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AN ESTIMATE OF FRECHET DISTANCES
ON SURFACES OF BOUNDED CURVATURE

FOLKE ERIKSSON

1. Introduction. The subject of this paper belongs to the intrinsic
geometry of surfaces. By a surface we mean a two-dimensional manifold
provided with a Riemannian metric. For our purpose it suffices to con-
sider open, simply connected surfaces. Such a surface @ may be defined
as a simply connected domain w of the zy-plane in which there is given a
line element

ds* = Eda? + 2Fdxdy + Gdy?,
where the functions E(z, y), F(z, y), G(x, y) defined in w satisfy certain
conditions of regularity.

Let 2 and ¢ be two point sets on @. Their geodesic distance d(A, u) is
by definition the greatest lower bound of the lengths of all rectifiable
curves on @ which connect a point of 4 with a point of u. The Fréchet
distance D(A, n) of 2 and p is defined to be the minimum number D such
that the geodesic distance from every point of either set to the other set
is smaller than or equal to D, that is,

D(4, u) = max (sup d(4, Q), sup d(P, x)) .
Qeu Pea

Let now 4 and B be two points on a surface @ and L their geodesic
distance. Let further y, and y, be two rectifiable curves with lengths
L, and L,, respectively, which connect A and B, and let D denote their
Fréchet distance. Then, for surfaces of total (Gaussian) curvature K <0,
the following inequality was proved by A. Beurling [2]:

(1) L2+ D% < }(L;+L,)2.
Actually Beurling assumes only that the given metric can be written
(2) ds? = e®@V(dx? +dy?),

where u(x, y) is an arbitrary subharmonie function. If u is sufficiently
regular, such that the curvature K exists in the usual sense, then this
agsumption is known to be equivalent to K <0.
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Our aim is to prove a similar inequality when an arbitrary upper bound
K, of the curvature K is given. In Part A of the present paper it is
assumed that the surface @ is “‘regular”, in the sense that the coefficients
of the line element possess continuous derivatives of the second order,
and that there exists on the surface @ a geodesic connecting 4 and B.
Then classical methods of differential geometry are applicable and yield
for surfaces satisfying K < K, in the cases K> 0 and K, < 0, respectively,

(3) coskL coskD = cos}k(L,+L,),
provided that 2tL <z, 2kL,<m, 2kL,<=x, and
(4) coshcL cosheD < coshdc(L,+L,) ,

where we have put

Ky= 4k k>0, for K,>0
and
Ky= —4¢2, ¢>0, for K,<0O.

In Part C of the paper the case K, < 0 is dealt with under more general
assumptions similar to those made by Beurling. Without assuming the
existence of a geodesic connecting 4 and B it is shown, by a method
analogous to that developed by Beurling, that (4) still holds. The line
element of the surface is supposed to have the form (2), where u(x, y)
belongs to a class of continuous functions, called functions of curvature
< K,, introduced and studied in Part B. The twice differentiable functions
of this class are precisely the functions u satisfying the differential ine-

quality Auz — Koo

which expresses that the curvature of the metric (2) does not exceed K.

The inequalities (1), (3) and (4) imply that every minimizing sequence
of curves connecting the points A and B, that is, a sequence of curves
v 0=1,2,..., whose lengths L, tend to the geodesic distance L of 4
and B, is a Cauchy sequence in the sense that the Fréchet distance
D(y;, y;) tends to zero as i,j— oo.

I wish to express my gratitude to Professor Beurling, who directed my
attention to this problem, and to Professors Carleson and Fenchel for
inspiring discussions and valuable suggestions.

A. Regular surfaces.

2. Surfaces of constant curvature. We begin by proving the ine-
qualities in the case of a surface of constant curvature K,. The intrinsic
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geometry of the surface is then spherical, euclidean, or hyperbolic accord-
ing as K¢>0, K;=0, or K;<0. Here the geodesic distance between two
points equals the length of the (shortest) line segment connecting the
points. Although the following results are rather obvious in the euclidean
case, we include it for comparison and for the sake of completeness.

