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SETS OF PRIMES WITH INTERMEDIATE DENSITY

SOLOMON W. GOLOMB

1. Introduction. It is a surprising fact that all the well-known sets
of prime numbers belong to one of two very distinct classes. In the first
of these classes are sets of primes which are known not merely to be in-
finite, but to have an asymptotic distribution of Ax/logx for a suitable
constant A > 0. The set of all primes; the primes in any arithmetic pro-
gression an +b with (a, b) =1; primes of the form a?+ b2+ ¢?+1; all these
belong to this first class.

The second class contains sets of primes whose distribution does not
exceed Ax[logx for all # (or even, for all sufficiently large z), for any
A >0. Typical illustrations here are the twin primes, primes of the form
a®+1, and even primes of the form a?+62+1. For this class, not only
the conjectured asymptotic formulas remain unproven, but none of the
sets of primes in question has even been proved infinite. Brun’s sieve
method succeeds in proving that all of these sets are indeed o(z[logz),
but no significant lower bound has ever been obtained.

Also in the second class are the well-known Fermat primes and Mer-
senne primes, each surely o(z/logz)—in fact, it is quite elementary that
the distribution of the Fermat primes is O(loglogx), and of the Mersenne
primes, O(logz/loglogz). But the infinitude of these sets not merely
remains unproven—it is a matter of legitimate doubt. The “regular
primes’” of Kummer furnish yet another example of a set of primes whose
infinitude remains in doubt.

It is certainly reasonable to ask whether there is a middle ground—
whether there are sets of primes, arising in a natural way, which can be
proved infinite, yet have a distribution which does not exceed Ax/loga
for any 4>0. If {p,} is the sequence of the primes, then {p,.} meets
all the requirements except for ‘‘arising in a natural way”. Similarly
for {pns}, {Pn)}, ete. Clearly one criterion for “naturalness” should be
that there is no explicit reference to subscripts in the sequence {p,}.
However, such sets as {p,,} serve to demonstrate that there can be no
doubt as to the existence of infinite sets of primes with arbitrarily sparse
distributions.
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In this article, a large family of sets of primes will be exhibited, wherein
each set is proved to be infinite, yet at the same time is shown to have a
distribution which does not exceed Awxflogx for any 4 >0. (Such sets of
primes will be said to have intermediate density, or simply to be infer-
mediate sets). Two independent motivations for the naturalness of such
sets will be given, and some important connections between these sets
and the existing literature will be established. Another intermediate set,
arising in a somewhat different manner, will also be studied.

2. First motivation. The usual test for whether or not a polynomial
f(x), with coefficients in a field F, has any repeated factors, is to deter-
mine (if necessary, by the Euclidean algorithm) whether or not f(x) and
its derivative f'(x) have any common factors. If the field ¥ has charac-
teristic 0, then

i) every common factor of f and f’ is a repeated factor of f, and con-
versely.

If char (F)=+0, the test remains parily valid, in that

ii) every repeated factor of f is a common factor of f and f' — although
now the converse no longer follows. Nonetheless, when looking for re-
peated factors of f, it suffices to confine attention to common factors of
Jand f'; and unless f’ vanishes identically, this is some simplification, at
least.

The intention here is to examine the corresponding situation for inte-
gers. It has long been recognized that whether or not an integer is
“square-free’’ (¢.e. free of repeated factors) is one of its basic arithmetic
properties. For example, the Mobius function x(n) vanishes if and only
if » has repeated factors. In view of the situation with polynomials,
the idea here is to relate the question of repeated factors to the analog
of derivative for integers. The first question then is how to define the
derivative of an integer.

It seems decidedly unfair to say:

k k
if w=J[p* o« 21  thenlet =« H L
i=1

for although this has the property that (n, n’) gives precisely the re-
peated part of n, it is moreover true that (n, n')=n', a situation which
does not hold for polynomials.

If
fn) = 2 9(@),

Wintner [9, p. 1] calls g(n) the ‘“‘arithmetical derivative” of f(n), and



266 SOLOMON W. GOLOMB

claims that this idea is really due to Euler, at least in some special cases.
Selberg [7] is probably thinking along the same lines when he defines

f'(d) =f(d)‘£,d1(1 = 1/f(p))

for the case that f(d) is multiplicative. This agrees with Wintner’s defini-
tion, at least when d is square-free.

