 ([10, Theorem 3.1]). For any (n+ 1)-gon P inscribed in ∂D
and any n points α1, . . . , αn, one from the interior of each side of P , there is
a T ∈ Sn such that W(T ) is inscribed in P with tangent points at the αj .

See Figure 2 for a demonstration of this theorem.
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Theorem 2.2 ([10, Theorem 3.2]). The following statements are equivalent
for operators T1, T2 ∈ Sn.

(1) T1 is unitarily equivalent to T2;

(2) W(T1) = W(T2);

(3) W(T1) and W(T2) have a common circumscribing (n+ 1)-gon circum-
scribed by ∂D and tangent to W(T1) and W(T2) at the same points.

Given an operator T on a Hilbert spaceH and a Hilbert spaceK containing
H , we say that T̃ is a dilation (in the sense of Halmos [14]) if

T = PH T̃ |H ,

where P is the orthogonal projection of K onto H . Given a Blaschke product
B of degree n, the corresponding compressed shift SB has a unitary dilation to
an (n+1)-dimensional space (e.g., (H 2 
BH 2)⊕C) [3] (see also [4, p. 196]).
These unitary dilations are said to be unitary 1-dilations of SB .

In what follows, let B be a Blaschke product of degree n. Given λ ∈ ∂D,
let z1, . . . , zn+1 denote the (distinct) solutions to zB(z) − λ = 0. If we use
partial fractions to write

B(z)

zB(z)− λ
=

n+1∑
j=1

mj

z− zj
, (2.8)

then the following is true:

Theorem 2.3 ([11, Theorem 2.1, part (10)]). Let U be a unitary 1-dilation
of SB where SB is the compression of the shift operator corresponding to the
Blaschke product B with zeros at b1, . . . , bn. If z1, . . . , zn+1, which turn out to
be the eigenvalues of U , are listed in terms of increasing argument, then the
points of tangency of the line segment joining zj and zj+1 to the boundary of
W(SB) are given by

mj+1zj +mjzj+1

mj +mj+1
, j = 1, 2, . . . , n+ 1, (2.9)

where the mj are as in (2.8).

In (2.9) note that the indices above are taken mod (n+1), that is,mj+2 = m1

and zn+2 = z1. We note that the mj > 0 and
∑n+1
j=1 mj = 1 [7, Lemma 4]. See

Figure 3 for a demonstration of this theorem.
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Figure 3. For B(z) = z
(
z−1/2
1−z/2

)(
z−1/3
1−z/3

)
we form W(SB) from intersections of the

convex hulls of the four solutions of zB(z)− λ = 0, where λ ∈ D. Then we form the
line segments {[zj , zj+1], j = 1, 2, 3, 4} along with the points from (2.9). The last two
images are the line segments along withW(SB) (notice the predicted tangent properties)
and the same image but with the predicted tangent points from (2.9).

This should be contrasted with Siebeck’s theorem [16]. Theorem 2.4 is
more general than what we have here, but closely connected. One difference
between it and the result as applied to Blaschke products is that the curves we
consider will be tangent to line segments joining consecutive points, while that
is not necessarily the case in Theorem 2.4.

Theorem 2.4 ([16, Theorem 4.2]). For distinct points z1, . . . , zp ∈ C and
m1, . . . , mp ∈ R \ {0}, the zeros of the function

F(z) =
p∑
j=1

mj

z− zj

determine a curve that touches each line segment [zj , zk] at a point dividing
the line segment in the ratio mj : mk .
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See [16] for more on the curve mentioned in the theorem above.
If we consider the Blaschke product B in Theorem 2.3 and λ ∈ ∂D and let

F be the function
F(z) = B(z)

zB(z)− λ
,

then Siebeck’s theorem says that the line segments are tangent to some curve
at the points

mj+1zj +mjzj+1

mj +mj+1
for j = 1, 2, . . . , n+ 1,

where zn+2 = z1 andmn+2 = m1. However, since the definition of F depends
on λ, Siebeck’s theorem allows for the possibility that the curve depends on λ.
Theorem 2.3 shows that, in fact, it is the same curve that is circumscribed for
each λ ∈ ∂D.