Let o denote the line segment connecting the points 4 and B, and let L
denote its length, assumed to be smaller than 7/2k in the spherical case.
Consider a rectifiable curve y connecting A and B with length L, ( <7/2k
in the spherical case). In order to estimate the Fréchet distance

D(x, y) = max (sup d(«, @), sup d(P, y))
Qey Pea

we observe first that
D(x,y) = sup d(x, Q) .
Qey
Indeed, let P be an arbitrary point of . The normal to « through P
must intersect y. Let @, be one of the points of intersection. Then we

have
d(P,y) £ d(P, Q) = d(x, @) £ sup d(x, @)
ey

since the normal P@, is the shortest connection between & and @,, and
hence

sup d(P, y) < sup d(x, Q).

Pea Qey

Consider now the ellipse § with foci 4, B and major axis L, that is,
the locus of the points whose distances from 4 and B have the sum L,.
No point @ of ¥ can be outside this ellipse since L,=d(4, @)+d(B, Q).
Hence we have
D(wx, y) = sup d(x, Q) < supd(x, R).
Qey Reg

We are going to show that the right member of this inequality equals the
minor semi-axis & of the ellipse, which is determined by the relations

(5) coskL cos2kb = coskL, for K, = 4k% > 0,
(6) L2 +4b% = L2 for K, =0,
(7) coshcL cosh2ch = coshcL, for Ky= —4c2 < 0.

This statement is equivalent to
d(x,R) £ b

for every point R of the ellipse . Draw the normals to « through the
endpoints 4 and B and denote their points of intersection with 8 by 4, 4"
and B’, B”, respectively. Consider first a point R of the ellipse lying



312 FOLKE ERIKSSON

outside the strip bounded by the two normals, say beyond 4'AA4". Let
S be that point of the ray emanating from 4 and passing through R for
which d(4, §)=d(4, A’). In the triangles ABA’ and ABS we then have
< BAA’'< < BAS and hence, by a well-known elementary theorem com-
mon to the three geometries, d(B, A’) <d(B, S) and thus

d(4,8)+d(B,8S) > d(4,A")+d(B,A") = L,.
This means that S is outside the ellipse 8, and this implies
dA,R) < d(4,8) =d(4,4").

Therefore it suffices to consider points R € § belonging to the strip bounded
by the normals. Then d(x, R)=d(N, R), where N denotes the foot of
the perpendicular from R on «. Putting

dN,R)="h, dA,N)=ua, dB,N)=a,
A 'R) fl: d(B, R) =f2’
we have
(8) ay+a, =L, fi+fo=1L,,
and for ¢=1, 2
cos 2kh cos2ka; = cos2kf; if K,>0,
h?2+a2 = f2 if K,=0,
cosh2ch cosh2ca; = cosh2¢f, if K, < 0.
h

\%

It remains to be shown that these relations imply -~ <b. This is easily

seen by means of the following lemmas:
Lemma 1. Let p,, Ps, 91, 93 be mnon-negative numbers such that
P1+PE, ¢12A, gaSmw and 0SA<1. Then

A cosp; = €08¢qy, A cosp, = €osq,

imply
Acost(p, +p,) 2 cosi(qy+q,) -

LevMa 2. Let pq, Ps, 41, 92, | be non-negative nwmbers. Then
P+p?=q% BP+p?=q?
imply R
B+ 1(p+p)? £ 21 +92)%
LeMmaA 3. Let py, Pg, 41, 92 be non-negative mumbers and 121. Then
Acoshp, = coshg;, Acoshp, = coshg,

imply
A coshi(p, +p,;) < coshi(g;+¢s) .
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Indeed, (8) and Lemma 1 with p,=2ka,, q;=2kf;, A=cos2kh yield
coskL cos2kh = cosk(a,+a,) cos2kh = cosk(fy+f,) = coskL,

which, compared with (5), shows that 2 <. In the same way this follows
in the other cases from Lemmas 2 and 3, (6) and (7).

Proors. Using Cauchy’s inequality
(@2 +222) (Y12 + 420) Z (23y1+729,)°
we obtain in the case of Lemma 2
(01 +22)? = (@+p2) + @+ pA)t)
= 22 4 p? + py? + 2(B+p2)} (i + py2)E
Z 282+ p?+ PP+ 2(P+pipp) = 4P+ (p1+D,) -

Applying Cauchy’s inequality with z;=vy,=(1—-22)}, z,=Asinp,,
Yo =24sinp,, we obtain in the case of Lemma 1
2cos?$(g1 +92)
= 1 + cos(¢;+¢s)
=1+ A2cosp, cosp, — (1 — A%+ A2 sin2p,)} (1 — 22 + A2 sinZp,)?
< 1 + 22cosp, cosp, — (1 — 22 + A2 sinp, sinp,)
= 72(1 + cos(py+ P;)) = 242 cos?}(p; + Ppy) -

The proof of Lemma 3 is similar and we omit it.