From either point of view, n'=g(n), where ¢(n) is Euler’s fuxiction,
since it is well-known that

n=o¢d), and ogn) =n]J]1-1/p).

din pln

Then, since p(n)=IIp;/ ™ (p;—1) when n=IIp,*, it is at least true that

ii) every repeated factor of = is a common factor of n and ¢(n), though
not, in general, conversely.

The first illustration of the failure of the converse occurs with n=_21
and @(n)=12; then (n, p(n))=3 even though = is square-free. It is
natural to ask about systems of integers in which (n, p(n)) gives precisely
the repeated part of n. However, before analyzing this question further,
another and perhaps more compelling instance of the spontaneous oc-
currence of (n, <p(n)) in mathematics will be mentioned.

3. Second motivation. There is an elegant if little-publicized result in
the theory of finite groups which may be worded as follows:

“There is one and only one group of order z, if and only if (n, p(n))=1".

In particular, if » is prime, (», 2—1)=1, and there is only the cyclic
group. But even when n=15, ¢(n)=8, and there is only one group.
On the other hand, when n =21, (n, ¢(n))=3, so that there is more than
one group of order 21. Burnside [2, p. 48] proves that if n=pgq is the
product of two primes, p < ¢, then there is a non-cyclic group of order n if
and only if g=1 (modp). From this proof and the fact that there are
always two groups of order p?, it is not difficult to prove the assertion
that (n, p(n))=1 is necessary and sufficient for the existence of only one
group of order =.

It is noteworthy that Erdos [3] has obtained an asymptotic expression
involving the numbers n which satisfy (n, ¢(n))=1. If A(x) denotes the
number of such positive integers n which do not exceed z, Erdos’s
result may be stated

xe™

1 A —
) (@) & logloglogz’
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where “o”’ means ‘“‘asymptotic, as  — c’’, and where y, as one might
suspect, is Euler’s constant.

The appearance of x/logloglogz in this result is both surprising and
reasonable—surprising in that it certainly does not arise in very many
problems; but reasonable in that z(x) < A(x) < S(x) expresses not merely
an inequality, but in fact an ordering by inclusion, where sz(x) counts
the primes, and S(x) counts the square-free integers. Since n(x)~oz/log,
and S(x)~6x/n?, and since A4 (x) is distinctly intermediate, it is very rea-
sonable that A4(x) has the order of x divided by a suitably iterated log-
arithm.

4. Arithmetical semi-groups. Following the usage (if not the precise
definition) of Wintner [9, p. 18], a set & of positive integers will be called
an arithmetical semi-group if it consists of the number 1, a fixed set P of
primes, and all products of powers of the primes in P.

Let X (n) be the characteristic function of G. Defining ug(n)=p(n) X(n),
where u(n) is the Mo6bius function, Wintner [8, p. 70][9, p. 19] observes
that

1
2) o(s) = 3 — = [T (1-p=)%, Res>1,
ne@ M peP
and the related identity
n
(3) 1/Ca(s) = Z'uG(s ) = J] 1—p9), Res > 1.
neq M peP

Wintner is concerned primarily with the generalization of the Prime
Number Theorem to arithmetical semi-groups, and his results, while cer-
tainly interesting, will not be required here.

In the spirit of the preceding sections, suppose that one wishes to con-
struct an arithmetical semi-group G of integers for which, if ne(@, and
n is square-free, then (n, p(n))=1. (Equivalently, for any n in @, (n, p(n))
must yield precisely the repeated part of n). Moreover, suppose that G
is required to be maximal with respect to this property. Call such a set
G a regular semi-group. Then the following theorem applies.

THEOREM 1. If G is a regular semi-group, it has either the single prime
generator 2 (so that @={1, 2, 4, 8, 16,32, .. }), or else, G is generated by
tnfinitely many odd primes.

Proor. The condition (n, p(n))=1 for square-free ne@ is equivalent
to the statement that if p, and p, are any two prime generators of G,
then p; =1 (modp,). (That is, if n=I{p, then ¢(n)=II(p,—1), and
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(n, (n))=1 will always hold if and only if p;—1 is always relatively
prime to p;, for any primes p; and p; in G).

