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UNIVERSAL RELATIONAL SYSTEMS

BJARNI JONSSON

Introduction. As a typical example of the kind of problems treated
in this paper we mention the following question: Given an ordinal «, does
there exist a group & with the cardinal x,, having the property that
every group with the same cardinal is isomorphic to a subgroup of & ?
Such a group &, if it exists, will be referred to as an x, universal group.
Similar questions can be asked for various other systems, such as group-
oids, lattices and partially ordered systems. In § 2 we introduce the
notion of an (x,, K) universal relational system, where K is some class
of relational systems. Assuming the Generalized Continuum Hypothesis,
we then prove the existence of (x,, K) universal systems for all classes K
satisfying certain conditions (one of which depends on «). In § 3 we
show that the conditions imposed upon K are satisfied if « >0, and if K
is the class of all groups, the class of all groupoids, the class of all lat-
tices, or the class of all partially ordered systems. The answers to the
questions raised above therefore turn out to be affirmative for the case
when « > 0, provided the Generalized Continuum Hypothesis holds.

Certain special cases of our result are known from the literature.
Thus it is easy to show that there exists, for every ordinal «, an X,
universal Abelian group. In Hausdorff [3, Chapter 6] it is shown that
if the Generalized Continuum Hypothesis holds, and if « is not a limit
ordinal, then there exists an R, universal simply ordered system. In
Mostowski [6] an 8, universal partially ordered system is constructed,
and in Johnston [4] it is shown that if the Generalized Continuum Hypo-
thesis holds, and if « is cofinal with w, then there exists an 8, universal
partially ordered system. While these authors describe explicitly their
universal systems, we shall in the general case have to be content with
a non-constructive existence proof.

1. Preliminaries. Given an ordinal u, the u-termed sequence, or u-
tuple, whose successive terms are z,, @y, ..., Z;, ... Will be denoted by
(&g, @y, -« ., Ty ... ; if p is finite, then the sequence will also be written
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194 BJARNI JONSSON

(&g, 1, - -+, %, ;). If Ais any set, then the set of all u-termed sequences
all of whose terms belong to A will be denoted by 4*. If u is a finite
ordinal, then by a u-ary relation, or a relation of rank u, is understood any
set R of u-termed sequences; R is called a relation if it is a u-ary relation
for some finite ordinal u. By a relational system or, more briefly, a
system, is understood a sequence

A=<C4,B, R, ..., R, >,

such that 4 is a non-empty set, » is a finite ordinal, By, B, ..., R, ;
are relations, and each relation R, is included in 4 where y, is the rank
of R,. The sequence {uq, Uy, - .., K,y is called the similarity type of A,
and two relational systems having a common similarity type are said to
be similar. The notion of isomorphism between similar relational systems
is defined in an obvious manner.

Suppose A={4, Ry, R,, ..., R, ;) is a system with the similarity type
{thos M1y + - > By If Bis a non-empty subset of 4, then the new system

(B, RynB*™, R,nB", ..., R, nB*1)

is called the restriction of U to B, and is denoted by A|B. If B=A|B
for some non-empty subset B of A, then % is said to be a subsystem of
A, and U is said to be an extension of B, in symbols, B<A. By an
element of the system % is meant an element of the set 4, and the car-
dinal of the set 4 will also be referred to as the cardinal of the system U,
and will be denoted alternatively by *4 or by *.

When the operations of union and intersection are applied to systems
having a common similarity type, it is understood that these operations
are to be performed on corresponding terms of the systems involved.
Thus if « is a positive ordinal and if similar systems

N =<4, R, o, Ry, .-, R, 1>
are associated with all the ordinals & < x, then
Upcoe = Ui oo U o By U o Bty o U b B ) -

It is easy to see that if %, <9, whenever &<y <w, then A, <U,_ A,
for every 7 < «. If the systems

A=<{4,R, Ry, ..., R,)) and B =<(B, 8,8, ....8,
are similar, then their intersection
ANB = {AnB, BynSy, ByNSy, ..., R,_1n8,_,)

is again a relational system, provided the sets 4 and B are not disjoint.
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Assuming that AnB is not empty, it can be shown without difficulty
that in order for AN Y to be a subsystem of A and of B it is necessary
and sufficient that the systems A |(4nB) and B |(4nB) be equal
to each other, and hence equal to AN Y.