Returning to our problem, we consider two rectifiable curves y,, y,
with lengths L,, L, which connect 4 and B. From what has just been
proved it follows that the Fréchet distances D; = D(«, y,) and D, = D(«, y,)
satisfy the inequalities
D, £b, Dy=0b,,

where b;, j=1, 2, according to (5), (6), (7), are determined by

(9) coskL cos2kb; = coskL; for K, >0,
(lO) L2+ 4bj2 = sz fOI‘ KO = O >
(11) coshcL cos2ch; = coshcL;  for K, < 0.

Now it follows immediately from the definition of the Fréchet distance
that D=D(y,, ;) <D, +D, Hence we have

(12) D<b+b,.

Eliminating b, and b, by means of (9), (10) and (11), respectively, we
finally obtain in the three cases
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cos?kL cos2kD
2 coskl, coskL, — (cos2kL —cos2kL,) (cos2kL —cos2kLs)?,
D = (L2-L3) + (L?— LA},
cosh?¢L cosh2¢D
< coshcL, coshcL, + (cosh2cL; — cosh?cL)? (cosh2cL, — cosh2cL)t .

In the sequel we shall however be content with the slightly weaker,
but simpler inequalities stated in the Introduction. On account of (9),
(10) and (11), Lemmas 1, 2 and 3 with

p, = 2kb,, Py = 2kb,, ¢, =kL,, ¢q, = kL,, A= coskL;
Pr=2b, Ppy=2b, q =1L, ¢=0L, l=1L;

and
py = 2cby, Py = 2¢by, ¢, =c¢L;, ¢y =cly, A= coshcL;

respectively, yield

(13) coskL cosk(b, +by) = cosik(L,+L,),
(14) L? + (by+0,)* = $(Ly+Ly)?,
(15) coshcL coshe(b, +by) < coshic(Ly+ L) .

Hence, by (12), we obtain the inequalities (3), (1) and (4) for surfaces of
constant curvature.

3. An arbitrary regular surface compared with a surface of constant
curvature. The restriction on D by (3), (1) and (4) is the stronger the
smaller the curvature K, It is therefore a natural hypothesis that the
inequalities obtained for constant curvature will hold a fortiori in the
case of variable bounded curvature K < K,. This will now be proved.

We consider a surface given by a Riemannian metric

ds? = Eda? + 2Fdxdy + Gdy?

defined on a simply connected region w of the xy-plane. The functions
E, F, G of x and y are supposed to have continuous partial derivatives of
the second order. Then there exists through every point in each direction
a unique geodesic (cf. e.g. Eisenhart [5, p. 172]). By K, we denote an
upper bound of the curvature K.

In @ we consider a geodesic arc 4B of length L ( < n/2k if K= 4k*>0).
In a certain subregion w* of w containing 4B we construct another
coordinate system in the following way: Through every point N on AB
the geodesic normal to AB is drawn. As the coordinates of a point P on
this normal we choose the length u of the geodesic arc NP (provided
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with a sign in the usual way) and the length v of the geodesic arc AN.
The line element takes then the form

(16) ds? = du? + S(u, v)2du?

as F'=0 because the system is orthogonal and E =1 because u measures
the arc along the curves v=constant. The curvature K is given by the
relation

0%

17 — + KS =0
(cf. e.g. Darboux, [4, p. 92]). Further the function S(u, v) satisfies the
initial conditions

oS

S(0,v) =1, —(0,v)=0

ou
because v measures the arc along the curve u=0 and because this curve
is a geodesic.