If 2e@, it is impossible for any odd prime p to satisfy p==1 (mod2).
Thus Gy={1, 2, 4, 8, ...} is already maximal. On the other hand, if &
has only a finite set of odd prime generators py, p,, ..., Pp, let
A=p,p;...p,, and take any prime ¢ in the arithmetic progression
An—1. (By Dirichlet’s Theorem, there are infinitely many such gq).
Then g=Any,—1; and ¢g—1=A4n,—2 is divisible by none of the primes
P1s P> - - +» Dy, all of which divide 4 but not 2. Hence ¢ could be added
to G, contradicting maximality. This completes the proof.

There is a ‘‘most natural” regular semi-group @,, obtained by going
consecutively through the odd primes, and allowing each prime as a
generator of G, so long as it does not conflict with any previous generator.
This set G, contains the following 46 primes up to 1000.

3 113 317 479 653 857
5 149 353 503 659 863
17 173 359 509 677 887
23 197 383 557 683 947
29 257 389 563 773 977
53 263 419 569 797 983
83 269 449 593 809

89 293 467 617 827

TABLE 1. Primes = 1000 belonging to G,.

It is interesting to note that all the Fermat primes necessarily belong
to G,.

Any integer n which satisfies (n, ¢(n)) =1 belongs to at least one regular
semi-group @, obtained by starting with the prime factors of n as gene-
rators of (4, and then including enough other primes to make ¢ maximal
with respect to the condition p,%1 (modp;) for all primes p;, p; in G.
Conversely, defining G to be the set of square-free integers in @, the union
of the @’s, extended over all regular semi-groups, is precisely the set of
integers n which satisfy (n, (n))=1. (If P is the set of primes which
generate G, then G consists of 1, and all products of distinct members
of P).

Using Dirichlet’s Theorem once more, it is easy to establish the follow-
ing result:

TaEoREM 2. The number of reqular semi-groups is infinie.
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Proor. In the process described for forming G, one may deviate at
the 1™ stage by rejecting ¢;, and using a prime of the form

¢ = (- -2)% — (;,—1)

instead. The number g¢,” exists by Dirichlet’s Theorem, which applies be-
cause (9;9s...¢s5» ¢;—1)=1. Note that ¢;’=1 (modg;) for j=1,2, ...,
t—1. Completing this set (containing ¢, ..., ¢;_y, ¢;') in any fashion to
form a regular semi-group (call it H;), ¢; will not be included, because
it conflicts with ¢,’, in that ¢,"=1 (modg,). Then for every ¢, H, agrees
with G, in its first s —1 prime generators, and differs on the ¢*. Thus,
all the sets H; are distinct from each other and from @,. Hence they
furnish an infinity of examples of regular semi-groups.

Actually, the number of regular semi-groups is non-denumerable.
This can be shown by supposing a denumeration exists, selecting a prime
from each semi-group (these representatives need not be all distinct),
and using Dirichlet’s Theorem to find a consistent set of primes conflict-
ing with each prime of this representative set.

5. The upper bound. It is of interest to compare the density of the
prime generators of G; with the twin primes. Denoting by g(x) and 7'(x)
the number of primes in G, and of pairs of twin primes, respectively,
which are <z, the following table shows the comparison, by hundreds,
up to x=1000.

x (@) T(x)
100 8 8
200 12 15
300 16 19
400 21 21
500 25 24
600 31 27
700 36 29
800 38 29
900 43 34
1000 46 34
TABLE 2.

Even on the basis of such inadequate evidence, there is the distinct im-
pression that the growth of g(x) is more rapid than the growth of 7'(x).
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This has a simple explanation (non-rigorous, to be sure) from the sieve
point of view. The twin primes result from a double application of the
Sieve of Eratosthenes, whereas the primes of ¢, are determined by a
“one-and-one-half-fold” application of the sieve.

More precisely, to determine the twin primes between x* and z, one
lists all the primes p; < #}, and eliminates from the list of integers between
x* and x any n which satisfies either

i) ® = 0 (modp;) for some p,, or

ii) n = —2 (modyp,) for some p;,.