2. (%, K) universal systems. Generalizing the notion of an ¥, uni-
versal group, mentioned above, we introduce the following:

DEeriNTTION 2.1. Given a class K of systems and an ordinal «, a system
Ne K is satd to be (X,, K) universal if *A =y, and if every system BeK
with *B <R, s wsomorphic to a subsystem of .

For convenience we also introduce two auxiliary concepts:

DEerintTION 2.2. Two extensions B and € of a system A are said to be
equivalent modulo W if there exists a function ¢ which maps B isomorphi-
cally onto € in such a way that p(x)=1x for every element x of .

DEeFINITION 2.3. Given a class K of systems, an ordinal «, and a system
e K with *A<Rr,, by an (R,, K) universal extension of A is meant an
extension Be K of W such that every extension €K of N with *€ <x, is
equivalent modulo U to a subsystem of B.

We shall be concerned with a class K of relational systems, subject to
certain conditions. To avoid repetition, we list these conditions here:

1. There exist A, Be K such that W and B are not isomorphic.
I1. If Ac K and A~ B, then BeK.

IT1. For every U, BeK there exists €c K such that A and B are iso-
morphic to subsystems of €.

IV. For every A, BeK, if AnBeK, ANB <A and AnNB < B, then
there exists €€ K such that A <€ and B <E.

V. If 1 is a positive ordinal, if K for every &<A, and if A <A,
whenever £<n <A, then U, _ ;U cK.

VI,. If AeK, B<UA and *B<R,, then there exists €c K such that
B <€ <A and *€C <R,

To illustrate these conditions, consider the case in which K is the class
of all groups. We may regard a group as a system {4,-,7!) consisting
of a non-empty set 4, a binary operation -, and a unary operation -1,
satisfying certain well-known conditions. Since a u-ary operation may
be considered as a special kind of (1 + 1)-ary relation, we thus conceive
of a group as a relational system having the similarity type (3, 2).

It is obvious that the class K of all groups satisfies the conditions
I, I, III and V. If « is a positive ordinal, A=(4,-,~1) is a group, and

13*



196 BJARNI JONSSON

B is any subset of 4 with *B <x_, then B generates a subgroup € of A
with *€ <x,. Hence VI, holds in case o« > 0. On the other hand, VI, is
not satisfied, since a finite subset of 4 may generate an infinite subgroup
of Y. Finally consider the condition IV. Given two groups

A ={4,-,71 and B = (B, ),

the assumption that AnNBe K means that the set AnB is non-empty,
and that

zy=x"'yeAnB and zl=a2YednB
for every xz,y€eAdnB.

It is clear that if this condition is satisfied, then ANY is a subgroup of
A and of B, so that the last two formulae in the hypothesis of IV are
actually superfluous in this case. Now if AnBe K, then we may form
(cf. Schreier [8]) the so-called free product € of A and B with the amal-
gamated subgroup AnWB, and it is well known that € is a group which
contains Y and B as subgroups. Hence the condition IV is also satisfied
in this case.

Lemma 2.4. If x is any ordinal, and if K is a class of systems which
satisfies the conditions 1-V and VI _,,, then there exists e K with *Y=x,,.

ProoF. According to I there exist two non-isomorphic systems
B’, B’ e K, and by III there exists €K such that B’ and B’ are iso-
morphic to subsystems €' and €"” of €. Since €' and €' are not iso-
morphic, one of the equations €’'=€ and €' =€ must fail; we may
assume that €'+€. It follows from IT that €'€ K, and using II again
we can associate with all the ordinals £ < , extensions €,c K of €’ which
are equivalent to € modulo €', in such a way that €,n€¢,=C¢€" whenever
é<n<w, UsingII, IV and V we easily obtain systems %< K, associated
with all the ordinals & < w,, such that

C.<A <A, and WAnE, =C whenever & <7 < w,.

Lettin
¢ A = U8<wa U,

we see by V that A’'e K. Furthermore, the sequence (%o, Ay, ..., A, .. .D>
is strictly increasing, whence *9’ > &,. Choosing a subsystem A"’ of A’
with *A""=x,, we infer from VI , , that there exists e K such that
A <A<Y and *A=x,.