3. The connection with interpolation

Interpolation on the boundary of the unit disk has been considered by several
authors [5], [12], [15], [20]. Here we consider a mixture of interpolation on
∂D and D. The interpolation results presented here will play a key role in
our analysis of Ritt’s problem. As we will show in Section 5.1, given the
numerical range of an operator T ∈ Sn, Corollary 3.3 provides an algorithm
for constructing a Blaschke product for which W(SB) = W(T ) – which is
interesting in its own right.

We first state a rational interpolation theorem for the real line and then,
via conformal mapping, state an analogous interpolation problem for the unit
circle.

Proposition 3.1. For distinct points x1, . . . , xN ∈ R and c1, . . . , cN > 0,
there is a rational function F of degree N on C mapping C± to C± and the
real axis to the extended real axis, with F(xj ) = 0 and F ′(xj ) = cj for each
1 � j � N .

Proof. Define

F(z) = 1

1 + ∑N
j=1

1
cj

1
z−xj

=
∏N
k=1(z− xk)∏N

k=1(z− xk)+ ∑N
j=1

1
cj

∏
k �=j (z− xk)

.

From the second expression above it is clear that F has zeros at x1, . . . , xN
(and nowhere else). Furthermore, a calculation shows that

F ′(z) =
−(∑N

j=1
1
cj

−1
(z−xj )2

)
(
1 + ∑N

j=1
1
cj

1
z−xj

)2 .
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Thus F ′(xj ) = cj . If z ∈ C±, then 1/(z − xj ) ∈ C∓ for each j and so
F(z) ∈ C±.

For example, if we take just one zero, at the origin, then the function F
above becomes

F(z) = 1

1 + c−1z−1
= cz

cz+ 1

and F ′(z) = c/(cz+ 1)2. Note that F ′(0) = c.
Of independent interest here is the following version for infinitely many

interpolation points.

Corollary 3.2. Let {xn}n�1 ⊂ R be a sequence of distinct points, and let
{cn}n�1 ⊂ (0,∞) such that

∞∑
j=1

1

cj (1 + |xj |) < ∞. (3.1)

Then

(1) the series
1

1 + ∑∞
j=1

1
cj

1
z−xj

(3.2)

converges uniformly on compact sets disjoint fromR and defines a func-
tion F that is an analytic self-map of C+, respectively C−;

(2) if xk ∈ R is an isolated point of the sequence {xn}n�1, then the series (3.2)
converges uniformly in z in a neighborhood of xk , yielding an analytic
function F such that F(xk) = 0 and F ′(xk) = ck .

Proof. (1): On a compact subset K of C disjoint from R the quantities

1

1 + |xj | and
1

|z− xj |
are uniformly equivalent (independently of j ) and thus the series

1 +
∞∑
j=1

1

cj

1

z− xj
(3.3)

converges uniformly on K . Moreover,

Im

(
1 +

∞∑
j=1

1

cj

1

z− xj

)
=

∞∑
j=1

1

cj

Im z

|z− xj |2
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which is strictly negative in C+ and positive in C−. Thus the series in (3.3) is
bounded away from zero on K . It now follows that the series (3.2) converges
locally uniformly, as claimed.

(2): Similarly, for a bounded open neighborhood of xk , an isolated point of
{xn}n�1, the series

1 +
∑
j �=k

1

cj

1

z− xj

converges to an analytic function. Upon adding in the missing term for j = k,
and taking a smaller neighborhood if necessary, we conclude that the series
converges to a meromorphic function that is nonzero and has a pole at xk .
Thus the function F , defined by the series in (3.2), is analytic and has a zero
at xk . Since (as is easily checked) the partial sums of the series (3.2) converge
uniformly near xk , it follows from Proposition 3.1 that F ′(xk) = ck .

Here is a version of Proposition 3.1 for the unit disk.

Corollary 3.3. Let z1, . . . , zN be distinct points of ∂Dand c1, . . . , cN > 0.
Then there is a Blaschke product B of degree N such that B(zj ) = −1 and
|B ′(zj )| = cj for j = 1, . . . , N .