In the regions outside the normals to A B through 4 and B we use geodesic

polar coordinates (r, ) with 4 as pole and (g, ¢) with B as pole. The line
elements take here the forms

(18) ds? = dr? + S4(r, 6)2d0%,

where

(19) a;—f;l + K8, =0, S8;(0, 0) = 0, aaﬁrl (0,6) =1,
and

(20) ds® = do® + Sy(o, ¢)?dp?,

where

(21) * 5, 9,

+ K8, =0, 8,0,¢)=0, —(0,¢)=1.
0p? oe

The region w*<w, to which we shall confine our considerations, is
supposed to be a neighbourhood of the arc 4B with the following proper-
ties: The geodesic normals to 4B together with the rays issuing from
A and B, which are used in the polar coordinate systems, cover w*
completely and simply. Each of these normals or rays intersects w* in
one arc. If K,<0, it follows from well-known theorems that no two of
the geodesics in question meet at points different from 4 and B, and o*
may therefore contain the arc of such a geodesic from AB to the first
boundary point of w which it contains. In the case K,>0 we add the
further restriction that the lengths measured from AB of the arcs of the
normals and rays contained in w* do not exceed 7/4k.
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For comparison we introduce in w* an auxiliary metric of constant
curvature K, This is done by changing the functions S, S;, S, into
functions S°, 89, 89, respectively, which satisfy the same initial condi-
tions but other differential equations, namely

82,80 2280

2289
qur T ES =0 5, 3

00?

+ K 80 = 0, + K83 =0.

According to a classical result of Sturm [9] (cf. also Bieberbach [3,
p. 168-170]) concerning the solutions of differential equations such as
(17), (19), (21), it follows from K < K, that

(22)  S(u,v) 2 8%, v),  Sy(r, 0) 2 8i(r, ),  Sule,¥) = S¥o. ¢)

for all points in w*. In fact, according to Sturm, these inequalities hold
generally if K;<0, and in the intervals

[ul, 7,0 < 3aK,t if K,>0,
thus in w*.
We denote line elements in the auxiliary metric by ds®. Because of
(22) we have ds = ds° for all corresponding line elements in the two metrics.
Let now y;, j=1, 2, be two arbitrary rectifiable curves in w* which
connect 4 and B. Let L, and L} denote their lengths in the original and

the auxiliary metrics, resp. Then we have
(23) LY < L.

On the other hand, the length of the geodesic A B is evidently the same
in both metrics: *
Lo = L.
Furthermore the Fréchet distance between y; and AB is the same in both
metrics:

D} = D;.

For, the shortest distance to y; from a point P on ABis < P@, if ¢ denotes
a point where y, intersects the normal to 4B in P; and P@ is the shortest
distance from @ to AB, since the normals to 4B do not intersect in w*.
Thus D; (D}) must be the shortest distance to 4B from a certain point
on y;. This distance is situated along one of the normals or rays of our
system, and distances along these agree in the two metrics (cf. (16), (18),
(20)).

Applying the results of the preceding section to the auxiliary metric,
we obtain for the Fréchet distance

D < Dy +Dy=DY+D3 < by+by,
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where b;, j=1, 2, are now determined by (9), (10) or (11) with L=L°
and Lg instead of L;. Using (23), we therefore obtain the inequalities
(3), (1) and (4) from (13), (14) and (15), respectively, which hold with L;
replaced by L. We sum up our results in

THEOREM 1. For the Fréchet distance D between two curves y, and y, with
lengths Ly and Ly, which, in the neighbourhood w* of a geodesic arc AB with
length L on a regular surface, connect the points A and B, the following esti-
mates hold:

coskL coskD = cosk(L,+ L,),
if the total curvature K <4k* and L <wn(2k, L, <x[2k, Ly<7/2k;

L? + D% £ $(Ly + Ly)?,

if K<0;
cosheL cosheD =< coshic(L,+L,),

if K< —4c?.

B. Functions of bounded curvature.

4. The definition. Our geometric problem leads to a differential
inequality of the form
(24) Auz) 2 —xe@  z=z4+iy.
We wish to extend the class of functions satisfying (24) such as to include
functions which do not have the derivatives in question, in the same
way as subharmonic functions correspond to the inequality Au = 0. How-
ever, we restrict ourselves to continuous functions. We use the notations
for mean values current in the theory of subharmonic functions (cf. e.g.
Radé [7]):

1
L(u, zy, 1) = . u(z,+7e®) df
1

— u(2q + 0€®) pdod0 .