LemMa 2.5. If o 18 any ordinal, K is a class of systems which satisfies
the condition VI,, e K and *A=x,, then there exist subsystems A.e K of
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A, associated with all the ordinals & <w,, such that *A. <R, for every
é<o,, A <A, whenever £ <n<o,, and A=U, _, U,

Proor. Letting  be the smallest ordinal such that w, is cofinal with
w,, we can associate subsystems B, of U with all the ordinals u < w, in
such a way that *B,<x, for every u<w; B, <8, whenever u<» < w,,
and 9I=Uﬂ<wﬂ%u. Using VI, and the definition of § we obtain sub-
systems €, e K of A, associated with all the ordinals u <, such that
B, <€, and *¢€,<r, for every u<w; and €, <€, whenever u<»<w;.
It follows that A=U, _ s, From the definition of § we infer that there
exists a non-decreasing function ¢ on the set of all ordinals & < w, onto
the set of all ordinals u<w, and letting A,=C, for every é<w, we
readily see that the systems U, satisfy the required conditions.

LemMma 2.6. If « is any ordinal and K is a class of systems which satis-
fies the conditions V and VI, then K satisfies the condition V1, for every
ordinal B> .

Proor. First assume that =y +1, and that K satisfies the condi-
tion VI,. Suppose Ac K, B <A and *B <, Then *B<x,, and letting
0 be the smallest ordinal such that w; is cofinal with w, we can associate
subsystems B, of 8 with all the ordinals {<w, in such a way that
*B, <R, for every & < w;, B, < B, whenever £ <y <w,, and B=U, _,, B,
Using VI, we can then associate subsystems €,eK of 9 with all the
ordinals & <w, in such a way that B, <€, and *€,<r, for every & <w,,
and €, <€, whenever & <7 <w, Letting €=U,_,,E;, we conclude that
B <€ and *C=x, <N, while €€ K by V. Thus K satisfies the condition
VI,

It is obvious that if §>«, § is a limit ordinal, and K satisfies the con-
dition VI, for every ordinal y with « <y <f, then K also satisfies the
condition VI,. The proof is therefore easily completed by transfinite
induction.

Levuma 2.7. Suppose x ts an ordinal and K is a class of systems which
satisfies the conditions II, IV and VI, If Uy Uy, e K, Wy < A, <A,
*, <R, and Uy is an (R,, K) universal extension of U,, then W, is an
(R, K) universal extension of U,.

Proor. Consider any system BeK with %, < B and *B<x,. By II
we may assume that %, NB=Y,, and it follows by IV and VI that there
exists €e K such that UA; <€, B <€ and *€ <x,. Hence there exists a
function ¢ which maps € isomorphically onto a subsystem of U, in
such a way that ¢(x) =2 for every element x of %,. Consequently ¢ maps



198 BJARNI JONSSON

B isomorphically onto a subsystem of %, in such a way that g(z)=2
for every element x of ,. Thus %, is an (x,, K) universal extension of .

Lemma 2.8. If o is an ordinal with the property that m<x, always
implies that 2™ <R, if K is a class of systems which satisfies the conditions
I-V and VI, and if Agc K and *A,<R,, then there exists an (R,, K)
universal extension W of W, with * <R,.

Proor. It follows from III that all the systems in K have a common
similarity type {u¢, 4y, - - -, ;). Hence 2, is of the form

Wo =<4 Ry, By, ..., R,

where *4,<x, and R, A, for =0, 1, ..., x—1. With each cardinal
n<x, associate a set B, with *B, =n which has no element in common
with 4,, and let L be the class of all extensions B K of A, which are

; ,
of the form B = (44UB,, 80, 8y, ..., 8.

Since for each system BeL, and for 7=0,1,...,%x—1 we have
S,=(4,uB,)", we see that

*L < II,_,2"" where 1, = (*4o+n) for 7=0,1,...,%x—1.

Since 1, < X, for every 7 <x, it follows that L, <x,. Letting L=U, _, L,
we therefore have *L <x,. Hence we can arrange all the systems in L
into an w,-termed sequence (B, By, ..., B, ..., and using IT we can
associate with each ordinal §é <w, a new extension %', of %, which is
equivalent to B, modulo 4,, in such a way that 8',n®B’, =%, when-
ever é<n<w, It follows by II, IV and V that we can associate with
all the ordinals é<w, systems G,eK such that B',<€,<€, and
€.n%B',=A, whenever {<y<w, Letting€=U,_, €, we have B, <€
for every £ <w,, and €cK by V. By VI, there exists a subsystem
Ae K of € such that *A <, and B’, <A for every £<w,. Since every
extension BeK of A, with *B <r, is equivalent modulo %, to one of
the subsystems B, of %, we see that % is an (x,, K) universal extension
of A,.