This is a double elimination process, and the numbers which remain are
the primes p between 2* and x such that p+ 2 is also prime.

On the other hand, to determine the prime generators of G; between
z* and @, one lists all the primes p; <}, and all the prime generators
g;<at of @, and then eliminates those integers n from the listing of
integers between 2! and 2z which satisfy either

i) n = 0 (modp,) for some p,, or

ii)) m = 1 (modg;) for some g;,.

What remains is the set of prime generators of @, between zt and 2xt.
Since the ¢; are a proper subset of all the primes, the elimination ii)’ is
only a partial application of the sieve; hence the (imprecise) term
“one-and-one-half-fold”” application. (Enlarging the set of ¢;’s to extend
up to 2z%, one then proceeds to “‘sift” the integers between 2z* and 4a?;
and this process can be continued until x is reached).

If ii)’ is strengthened to

ii) m» = 1 (modp;) for some odd prime p,,
the corresponding #wo-fold application of the sieve determines precisely
the Fermat primes p= 22"+ 1 between z? and x. (Thus the assertion in
section 4 that all the Fermat primes belong to G,). It seems to have been
generally overlooked in the literature that the Fermat primes can thus
be obtained by a double application of the sieve. Similarly the Mersenne
primes, using the condition:

iii) = —1 (modp,) for some odd prime p;,
instead of the condition ii)’’. Thus, not all two-fold applications of the
gieve are likely to yield sets of primes with the same asymptotic distribu-
tion.

The purpose of the next section is to show that the “one-and-one-half-
fold” application of the sieve can be mechanized, along the lines of
Brun [1] or Selberg [7], to prove that g(x)> Ax/logx does not hold for
any 4 >0, and all 2> 2z,. Since g(x) appears to be bigger than 7'(z), and
the best result [1] on 7'(x) is T'(x) = O(x/log?x), this result on g(x) cannot
be considered trivial. Furthermore, since g(x)— oo a8 > oo (by Theorem

it
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1), the prime generators of f; form a set which can be proved to have
intermediate density—infinite, yet not greater than Axz/logx for any
A>0.

6. Applying the sieve.

THEOREM 3. The set of primes which generate G, has intermediate density.

Proor. Let a(p)=2 if p is a prime in G, and a(p)=1 for all other
primes. Extend the definition of a(n) to all the integers by making it
completely multiplicative. (Actually, a(n) will only be needed for square-
free n. Its réle will be to count residue classes modulo n—how many are
“eliminated” in the sieve process by the various prime divisors of n).

Using almost any form of Brun’s sieve method, the crucial step is to
obtain an upper bound for the product

@) JTQ—a@/p) =[] Q-1/py® = JT 1-1/p) [] (1-1]g),
P<y P<y P<y a<y

where p runs through all the primes, and ¢ runs through the prime
generators of (. (y> 3 is a real number). The estimate

(8) Il 1=1/p) < 1/logy

p<y

is classical; so the problem is to estimate

(6) Q) = JI (1-1/q) .

To begin with, =

%) log Q) = Y log(1-1/g) = — 3 3" 1fkg¥ .
q<y g<y k=1

Since

/g < f 1/kg* < f‘ /g% = 1/(g—1),
k=1 k=1

(8) - 2'1/(g-1) < logQy) < - X' g,
7<y q<y

and the problem is now to estimate 2, _,1/q.

At first glance, it appears reasonable to protest “but if there is already
a good estimate for this sum, why bother with the sieve method ?*’ The
answer is simple enough: Using the machinery of the sieve, a large esti-
mate for 2, _,1/¢g will lead to a low density for the primes in G.