A(u, 2g, 1) =

cez O Y
ce

Integrating (24) over a circular disk about z, one finds by Gauss’
theorem

(25) ;L(u, 2g, 1) = —doer A(e®, 24, 7).
r

Integration of (25) between 0 and r yields

L{w, 2, 1) — L{t, 2, 0) = — 1} 5 oA (e, 2, 0)de
0
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or
(26) L(u, 2g, 7) —u(zg) 2 —3xE(u, 2, 1);
with the notation ,

B(u, 2, 1) = g oA (e, z,, ) do .
0
Thus, if we disregard a factor depending on r, E(u, z,, r) is a mean value
of e%,
By means of the inequality (26) we now define for every real » the class
C(x) of functions of curvature < without using derivatives:

DerinrrioN. ue€C(x) in a region o if and only if
1) u(z) is continuous in o,
2) u(z) satisfies (26) for every z, in w and for all sufficiently small r.

Reversing the argument leading to (26) it is seen that if w(z) has
continuous partial derivatives of the second order, u(z)eC(x) if and only
if it satisfies (24). In particular, the solutions of the differential equation
Au= —xe? satisfy (26) with the sign of equality.

For »=0 we get the subharmonic functions, and if v C(x) for a » <0,
then u is a fortiori subharmonic.

5. Comparison with solutions of Adu= — xe3x,
LemMma 4. Suppose that u(z)eC(x), x <0, and that v(z) satisfies
(27) Av = —ne®

in a region w. Suppose further that u(z) and v(2) are continuous in the closure
of w and that u(z) <v(z) on the boundary of w.
Then w(z) S v(z) holds in w.

Proor. Suppose u>wv on a certain point set S of w. Because of the
continuity, §is an open set. For a 2z, which together with a neighbourhood
of radius r belongs to S, we get from (26)

w(zg) = L(u, zg, ) + $nB(u, 2o, 7) < L(u, 2o, 7) + 3% E(v, 29, 7) ;
v(29) = L(v, 29, 1) + 32 E(v, 2, 7) .
Subtraction gives
w(zo) —0(2y) = L(u, 2y, 7) — L(v, 29, 1) = L(u—v, 2, 7) .
Hence u—v would be subharmonic in S. But on the boundary of §

u—v=0. Thus our assumption v —»>0 in § contradicts the maximum
principle.
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6. Comparison with solutions of Av= —xe?*, Lemma 4 does not
hold in the case x>0, but another method of domparison is applicable
for all »

Lemma 5. Suppose that w(z)eC(x) and that v(z) is a solution of
(28) Av(z) = —xe2®

i w. Suppose further that u(z) and v(z) are continuous in the closure of ®
and that w(z) Sv(2) on the boundary of w. Then u(z)<v(z) holds in w.

Proor. (26) and integration of (28) yield
u(zo) é L(”? z(]: 7‘) + %%E(u, Zo, 7’) ’

v(20) = L(v, 2, 7) + 32 B (u, 2y, 1) .
Subtraction gives

u(2g) — (%) = L(u, 29, 7) — L(v, 2y, 7) = L(u—v, 2y, 1),
that is, w—v is subharmonic (as z,, r are arbitrary). According to the

maximum principle, ¥ —v <0 in w since 4 —v <0 on the boundary of w.

Lemma 6. Suppose that u(z) vs continuous in w and that, for every circle C
in o, w(z) Svo(z) holds in C if vy(z) is the solution of (28) which equals u(z)
on the boundary of C. Then u(z)eC(x) in w.

Proor. Considering an arbitrary z, with a neighbourhood of radius r
in w, we have, if v(2) satisfies (28) and v(z) = u(z) for z =z, +re®, 0 < 6 < 2,
L(u, 29s r) = L(”: 20> T) = v(zo) + %WE(u’ 20 7‘) 2 u(zo) + %}‘E(uﬂ 295 r).

Hence u(z) satisfies (26), and this holds for every circle in o since the
boundary value problem of (28) is uniquely solvable (Picard [6, chap.III]).