Proof. Without loss of generality, we may assume zj �= 1 for j = 1, . . . , n.
Let

ϕ:D → C+, ϕ(z) = i

(
1 + z

1 − z

)
, xj = ϕ(zj ), 1 � j � N.

By Proposition 3.1 there is a rational function F such that

F(xj ) = 0, |F ′(xj )| = cj

|(ϕ−1)′(0)ϕ′(zj )| , 1 � j � N. (3.4)

SinceF is also a degree-N rational self-map ofC+ that mapsR to the extended
reals, the function B defined on D by

B := ϕ−1 ◦ F ◦ ϕ
is a Blaschke product of degree N . Furthermore, for 1 � j � N , we have

B(zj ) = ϕ−1(0) = −1,

and

|B ′(zj )| = |(ϕ−1)′(F (ϕ(zj )))F ′(xj )ϕ′(zj )| = cj |(ϕ−1)′(0)ϕ′(zj )|
|(ϕ−1)′(0)ϕ′(zj )| = cj .
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Similarly, there is a version for infinitely-many points, which follows from
Corollary 3.2. Using the expression for F ′(xj ) given in (3.4), and the fact that
|1 − zj | + |1 + zj | is uniformly bounded above and below for zj ∈ ∂D, we see
that the convergence condition in equation (3.1) translates into

∞∑
j=1

1

cj |1 − zj | < ∞.

Our choice of ϕ gives a special role to the point 1, but clearly any other point
on ∂D could replace it, so that the condition

∞∑
j=1

1

cj |α − zj | < ∞

is sufficient for any α ∈ ∂D.

4. Clark measures

We are now ready to present our main theorem and its corollaries.

Theorem 4.1. Let B be a finite Blaschke product of degree n = mk with
m > 1, k > 1 and B(0) = 0. Then the following conditions are equivalent:

(1) The Blaschke product is decomposable; i.e., there exist Blaschke pro-
ducts C of degree k and D of degree m with

B = C ◦D and C(0) = D(0) = 0.

(2) For every λ ∈ ∂D (or indeed for some λ ∈ ∂D) there is a partition of
the set {β : B(β) = λ} into k sets of m points, denoted Ej , 1 � j � k,
and a Blaschke product D of degree m such that D(0) = 0 and both D
and the function f on ∂D defined by

f (β) := |B ′(β)|
|D′(β)|

are constant on Ej .

(3) There exist λ1, λ2 ∈ ∂D and Blaschke products C of degree k and D of
degree m satisfying C(0) = D(0) = 0 with

D
μ
λj
B = μ

λj
C for j = 1, 2.
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Proof. We begin by showing that (1) implies both (2) and (3). Suppose
that B is decomposable and λ ∈ ∂D. Let βj denote the n (distinct) points in
∂D for which

B(βj ) = (C ◦D)(βj ) = λ.

Thus C(D(βj )) = λ. Since C has degree k, there are k (distinct) points,
α1, . . . , αk in ∂D for which C(αk) = λ, and since D has degree m, we see
that D partitions the set β1, . . . , βn into k sets of m points, denoted Ej for
j = 1, . . . , k, with the property that D(Ej) = {αj }. We reindex the points β
as

Ej = {βj� : � = 1, . . . , m} for j = 1, . . . , k.

Consider the push forward measureD∗μλB from (2.5). For a Lebesgue meas-
urable subset E ⊆ D we have, via (2.4),

D
μ
λ
B(E) = μλB(D

−1(E)) =
n∑
r=1

1

|B ′(βr)|δβr (D
−1(E))

=
k∑
s=1

( ∑
�:βs�∈Es

1

|B ′(βs�)|
δβs� (D

−1(E))

)

=
k∑
s=1

( ∑
�:D(βs� )=αs

1

|B ′(βs�)|
)
δαs (E)

=
k∑
s=1

( ∑
�:D(βs� )=αs

1

|C ′(D(βs�))| |D′(βs�)|
)
δαs (E)

=
k∑
s=1

( ∑
�:D(βs� )=αs

1

|C ′(αs)| |D′(βs�)|
)
δαs (E).