TaroREM 2.9. Let x be an ordinal with the following two properties:
(i) If A<w, and if n,<, for every p<2, then X, _ 1, <R,.
() If n<w,, then 2" <R,
If K is a class of systems which satisfies the conditions 1-V and VI, then
there exists an (X, K) universal system.

Proor. From I and VI, it follows that there exists U, K such that
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*WAp<r,; we let Ay, =, for every n<w,. Now suppose 0 <A< w,, and
assume that we have obtained systems A, %, ,eK, for all ordinals
&< 2 and 5 <w,, satisfying the following conditions:

(1) *A,,,<n, for every < and < w,.

(2) ¥, <Ay, ,» whenever £<¢&' <A and n<7' <o,

3) A=V, ., A, , for every é<Ai.

(4) Ugyy is an (R, K) universal extension of A, , whenever £+1<A.

If 7 is a limit ordinal, then we let 2,=U, _, %, and %, ,=U,_, %, , for
every n<w,, and it is easy to see that W,eK and ¥, ,eK for
every n<w,, and that the conditions (1)-(4) hold with A replaced by
A+ 1.

If A is not a limit ordinal, then it is of the form A=+ 1. By 2.8 there
exists an (X,, K) universal extension A’ of A, , with *A’'<x,. In view
of II we may assume that A, NA'=A, ,, and it follows from IV, VI,
and 2.6 that there exists a common extension 2, K of %, and %’ such
that *%,<n,. According to 2.5 we can find subsystems U’ ,€ K of ¥,
associated with all the ordinals #<w,, such that *%’,  <r, for every
n<w, A,,<A,, whenever n<y <o, and A,;=U, _, A, . Using
VI, and (i) we can associate subsystems U, ,€ K of %, with all the ordi-
nals 7< o, in such a way that A, , <A, ,, A, , <A, . and *¥A, , <K, for
every <w,, and %, , <%, . whenever 7<%’ <w,. Itis now easy to see
that, in this case also, the conditions (1)-(4) hold with 4 replaced by
A+1.

Having thus shown that we can always continue the process of picking
out systems %, and %, , subject to the conditions (1)—(4), we conclude
that we can so choose %, and %, , for every £ <w, and n < w, that (1)-(4)
hold with A=w,. Letting

() A=U,_, 9%,

we infer from (1)-(3) and V that Ye K and *A<x,. We are going to
show that % is an (x,, K) universal system.

Suppose BeK and *B=<r,. Then it follows from 2.5 that there
exist subsystems B,cK of B, associated with all the ordinals y<w,,
such that *®B,<x, for every u<w,, B,~<B, whenever y<»<w,, and
B8=U, ., 9B,

According to II, IIT and VI, there exists an extension B'e K of B,
such that *3’<x, and ¥, , is isomorphic to a subsystem of B'. Since
oA, is an (R,, K) universal extension of ¥, o, it follows that B’ is iso-
morphic to a subsystem of ;. Hence there exists a function ¢, which
maps B, isomorphically onto a subsystem €, of ;.

Now suppose 0<A<w,, and assume that we have associated with
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each ordinal <4 a function ¢, mapping B, isomorphically onto a sub-
system €, of % in such a way that

(6) ¢.®) = @,(x) whenever u<v<i and zeB
Letting

P’
581'{ = UI‘<3%F‘ : and @';. = U#<A@I"

we infer that B',,€",e K, B’,<B,, €', <N, and that there exists a unique
function p mapping B’, isomorphically onto €', in such a way that
y(x)=@,(x) whenever u<2 and z is an element of %,. Since *¢';=
*B', = *B,<R,, it follows from (i), (2) and (5) that there exists E<w,
such that €', <U,. Hence, by (i), (2) and (3), €', < U, , for some < w,.
Letting ¢ be the larger of the two ordinals & and #», we infer by (2) that
¢, <%, ,. Now U, , is an (x,, K) universal extension of %, ,, so that,
by 2.7, %,,, is an (R,, K) universal extension of €’;. We can therefore
find a function ¢, which maps %, isomorphically onto a subsystem €, of
A,,, in such a way that ¢,(x)=y(x) for every element x of B’,. It readily
follows that (6) holds with 4 replaced by A+ 1.

We have shown that we can always continue the process of picking
functions ¢, mapping the systems B, isomorphically onto subsystems
€, of A, subject to the condition (6), and we conclude that we ean so
choose ¢, for every u < w, that (6) holds with A=w,. Consequently there
exists a unique function ¢ mapping B isomorphically onto the sub-
system €=U, _, €, of A, such that ¢(x)=g,(x) whenever u<w, and »
is an element of B,. Thus every system Be K with *B <&, is isomorphic
to a subsystem of %. Since by 2.4 there exists Be K with *B=yr,, we
conclude that % is an (x,, K) universal system.