7. Conformal mapping.

LevMma 7. If w=f(z) maps a region o of the z-plane conformally onto o’
in the w-plane, and if u(w)eC(x) tn o', then the function

u(f(2)) + log|f'(2)| € C(x)

n .
Proor. This is a consequence of the simple and well-known formula
(29) du = |f ()P A,u,

where 4, and 4,, denote the Laplacians in the z- and w-planes, respec-
tively.
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Let v(z) be a solution of the equation
Av(z) = —%e® U |f()2
with the same boundary values as u(f(z)) +log|f’(z)| on a circle C in the
z-plane. Then the function of w
p(w) = v(2) — log |f'(2)]
satisfies the equation
Ap(w) = —xe2u®

because log|f’(z)| is harmonic in w and because of (29). Now p(w) equals
u(w) on the boundary of the image C' of C' under the mapping w=f(2).
According to Lemma 5 we thus have u(w) < ¢(w) within C’. Expressing
this in terms of z we find

u(z) +log|f'(z)] < v(z) in C.
But as the circle C is arbitrary, it follows from Lemma 6 that

u(2) +log|f'(2)| € C(x)

in o.

8. A lemma on a mean value.
LemMa 8. If ueC(x), veC(x), x<0, and the function w is defined by

(30) e = (" +e),
then weC(x) .

Proor. If the derivatives exist, we find by calculating dw

1 eutr ou ov\® [ou Ov\?
som e N (52
v e“+e"(e utetdn) + (e“+e”)2{ ox ox * oy oy
- eAu+e*Av 5 % (3% + €37) _
€“+e® T el4e?
= —n{f(e®—e")2+ }(e*+ %)} = —x(e*+e¥)? = —xe?,

This gives a hint for the general proof: As Au and Av enter multiplied
by e* and ev, resp., the inequalities (26) for v and v ought to be multi-
plied by e* and e?, resp., before adding them in order to prove (26) for w.
It suffices to do this for small values of r. For the sake of simplicity
we omit z; and 7 in the mean value notations I and £ and the argument
2, in the functions. Multiplying (26) for 4 and v by e*and e?, respectively,
and adding, we obtain

(31) e“(L(w) —u) + e*(L(v)—v) 2 —}x(e*B(u)+e’E(v)).

—_ x(ezu — Uty 621;)
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In order to show that the right member of (31) is greater than or
equal to —xe¥E(w), we begin by estimating

r

MM=SQMWMWQM=SQMHWHWJmQ@
0

L)

r

< (oo, 2, 0) do = H B+ EW).
0
This gives

e’ E(w) = }(e*+e") E(w) = }(e"+e")[E(u) + E(v)]

= }[e“E(u) + "B (v)] - (" —e") [E(u) - E@)] £ e E(u) +€"E(v)];

for, if e*—e? <0, then e*—¢? and E(u)— E(v) have the same sign for small
r because of the continuity. Applying this result to the right member
of (31), we get

(32) eY(L(u)—u) + e*(L(v)—v) 2 —xe*E(w) .

In order to estimate L(w)—w, we apply Taylor’s formula to the func-
tion w(u, v) =log(e*+€?):

10g %(eu+du + e'v+dv) — log%(eu + 6”)

erdu + e?dv eu+0dutv+ody e“du + e*dy
= + (du—dv)2 2 ———
eu + e? 2 (eu+0du + ev+0dv)2

ey + ev
Using this, we obtain

L(w)—w = L(log}(e*+¢v)) —log §(e* +¢?)
2n

1 . .
S {log } (¥ e+ 4 greeotre®) _ Jog } (o404 ¢2e0) ) 4

= % )
17 ey (2, +1e™) —u(zy)] + €0 v (2 +1r€) —w(2)]
g_g d6
27 Wz0) 4 o¥(z0)
0
“ L )
= e"+e”[ (w)—u] + e"+e"[ (v)—v],

hence, multiplying by e*+e? = 2¢¥,
2e¥[L(w) —w] 2 e*[L(u)—u] + e’[L(v)—v].
Applying this result to the left member of (32), we find

Math. Scand. 4. 21
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Lw) — w2z —{xBw),
that is (26) for the function w. This completes the proof of Lemma 8.

(30) defines a mean value of two functions, for which we have stated
and proved Lemma 8. However, an analogous mean value of n functions
may be defined by

1 n
(33) v =— e
n =1
and here holds
Lemma 9. If the functions u, in (33) are of curvature <x =<0, so is w.

Lemma 9 may be proved by the well-known method of approximating
1/n by numbers of the form k/2”. As we need the lemma only for n=4,
we are content to observe that this case can be settled by repeated
application of Lemma 8.