Thus

D
μ
λ
B(E) =

k∑
s=1

1

|C ′(αs)|
( ∑
�:D(βs� )=αs

1

|D′(βs�)|
)
δαs (E). (4.1)

For a fixed value of s we look at the Clark measure μαsD and use (2.4) again
(note D(0) = 0) to see that

μ
αs
D =

m∑
j=1

1

|D′(βsj )|
δβsj .
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However, μαsD is a probability measure and therefore

m∑
j=1

1

|D′(βsj )|
= 1.

Thus, since each of the inner terms in (4.1) equals 1, we see thatD
μ
λ
B = μλC ,

establishing (3). Finally, since B = C ◦ D and D identifies the points of Ej ,
we see that for β ∈ Ej we have

|B ′(β)| = |C ′(D(β))| |D′(β)| = |C ′(αj )| |D′(β)|.

Hence the function f on ∂D defined by

f (β) = |B ′(β)|
|D′(β)|

is constant on eachEj , 1 � j � k. Thus we have shown (1) implies (2) and (3).
We will now show that (2) (even for a single value ofλ) implies (1). We know

that D partitions the points β1, . . . , βn identified by B into k sets E1, . . . , Ek
of m points each and that D sends 0 to 0. Since D has degree m, we have
D|Es = αs with the αs distinct. Corollary 3.3 produces a Blaschke product C
of degree k such that

C(α1) = C(α2) = · · · = C(αk) = λ and |C ′(αj )| = |B ′(β)|
|D′(β)| , (4.2)

where αj = D(β) for β ∈ Ej . Let

C1 = ϕC(0) ◦ C

and observe that C1 ◦ D maps 0 to 0 and identifies βj , 1 � j � n. If we
consider the function

F(z) = B(z)/z

B(z)− λ
=

n∑
j=1

mj

z− βj
,

then, by Theorem 2.3, the point of tangency to the boundary of W(SB) of the
line segment joining βj and βj+1 is given by

mj

mj +mj+1
βj+1 + mj+1

mj +mj+1
βj . (4.3)
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A computation (see also [7]; included below for completeness) shows that

B(z)

z

z− zj

B(z)− B(zj )
=

n∑
k=1

1

mj

z− zj

z− zk
.

Taking the limit in the above as z → zj and noting that mj > 0 (see [7]) we
see that

mj = 1

|B ′(zj )| . (4.4)

With the notation Es = {βs1, . . . , βsm} and γ = C(D(βsj )) we use equa-
tion (4.2) to conclude that

|(C1 ◦D)′(βsj )| = 1 − |C(0)|2
|1 − C(0)C(D(βsj ))|2

|C ′(αs)D′(βsj )|

= 1 − |C(0)|2
|1 − C(0)γ |2 |B ′(βsj )|.

Using formula (4.3), the points of tangency associated with C1 ◦D are the
same as those for B. By (2.7) and Theorem 2.1 the numerical range of the
compressed shift

SC1◦D(z)/z

has a circumscribing polygon at the points identified by C1 ◦ D that are the
same points as those defined byB. Furthermore, the points of tangency are the
same. Thus, by Theorem 2.2, we know that the compressed shifts SC1◦D(z)/z
and SB(z)/z are unitarily equivalent. Hence they have the same eigenvalues,
which, by (2.6), are the zeros of corresponding the Blaschke products. Thus
there exists a μ ∈ ∂D such that

(C1 ◦D)(z)
z

= μ
B(z)

z
.

Rotating C1 we obtain C2 and so B = C2 ◦D. Thus (2) implies (1).
Now suppose that (3) holds. If λ ∈ ∂D and the two discrete measures,D
μ

λ
B

andμλC , are equal, they must have the same atoms and the same weights. Denote
the zeros of C − λ by α1, α2, . . . , αk and the zeros of B − λ by β1, . . . , βn.
Then

1

|C ′(αj )| = D
μ
λ
B({αj }) =

n∑
r=1

1

|B ′(βr)|δβr (D
−1({αj })).