THEOREM 2.10. If K is a class of systems which satisfies the conditions
I-V and VI, then there exists an (R, K) universal system.

Proor. By 2.9.

THEOREM 2.11. If the Generalized Continuum Hypothesis holds, if K is
a class of systems which satisfies the conditions 1I-V and VI, and if & is a
positive ordinal, then there exisis an (R,, K) universal system.

Proor. It follows from the hypothesis of the present theorem and
from 2.6 that VI, and 2.9 (ii) hold. If « is not a limit ordinal, then 2.9
(i) is also satisfied, and we conclude from 2.9 that there exists an (x,, K)
universal system.

Now suppose « is a limit ordinal. Using 2.6, 2.8 and V we can associate
systems € K with all the ordinals u <« in such a way that the follow-
ing conditions are satisfied:
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(1) A, is an (R,, K) universal system.

(2) *A, =x,,, for every u=a.

(3) Ay, is an (R, ,,;, K) universal extension of A, for every u<«.

(4) A,=U,_ A, whenever 0<u =« and w is a limit ordinal.

We shall prove that A, is an (&,, ) universal system.

Suppose Be K and *B=x,. Using 2.5, choose subsystems B’.c K of
B, associated with all the ordinals £ <w,, in such a way that *®’;<x,,
*B'e<r, for every {<w, %B'.<B', whenever £<n<w, and B=
Ue.o, B Let By=2',. If 0<p <o, then there exists an ordinal & < w,
such that *®'.=x . Letting &, be the smallest such ordinal, let
B,=U, B Alo let 8,=8. Then B,cK and *B,<x, for every
p=a, B, <B, whenever u<v=«, and B,=U,_,B, whenever 0<u =«
and u is a limit ordinal. In order to verify the last assertion for the case
when u=«, we observe that if £ <w,, then *%’, < x, and hence *B' <R,
for some » < «, but this implies that £ <&, and hence B', < B,.

By (1) there exists a function ¢, which maps %, isomorphically onto
a subsystem of U;, and using (2), (3), (4) and 2.7 we can successively
associate functions ¢, with all the ordinals 4 <« in such a way that ¢,
maps 9B, isomorphically onto a subsystem of ¥, for every p<«, and
¢,.(®)=g,(x) whenever u <» <« and z is an element of %B,. Consequently
B =9, is isomorphic to a subsystem of ¥,, and the proof is complete.

We do not know whether, in the above theorem, the assumption that
VI, hold could be replaced by the weaker assumption that VI  hold.
In the present proof for the case when « is a limit ordinal, essential use
is made of 2.8 with « replaced by smaller ordinals, and our proof would
therefore not apply under the modified assumption. We could never-
theless weaken the hypothesis somewhat by assuming only that VI,
holds for some f<«; this would require only a minor change in our
reasoning. However, since we restrict ourselves to systems with finitely
many relations of finite rank (this is used explicitly or implicitly several
times in this section), most classes K which arise in a natural way, and
to which our results can be applied, do in fact satisfy the condition VI,
so that generalizations in this direction do not appear to be of any great
interest.

3. Applications. We shall now apply the principal results of the
preceding section, Theorems 2.10 and 2.11, to certain specific classes of
relational systems. By an R, wniversal group, an R, universal groupoid,
an R, untversal lattice, etc., we shall of course mean an (8,, K) universal
relational system where K is, respectively, the class of all groups, the
class of all groupoids, the class of all lattices, etec.
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THEOREM 3.1. If the Generalized Continuum Hypothesis holds, and if «
s any positive ordinal, then there exists an R, universal group'.

Proor. Since, as was pointed out in the discussion preceding 2.4, the
class K of all groups satisfies the conditions I-V and VI;, the present
theorem follows from 2.11.

By a groupotd we mean a system (4,-) where 4 is a non-empty set,
- is a binary operation, and 4 is closed under the operation -.

THEOREM 3.2. If the Generalized Continuum Hypothesis holds, and if o
18 any positive ordinal, then there exists an R, universal groupoid?.

Proor. It is obvious that the class K of all groupoids satisfies the
conditions I, II, IIT, V and VI;. Our theorem will therefore follow
from 2.11 if we show that the condition IV also holds for this class K.