C. General treatment of the case K, <0.

9. Generalisation of the notion of bounded curvature. We turn now
to the generalisation of our results from Part A by means of the tools
developed in Part B. Following Beurling [2], we consider a surface,
given by a Riemannian metric

(34) ds = 4@ |dz]|

defined in a region w of the complex z-plane. If u(z) has partial deriva-
tives of the second order, the total curvature of the metric (34) is

K = —e>4u.
An upper bound for the curvature, K < K, then leads to the condition
du z2 —Kje2,

that is, the function u(z) shall be of curvature =< K,.

If the derivatives do not exist, the curvature is not defined. But we
say, by definition, that the metric (34) is of curvature <K, if and only
if the function u(z) is of curvature =< K,.

A metric of bounded curvature in this sense is also of bounded cur-
vature in the sense of A. D. Alexandrow ([1, p. 493]). According to a
result of J. G. Reschetnjak [8] (cf. [1, p. 503]), a metric (34) is of bounded
curvature in Alexandrow’s sense, if and only if (z) is the difference of
two subharmonic functions. If ueC(K,), K,<0, the function u itself
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is subharmonic. And if K,> 0, we can write u=1u, —u,, using the func-
tion v(z) of Lemma 5 and putting 4, =u—v, uy= —v. Then u, and u, are
subharmonic (cf. Lemma 5).

10. A theorem on conformal rhombs. For surfaces of curvature
<K,<0 in the generalised sense of Section 9, we shall first prove a
theorem analogous to Beurling’s Theorem II in [2]. Our proof will be
completely analogous to that of Beurling.

Let 2 be a simply connected region of the complex plane bounded by
a rectifiable Jordan curve, and let 4, B be two distinet boundary points
of 2. A curve « in 2, connecting A with B and dividing £ into two parts
0, and Q,, is called a line of symmetry of (2 if there exists a conformal
mapping of Q onto itself which leaves every point of « invariant and
maps £2; onto £, and 2, onto Q,. The configuration 2, , formed by the
region 2 and two of its lines of symmetry, « and $, which intersect at
right angles, is called a conformal rhomb. Assuming that the metric (34)
is defined in the closure of 2, we denote the lengths of « and 8 by «a
and b, resp., and the perimeter of 2 by p. We are going to prove

TarEOREM 2. For a conformal rhomb Q, , with @ metric (34) of curvature
<Ko= —4c?, the inequality

(35) coshca cosheb < cosh icp
holds.

Let T'; and T, be the conformal transformations of {2 onto itself which
correspond to the lines of symmetry « and 8, respectively. If we denote
by 7', the identical transformation and by 7'y the transformation 7',7',,
the transformations 7y, Ty, T’y and T'; form a group G. A metric (34) is
called symmetric with respect to G if

eu(z)ldzl — eu(Tyz)IdTwz‘, y=20,1,2,3.

If the metric is not symmetrie, we define a symmetric metric by
3
(36) ds, = e%@|dz| = } 3 T |dT 2] .
v=0

The lengths of «,  and the perimeter of 2 are not altered by the sym-
metrisation because every transformation 7', maps «, § and the boundary
of 2 onto themselves. Therefore it is sufficient to prove (35) for the
metric (36), which is also of curvature < —4c2. In fact, according to
(36), u,(z) is defined by

21*
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o2 — i 23" eu(T.,z)HogldT,,z/dz[.
»=0

Since u(z)eC(—4c?), it follows from Lemma 7 that the funections
u(T,2) +1og|dT,z/dz|eC(—4c?). Then it follows from Lemma 9 that
uy(z)eC(—4c?). Thus it remains to prove (35) for a symmetric metric of
curvature < —4c2,
. Suppose first that the metric (36) is of constant curvature —4c2. In

this case we may suppose that £ is embedded in the hyperbolic plane.
As the metric is symmetric, « and 8 must be geodesics. Suppose e.g.
that the geodesic AB were o’ +«. Then the curve T, &' (symmetric to «’
with respect to o) would have the same length as «’. This would, how-
ever, contradict the uniqueness of geodesics in the hyperbolic plane.
Furthermore the geodesics o« and S are orthogonal in the metric (36)
because of the symmetry.

Now, let C be an endpoint of 8. Then the perimeter p of 2 is at least
4 times the length 7 of the geodesic AC, and the latter can be determined
by the cosine theorem of hyperbolic geometry:

cosh 2¢! = coshca cosheb .