Thus there is a q � m such that

β1, . . . , βq ∈ D−1(αj ).
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Suppose there exists γ /∈ B−1(λ) with D(γ ) = αj .
Then

k∑
j=1

μλC({αj }) =
k∑

j=1

∑
r:D(βr )=αj

1

|B ′(βr)| .

However, the existence of γ implies that we are not summing over the n distinct
βr . Since each of the weights

1

|B ′(βr)|
is positive for each r , and we have omitted at least one, μC is not a probability
measure, a contradiction. Therefore, D partitions the n = mk zeros of B into
k sets of m points, E1, . . . , Ek and we see that μλB and μλC◦D have the same
atoms, β1, . . . , βn.

In summary, if the equality holds for two distinct λ, there exist two sets
of n points, β1

j and β2
j such that (C ◦ D)(βkj ) = B(βkj ). Multiplying by the

denominators to obtain a polynomial of degree 2n and setting that equal to
0, we see that the βkj are 2n solutions to that problem. Since C ◦ D(0) = 0
and B(0) = 0, the polynomial is also 0 at 0. Therefore, the polynomial is
identically zero and so B = C ◦D. Hence (1) holds.

5. Some consequences

In this section, we provide two consequences of our results. The first of these
provides an algorithm for constructing a finite Blaschke product B that cor-
responds to a given polygon and set of points of tangency. We then apply
our results to obtain a statement about commuting Blaschke products, each of
which have a fixed point in D.

5.1. An algorithm

Suppose we have W(T ) where T ∈ Sn and a circumscribing polygon P
with vertices z1, . . . , zn+1 and points of tangency at tj zj + (1 − tj )zj+1, where
0 < tj < 1 for all j (and the indices are understood mod (n + 1)). We
will show how one can use the computation in Theorem 4.1 (part 2) and
Corollary 3.3 to provide an algorithm for constructing a Blaschke product
B such that W(SB) = W(T ).

First we show that t1, . . . , tn determine tn+1. Because the polygon circum-
scribes W(T ), where T ∈ Sn, we know that there is a Blaschke product B of
degree n+ 1 with B(0) = 0 that identifies the zj and satisfies

B(z)/z

B(z)− B(z1)
=

n+1∑
j=1

mj

z− zj
,
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with mj > 0 and
∑n+1
j=1 mj = 1. Using formula (2.9) we also know that

mj

mj +mj+1
= tj for all j.

Solving this system of equations, we see that

1

tn+1
= 1 + m1

mn+1
= 1 + 1∏n

j=1

(
1
tj

− 1
) , (5.1)

and so the points t1, . . . , tn determine tn+1.
Let

m̃j = m̃1

j−1∏
k=1

(
1

tj
− 1

)
for j > 1

and
m̃1 = 1

1 + (∑n+1
j=2

∏j−1
k=1

(
1
tj

− 1
)) .

It is clear that m̃j > 0 and a calculation shows that
∑n+1
j=1 m̃j = 1. Another

computation shows that

m̃j

m̃j + m̃j+1
= tj for j = 1, . . . , n

and equation (5.1) shows that

m̃n+1

m̃n+1 + m̃1
= tn+1.

We are now ready to construct our Blaschke product. Use Corollary 3.3
to produce a Blaschke product C of degree n + 1 that identifies the (n + 1)
vertices of the given polygon P and such that

|C ′(zj )| = 1

m̃j
, j = 1, . . . , n.

We need our Blaschke product to take 0 to 0, so we consider the Blaschke
product C1 defined by

C1 := C(0)− C

1 − C(0)C
.

Then one can see that C1(z1) = · · · = C1(zn+1) = λ and

|C ′
1(zj )| =

∣∣∣∣ 1 − |C(0)|2
(1 − C(0)C(zj ))2

C ′(zj )
∣∣∣∣ =

∣∣∣∣ 1 − |C(0)|2
(1 − C(0)λ)2

∣∣∣∣ 1

m̃j
.
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By (4.4), the numerators in the partial fraction expansion for

C1(z)/z

C1(z)− C1(z1)

are precisely m̃j , that is,

C1(z)/z

C1(z)− C1(z1)
=

n+1∑
j=1

m̃j

z− zj
, where |C ′

1(zk)| = 1

m̃k
.