Consider two groupoids A'={4’,-') and A"'={4", "), and assume
that A'n A"’ is also a groupoid. Thisimplies in particular that z-'y=xz-""y
whenever x,ycA'nA". Letting A=A4"u4”, and choosing an element
ceA, we can therefore define a binary operation - on 4 in such a way
that

zy=z"y forevery x,yed’,
zy=x"y for every x,yed’,
zy=yx=c forevery xe€d—4" and yed-4".

Hence the new groupoid A =(4, +) is an extension of both %’ and A".
Thus IV holds, and the proof is complete.

By a opartially ordered system we shall mean a relational system
{4, R) where R is a binary relation which partially orders 4. In the
lemma which follows we make use of the notion of the relative product,
R; S, of two binary relations R and S. By this we mean the new binary
relation 7' consisting of all ordered pairs {z,y) such that, for some
element z, (z, 2)eR and {z, y)eS.

LemmA 3.3. Suppose A={A4, R) and B=(B, 8> are partially ordered
systems such that A|(AnB)=B|(4nB). If

C=AuB and T = RuSU(R;S)U(S;R),

1 In Neumann and Neumann [7] it is shown that there does not exist an X, universal
group.

2 In Evans and Neumann [2] it is shown that there exist infinitely many independent
identities in one operation and two variables. From this it readily follows that there
does not exist an X, universal groupoid.
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then (C, T is a partially ordered system and an extension of A and B.
Furthermore

(i) TnAd2 = R, Tn(AxB) = R;S, Tn(BxA)=S;R,
TaB:=8.

Proor. It is obvious that 7'<(C? and that {x, 2)eT for every zeC.
In view of the transitivity of B and S we have

T;T = RuSU(R;S)u(S;R)U(R;S;R)U(S;R;8)
U(R;S;R;8)u(S;R;S;R).

If {x,y)eR;8;R, then there exist u,veC such that {x, u)eR, (u, v)eS
and (v, y)eR. It follows that w,veAnB, and hence that {u, v)eR,
(x,y>eR;R;R=R. Thus R;S;R<R and, similarly, S;R;S<=S8. With
the aid of the last two formulae we find that R;S;R;S<R;S and
S;R;8; R<S;R. Consequently

T;T = RUSU(R;S)u(S;RB) = T,

so that 7 is transitive.

We shall next prove the four formulae listed in (i). First suppose
(x,yyeTnA? Then z,ycA and {(x, y)eT. Hence one of the following
four conditions holds:

) (,y)e R, (x,uye R and {u,y)eS for some u,

() {x,uyeS and (u,y)e R forsomeu, {(x,y>eS.

If the second condition in (1) holds, then u, ye 4 n B and hence (u, y)e R,
so that {z, y)eR;R=R. Similarly, if the third condition in (1) holds,
then z,uednB, {(x,u)eR, {x,y)cR. If the fourth condition in (1)
holds, then z,ye4 nB and hence {(x,y>eR. Thus TnA2< R. Since the
inclusion in the opposite direction is obvious, we conclude that the first
formula in (i) holds.

Next suppose {x,y>eT'n(4xB). Then zcAd, yeB and {x, yyeT.
Again one of the four conditions in (1) holds. If the first (fourth) condi-
tion holds, then we use the fact that (y, y)eS ((z, x)eR) to infer that
{x, y>eR;S. If the third condition in (1) holds, then z,y,ucAnB and
hence {x,u)e R and {u,y)e S, so that {x,y)eR;S. Thus T'n(4 x B)c R;8S.
The inclusion in the opposite direction being obvious, we conclude that
the second formula in (i) holds. The third and the fourth formulae can
be proved similarly to the second and the first.

We next show that 7' is asymmetric. Suppose {z, y>T and {y, z)eT.
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If z,ye A, then {x,y)>eR and (y, x)eR by the first formula in (i), so
that =y by the asymmetry of R. If xe4 and yeB, then {(z, y)eR;S
and (y, x)eS; R by the second and third formulae in (i). Hence there
exist elements % and v such that

(,upe R, (u,yy>efS, (y,v)el, @ ax)ekR.

Consequently (v, u)e R;R=R and (u, v)eS;8=8. Since u,vednB, it
follows that {(u, v)>eR and hence, by the asymmetry of R, that u=v.
Thus both the ordered pairs (x, u) and {u, ) belong to R, whence z=1u.
Similarly y=u so that, finally, x=y. If either xeB and ye4 or else
x,yeB, then we procede as in the two cases already considered and
conclude that, in these cases also, #=y. Thus 7' is asymmetric.