Since p = 41, we obtain (35).
When the metric (36) is not of constant curvature, we introduce for
comparison an auxiliary metric in 2 putting

(37) ds' = ¥ @ |dz| ,
where %'(z) satisfies
(38) Au' = 4c2e? |

and has the same boundary values as u (z). The metric (37) is of constant
curvature —4¢2, and furthermore it is symmetric. For otherwise the
functions w'(7T,z) +log|dT,z[dz|, v=0, 1, 2, 3, would be distinct solutions
of (38) with the same boundary values, contrary to the fact that the
solution of (38) with given boundary values is uniquely determined
(cf. e.g. Picard [6]).

Thus our previous reasoning holds for the metric (37). If we denote
the lengths of «, § and the perimeter of 2 in the metric (37) by o, b’
and p’, we therefore have

(39 coshea’ cosheb’ < coshicp’ .

According to Lemma 4, we have u(z)<w'(z) in 2. Hence it follows
that a<a’, b<b’, while p=p'. Combining this with (39), we obtain (35),
and Theorem 2 is proved.
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11. Application to our problem. We now return to the original
problem posed in Section 1. Suppose first that the curves y, and y,,
which connect the points 4 and B, bound a connected region 2. Let «
be the line of symmetry of £2 which connects 4 and B, and let § be an
arbitrary line of symmetry orthogonal to «x. Denoting the lengths of
x and B by a and b, Theorem 2 yields for the conformal rhomb Q, ,
if the curvature is < — 4c2,

(40) coshca coshcb £ coshic(L,+L,) .

From the definition of the geodesic distance we have L <a; and when
B varies, its endpoints describe the whole curves y; and v,. Hence, for
the Fréchet distance between v, and y, we have D <supb; for every
point of v, (y,) is connected with a point of y, (y;) by one of the curves g.
From (40) we then conclude a fortiori

4) coshcL cosheD = coshic(Ly+Ly).

It remains to prove (4) when the region bounded by y, and y, is not
connected. Then it consists of finitely or infinitely many connected
regions. We consider one of these regions 2’ bounded by subarcs y,’
and y,’ of y; and y,. We denote the lengths of these subarcs by /; and [,,
the Fréchet distance between y," and y," by d, and the geodesic distance
between the endpoints of »," and y,” by I. For the region £’, (4) holds,
that is,
cosh ic(l, +1,)

41 hed <
(£1) coshed = coshel

To the right member of (41) we now apply
Lemma 10. If A>B>0, A>a>b>0and A—a=B-b, then

cosh A S cosha
cosh B~ coshd ’

The quantities c(L,+ L,), cL, 3¢(ly+1,), ¢l satisfy the conditions on
4, B, a, b, respectively, in the lemma. The last condition
L-1 £ §(Ly+Ly) — §(l+1,)

is satisfied because even
L

Thus from (41) we obtain

IA

! + min (L, -1, Ly—1,) .

cosh ¢ (L, + L,)

42 <
(42) coshed < coshcl
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Obviously, the Fréchet distance D between y, and y, cannot be greater
than the least upper bound of d for all different partial arcs y,’, v,
As (42) holds for all these d, it follows that

cosh ¢(Ly + Ly)

heD <
coshel = coshcL ’

which is (4). Thereby our problem is solved for K,<0. We formulate
the result:

THEOREM 3. In a metric (34) of curvature < —4c? in the generalised
sense of Section 9, the quantities D, L, L, and L, defined in Section 1
satisfy the inequality

(4) coshcL cosheD < coshjc(L,+L,) .

It remains only to prove Lemma 10.

Proor or Lemma 10. Putting f({)=a+ (4 —a)t and g(t)=b+ (B—>b)t,
we have f(£) > g(¢), f'(t) = ¢’(t) for t20. The function

cosh f(¢)
Pty = ————
© cosh g(t)

increases for {=0. Indeed,

(coshg sinh f f* — coshf sinhg g') .

0;
cosh2g

Ft) =

for f'>0,f'2¢" and coshg sinhf > coshf sinhg > 0 since
coshg sinhf — coshf sinhg = sinh(f—g) > 0.
Hence we have

coshA4/coshB = F(1) > F(0) = cosha/coshb .
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