Looking at formula (2.9) for the points of tangency to W(SC1(z)/z), we see
that the points of tangency that we get from C1 are the same as those obtained
from C. We have also seen that

m̃j

m̃j + m̃j+1
= tj ,

so the points of tangency toW(T ) determined by the polygonP andW(C1) are
the same. ThusW(SB) andW(T ) have a common circumscribing (n+1)-gon
circumscribed by ∂D that is tangent to W(SB) and W(T ) at the same points.
By Theorem 2.2, SB and T are unitarily equivalent and therefore have the same
numerical range.

5.2. Commuting Blaschke products

We turn to our results on commuting finite Blaschke products. Such Blaschke
products were studied in [2] when there is a fixed point in the disk, and in [1]
when there is no fixed point. Using the results above we may now give an
alternative characterization for the first of these two cases. We begin with a
simple lemma.

Lemma 5.1. LetC andD be commuting finite Blaschke products, andα ∈ D.
Then the following conditions are equivalent.

(1) C(α) = α;

(2) D(α) = α;

(3) (C ◦D)(α) = α.

Proof. For (1) ⇒ (2), note that C ◦D = D ◦ C implies that

C(D(α)) = D(C(α)) = D(α).

However, a Blaschke product has at most one fixed point inD and soD(α) = α.
For (2) ⇒ (3), we note that the argument used in (1) ⇒ (2) shows that if

two Blaschke products commute then any fixed point of one is a fixed point of
the other. Now D commutes with C ◦D, so we have the result.
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Finally, for (3) ⇒ (1) we see that, likewise, C ◦D commutes with C, and
the implication follows.

Remark 5.2. If C and D are finite Blaschke products such that C(α) = α

for some α ∈ D, then C and D commute if and only if C̃ and D̃ commute,
where C̃ = ψα◦C◦ψα and D̃ = ψα◦D◦ψα (recall thatψα is the automorphism
defined in (2.1)); by Lemma 5.1 we also have C̃(0) = D̃(0) = 0.

Combining these ideas we have the following result, with C̃ and D̃ as in
Remark 5.2.

Theorem 5.3. Let C and D be finite Blaschke products and α ∈ D such
that C(α) = α. Then the following are equivalent.

(1) C ◦D = D ◦ C;

(2) There exist λ1, λ2 ∈ ∂D with

D̃∗μ
λj

D̃◦C̃ = μ
λj

C̃
, j = 1, 2.

(3) There exist λ1, λ2 ∈ ∂D with

C̃∗μ
λj

C̃◦D̃ = μ
λj

D̃
, j = 1, 2.

Proof. This now follows immediately from the equivalence of (1) and (4)
in Theorem 4.1, with B = C̃ ◦ D̃.

6. Examples

By computing monodromy groups, Cowen [6] presented two examples of Blas-
chke products, one of which is a composition and one of which is not. We now
rework Cowen’s two examples to see what happens to the composition in our
algorithm if there is such a composition and what happens to our algorithm if
there is not such a decomposition.

Example 6.1. The finite Blaschke product

B(z) = z2

(
z− 1

3

1 − 1
3z

)(
z− 1

2

1 − 1
2z

)

is indecomposable.

Proof. The above Blaschke product B is of degree 4. If it were a composi-
tion, it would be the composition of two degree-2 Blaschke productsC andD.
From (2.2) we may assume that B = C ◦D with C(0) = D(0) = 0. This, in
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turn, implies that C(z) = zC1(z) and B(z) = D(z)C1(D(z)) and so D must
have its second zero at either 0, 1

2 or 1
3 . Chasing down the three possibilities

D(z) = D1(z) := z2,

D(z) = D2(z) := z
z− 1

2

1 − 1
2z
,

D(z) = D3(z) := z
z− 1

3

1 − 1
3z
,

one can see that D(1) = D(−1) = 1. A computation shows that

B ′(1) = 7 and B ′(−1) = −17

6
.