We have thus shown that €=({C, T') is a partially ordered system.
Finally it follows from the first and last formulae in (i) that € is an
extension of both U and B. This completes the proof.

THEOREM 3.4. There exists an R, universal partially ordered system.
Furthermore, if the Generalized Continuum Hypothesis holds, and if « is
any posttive ordinal, then there exists an R, universal partially ordered
system.

Proor. It is obvious that the class K of all partially ordered systems
satisfies the conditions I, II, IIT and V. By 3.3 the condition IV is also
satisfied. Finally, since every subsystem of a partially ordered system
is again a partially ordered system, we see that the condition VI holds
for every ordinal «. The present theorem therefore follows from 2.10
and 2.11.

THEOREM 3.5. If the Generalized Continuum Hypothesis holds, and if
o 18 any positive ordinal, then there exists an R, universal lattice.

Proor. Clearly the class K of all lattices satisfies the conditions
L II, IIT, V and VI,. By 2.11 it is therefore sufficient to show that the
condition IV holds.

Consider two lattices

A =<4, +," and B =B, +","),
and assume that YNYB is also a lattice. This means that the set AnB
is non-empty and that
z+'y =x+"yeAnB and =z'y==2""yeAnB
for every z,y€ AnB.



UNIVERSAL RELATIONAL SYSTEMS 205

Let R and S be the inclusion relations of the two lattices % and B.
Then the systems

A =(4,B) and B, = (B S)
are partially ordered systems with

Letting
¢, =AuUB and T = RuSu(R;S)u(S;R),
1

we therefore know by 3.3 that the system €,=(C,, T is a partially
ordered system and an extension of both ; and B,. We shall next
show that this extension preserves the least upper bounds and the
greatest lower bounds in U, and %B,.

Suppose z,ye4 and let z=z+'y. Then (x,2)eR and (y, z)eR, so
that {x,2)eT and (y, z)eT. Now consider any element {€C such that
{x,t)eT and (y, tyeT. If te4, then {z, t)e R and (y, t)eR by 3.3(i), so
that {z, t)e R and, consequently, (z, t)eT. If teB, then it follows from
3.3(i) that there exist u, veC such that

(1) {x,uye R, (u,t)el, (y,vyeR, (vtHeSs.

Observing that u,veAnB, we let w=u+'v=u+"v and infer that
(u,wyeRnS and (v, w)eRnS. Consequently (x, w)eR and (y,w)eR,
which implies that {(z, w)e R. Since by the second and fourth formulae
in (1), and by the definition of w, we have {w, t)eS, it follows that
(z,t)eR;8<T. Thus x+'y is the least upper bound of « and y with
respect to 7. Similarly we see that if x,yc 4, then =’y is the greatest
lower bound of x and y with respect to 7', while for any x, yeB the
elements x+ "y and z-"y are, respectively, the least upper bound and
the greater lower bound of # and y with respect to 7.

By a known theorem (cf. MacNeille [5, Theorem 11.9, p.444] or
Birkhoff [1, Theorem 12, p. 58]) there exists a lattice €=(C.+,)
such that C;<=C and such that if the elements x, yeC, have a least
upper bound (greatest lower bound) % with respect to 7', then w=
z+y (u=2z'y). Consequently € is an extension of both 2 and B, and
the proof of the theorem is complete.

4. The condition IV. The classes K of relational systems considered
in the preceding section were easily seen to satisfy the conditions I, II,
IIT, V and VI,, while the verification of the condition IV was less trivial.
We shall now consider certain classes K of relational systems, for which it
turns out that the condition IV fails.
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By a demi-group we mean an associative groupoid. A demi-group
A=(A4, -) is said to be freely generated by a subset X of 4 if U is gen-
erated by X and if every mapping of X into another demi-group 8 can
be extended to a homomorphism mapping ¥ onto a sub-demi-group of 8.
We obtain a free demi-group %={4, ) generated by a given set X by
letting 4 be the set of all finite non-void sequences whose terms belong
to X and letting - be the operation of juxtaposition.