Suppose g(z) > Ax[logx for some fixed 4 >0, and all large . Then

n = g(q) > Agn/logg, and g, < A7'nlogg,,
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for all sufficiently large n. Moreover, ¢, <n? for all sufficiently large »
(otherwise, g(x) < 2! would occur for arbitrarily large values of x), so that

(9) 9, < cnlogn,
for some constant ¢ > 0, and all »>n,. Thus

(1) Xlg, > 2 g, > 3 1/enlogn > ¢ loglogy,

<y Gny<n <y no <n <y/(clogy)
for all y sufficiently large. Combining this inequality with (8),
a1 Q) < erosiony — gonoans 1 (logy);
and recalling (4) and (5), this yields the important estimate
(12) 1T (1 - a(p)/p) < 1/(logy)***.
p<y

Using Landau’s £2(d) notation [6, pp. 71-78], |u(d) a(d)| £ |u(d) 299|
for all d, so that the remainder-term approximations which Landau
makes in the course of %is application of the sieve method surely hold
for the present problem. Then, setting y=ax!/cl8log®,

logzx
cyloglogx

1+¢q
(13) (logy)™+ = ( ) > (loga)ts

for all sufficiently large x, where again ¢;> 0.
Finally, still following Landau’s pattern [6],

G O
< ’
(logy)t*r = (logx)'*e

(14) g(x)

in direct contradiction to the assumption g(x)> Ax/logx for all large x.
This assumption is therefore false.

In view of Theorem 1, the set of primes which generate G, has now
been proved intermediate in the sense of section 1. Moreover, the proofs of
Theorems 1 and 3 apply to all regular semi-groups other than G,. Since
it was shown (Theorem 2) that the number of regular semi-groups is
infinite, an infinite number of examples of intermediate sets of primes
is thereby furnished, though it is indeed a moot point whether all of
them arise ‘‘naturally’’.

7. Other intermediate sets. It is no doubt possible to discover many
other intermediate sets of primes, proceeding along completely different
lines. Ome such example is the “Fermat-Polya’ set described herewith.

Polya bases a proof (see [5, p. 14]) that the number of primes is infinite
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on the Fermat numbers F, =22"+1, no two of which have a common
divisor greater than 1. Let £, be the largest prime divisor of #,. Since
(Py, Py)=1if i%j, the set {P,} is infinite. Moreover, it can be shown
that {P,} is intermediate, and that 2'1/P, converges. The following
lemma is useful.

LeMMA. Every prime factor of F,, has the form
p=2"1K+1,
with K a positive inieger.

Proor. If p divides F,, then

22" = —1 (modp),
so that a1
22" = (=1)2 = 1 (modp) .
Let (p—1)/k be the index of 2 modulo p. Then 27! =h(p—1)/k, where h
is an integer. Suppose h=2%m. Then 2"tl-¢=m(p—1)/k; and

22" = 1 (modp) .

But

(27T = 22" = —1 (modp),
which means that a=0. Hence % is odd. But since 27+1 has no odd
factors, » must cancel completely with the factors of k. Let K ==k/h.
Then 27+'=(p—1)/K, and the assertion follows.

THEOREM 4. The Fermat-Polya set {P,} has tntermediate density. Also,
2'1/P, converges.

Proor. By the lemma, P,>2" X1/P, <21/2?=1; and P, <z im-
plies 27 < 2, n=0(logx).

Theorem 4 can also be made to depend on a result due to Erdos [4],
which states that
(15) 2 1/d=0(1) as n-—>oo,

1<d|Fp

where the sum is extended over all the divisors of F, =22"+1 except 1.

In view of the lemma, the set of smailest prime divisors of the Fermat
numbers also satisfies Theorem 4. It would be interesting to discover
whether or not the set of all prime divisors of the Fermat numbers is
intermediate.

Had Fermat’s conjecture been correct, and every F, a prime, they
would not in themselves generate a regular semi-group, but would at
least be included among the generators of G4, as well as of other regular

Math. Scand. 3. 18
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semi-groups. However, the Fermat-Pélya set of Theorem 4 is not likely
to satisfy the p;=1 (modp;) condition for regular semi-groups. Thus,

F, = 23241 = 641-6700417 ,
with
641 = 1 (mod #;) and 6700417 = 1 (mod F,) .
If Py=F,=3 is included in the Fermat-Polya set {P,}, then a violation
of p,% 1 (modp;) is already illustrated: P;=1 (modP,). The other con-
gruence, 641=1 (mod5), is an adequate counter-example for the set of
smallest prime factors of ¥,.

For those who are not content with but one intermediate set of primes
constructed along the lines just presented, it is possible to consider
F,’=a?"+1, where a is any even number, as well as F,' =}(b%"+1),
where b>1 is odd. The analogous definitions and theorems should be
obvious.
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