If D1(z) = z2, then ∣∣∣∣B ′(1)
D′(1)

∣∣∣∣ �=
∣∣∣∣B ′(−1)

D′(−1)

∣∣∣∣
and so, by Theorem 4.1, B �= C ◦D1. Checking D2 and D3 in a similar way,
we see that B cannot be a composition of any of these and therefore B is
indecomposable.

It is possible to run through an algorithm to determine a decomposable
Blaschke product that is related to B. Consider the four points B sends to 1,
namely

−1, 1,
5 − i

√
119

2
,

5 + i
√

119

2
. (6.1)

We use the algorithm described in [12] to compute a Blaschke product D of
degree-2 that identifies the points −1 and 1 and also identifies the points

1

12
(5 − i

√
119 ) and

1

12
(5 + i

√
119 ).

We follow the algorithm in [12] (though there is an algorithm provided by
Courtney and Sarason [5] that does not require mapping over to the upper-half
plane). We map over to the upper-half plane, find a function F that maps the
first pair to 0 and the other to ∞ and then map back to the unit circle. Doing
this, we obtain the Blaschke product

D(z) = z(−5 + 12z)

−12 + 5z
.

Then
D(1) = D(−1) = −1
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and

D

(
5 − i

√
119

12

)
= D

(
5 + i

√
119

12

)
= 1.

If we let
C(z) = z2.

then C ◦D maps 0 to 0, is of degree 4, and C ◦D is equal to B on the set of
four points from (6.1), but no other set of four points. Thus, given a Blaschke
product (B in this case) of degree 4, there is a decomposable Blaschke product
(C ◦D in this case) that agrees with it on four points, but that is not enough to
guarantee that the two Blaschke products are equal up to composition with an
automorphism.

Example 6.2. Consider the finite Blaschke product

B(z) = z2

(
z− 1

2

1 − 1
2z

)2

.

This is obviously a composition C ◦D, where

C(z) = z2 and D(z) = z
z− 1

2

1 − 1
2z
.

The algorithm can be applied to this Blaschke product.
Assuming for the moment that we do not know C and D, we discuss a

method for finding them. We know that D must be degree 2, map 0 to 0, and,
if B = C ◦ D, there must be a partition of the set of points that B identifies
into two sets E1 and E2 with D constant on each. If we choose a set of points
β1, β2, β3 and β4, ordered according to increasing argument, that B identifies,
then the partition must be into two sets of two points. But, sinceD is a degree-2
Blaschke product, it must identify the points β1 and β3 and the points β2 and
β4. One algorithm for constructingD is presented in [12]. Up to rotation, there
is only one such Blaschke product D; see [7, Theorem 2]. It then remains to
check the derivative condition.

We now computeD
μ
1
B and μ1

C and see they are equal. From (2.4) we have

μ1
C = 1

2
δ1 + 1

2
δ−1.

Now the four points B sends to 1 are

β1 = 1, β2 = −1, β3 = e−iπ/6, β4 = eiπ/6.
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Then
D′(β1) = 4, D′(β2) = −4

3
, D′(β3) = D′(β4) = 2.

A computation shows that

B ′(β1) = 8, B ′(β2) = −8

3
, B ′(β3) = 4

−i + √
3

i + √
3
, B ′(β4) = 4

i + √
3

−i + √
3
.

Thus ∣∣∣∣B ′(β1)

D′(β1)

∣∣∣∣ =
∣∣∣∣B ′(β2)

D′(β2)

∣∣∣∣ and

∣∣∣∣B ′(β3)

D′(β3)

∣∣∣∣ =
∣∣∣∣B ′(β4)

D′(β4)

∣∣∣∣.
Furthermore, notice that

D(β1) = D(β2) = 1, D(β3) = D(β4) = −1

and so, using (4.1), we see that

D
μ
1
B =

2∑
s=1

( ∑
�:D(βs� )=αs

1

|C ′(αs)| |D′(βs�)|
)
δαs

=
(

1

|C ′(1)||D′(β1)| + 1

|C ′(1)||D′(β2)|
)
δ1

+
(

1

|C ′(−1)||D′(β3)| + 1

|C ′(−1)|D′(β4)|
)
δ−1

= 1

2
δ1 + 1

2
δ−1

= μ1
C.
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