Consider two demi-groups

2[/ — <A” .’> a,nd 2[/’ — <AII’ .II>

which are freely generated by the elements z, y, v and y, z, v, respectively.
Let %8’ and B’ be the sub-demi-groups generated by the elements
y, u, 'y and y, v, y-''z, respectively. It is easy to see that B’ and B’
are freely generated by these elements, whence there exists a function ¢
mapping B’ isomorphically onto B’’ in such a way that

) =y, o) =y"z and g’y =v.
We may therefore assume that
mln%u — %I — %11, °w = y"’Z and x./ry =0,

Now suppose A={4,-) is a groupoid such that A <Y and A"’ <A.

Then
z(y2) =2 (y'"2)=2u=2zx"u,

(- y)z= ('y)z=0vz=10"2.

However, z+'« is an element of 9’ which is not an element of B’, while
v+"'z belongs to A"’ but not to B”’. Since A'NA"’'=B'=B", it follows
that
xz'u + vz, hence z:(y-2) * (z-y)-z.

Thus U is not a demi-group. We therefore see that the class K of all
demi-groups does not satisfy the condition IV. Incidentally, since U’
and A"’ are semi-groups (demi-groups which satisfy the cancellation
law), we can also infer that the condition IV fails if K is the class of all
semi-groups.

Next consider the class K of all distributive lattices, and assuming
that the elements z, y, 2, , v are all distinct, let

QII — <AI’ +I’ 'I> a‘11(1 Q[’I — <AI’, +II, .II>

be the four-element lattices whose elements are z, y, u, v:and Y, 2, U, 0,
respectively, and which are characterized by the conditions

2+'y=u, xz'y=v y+"z=u, y''z=vw.
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These two lattices are distributive, and the system A'NnA" is also a
distributive lattice and hence a sublattice of both A’ and A’’. Now
consider any lattice A={4, +, ) such that A’ <A and A" <A. Then

z+y=z+'y=u, yYy+z=y+"2=u,
zy=x'y =0, yz=y"2=vw.

Thus x+y=2+y and z-y==z-y. Since x =2, this implies that ¥ is not
distributive. Thus K does not satisfy the condition IV.

In proving that the class K of all groups satisfies the condition IV,
we used the concept of a free product of two groups with an amalgamated
subgroup. This notion can be generalized as follows: A relational system
A=(A,Ry, Ry, ..., R,_,) having the similarity type {ug, tt1, - - - #,_1) 18
called an algebraic system if, for each v <x» and for every

Tg, Ty, ++-, ¥, _o€A,
there exists a unique x,_,€4 such that (zy, ,, -+ -, z,_,) €R,; that is
if all the relations R, R,, ..., R, , are operations under which the set

A is closed. The notion of a homomorphism of one algebraic system
into another is defined in an obvious manner. An algebraic system
N={A4, Ry, Ry, ..., B,_,) is said to be generated by the subset X of 4
if there exists no algebraic system B such that A|X <B <A and B+A.
Now suppose K is a class of algebraic systems, and assume that

A= <A’ RO’ Ry, -, Rx—l) and B = <B’ SO’ SI’ T Su—l)

are two systems belonging to K, such that (AnB)e K. A system €CcK
is called an amalgam of A and B with respect to K if the following two
conditions are satisfied:

(A) A=<CE, B<C, and € is generated by the set 4 UB.

(B) For any system C'e K, if A <C" and B <E’, then there exists a
function ¢ mapping € homomorphically into €' in such a way
that ¢(x) =z for every element xe 4 UB.

Given a class K of algebraic systems, consider the following condition

on K:
IV'. For any A, BeK, if (ANB)eK, then there exists €€ K such that €
is an amalgam of A and B with respect to K.

It is clear that IV’ implies IV. Hence the condition IV’ fails if K is
the class of all demi-groups, the class of all semi-groups, or the class of
all distributive lattices. In general IV does not imply IV'. However, it
can be shown that if the class K of algebraic systems is closed under
the operation of taking algebraic subsystems and under the operation
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of taking direct products with arbitrarily many factors, and if the condi-
tion IV holds, then the condition I'V” is also satisfied. Thus in particular,
IV’ holds if K is the class of all groupoids or the class of all lattices.

Added in proofs: R. Fraissé in his note, Sur certaines relations qui géné-
ralisent Uordre des mombres rationnels, C. R. Acad. Sci. Paris 237 (1953),
540-542, considers classes K satisfying I-V and also the following con-
dition which is stronger than VI,:

If AeK and B <A, then BeK.

For such classes K he announces the existence of an (X,, K) universal
system 9 with the property that any isomorphism between finite sub-
systems of U can be extended to an automorphism of 9. This additional
property makes 9 unique up to isomorphisms.
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