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ON THE RELATION OF CONGRUENCE
IN FINITE GEOMETRIES

PAUL KUSTAANHEIMO

It is a well-known fact that the incidence axioms I: 1-8, IV of Hilbert
[2] or the corresponding axioms for a Euclidean incidence geometry of =
dimensions can be satisfied by finite models, i.e. by models containing
only a finite number of points, lines, planes etc., these models being the
linear vector spaces of n dimensions over finite fields GF,, g=p*. Any
two natural numbers » and % and any prime p give one and to within
isomorphism only one such geometry.

The question whether the axioms of order and the axioms of congru-
ence are also satisfiable in finite geometries has been proposed much
later, chiefly by G. Jéarnefelt (cf. [3] and [6]) in connection with the
problem of a finite physics (cf. [4] and [5]).

As to the relation of order in finite geometries, the problem was
solved by E. Sperner [13] [14] and by the author [7] in two somewhat
different ways for the case p+ 2, and recently by the author [8] also for
the case p=2.

As to the relation of congruence in finite geometries, the problem was
partially solved in Jirnefelt—-Kustaanheimo [6], but only in those cases
where p+2, h=1, n=2. In this paper the solution will be given for the
cases p=+2, n=2, b arbitrary. In all other cases, that is, p=2 or n> 2,
the problem is still open.

Two important theorems having been demonstrated by B. Segre [10]
[11] and P. Bernays [1], it is now possible to show in a somewhat sim-
plified way that the five axioms III.0-4, given in Jirnefelt—-Kustaan-
heimo [6], define a unique relation of congruence in the finite Euclidean
plane over any Galois field GF,, g=p", p+2.

The axiom III.2 in Jirnefelt—-Kustaanheimo [6] is not sufficient in
the general case 2+ 1 and must be replaced by the axiom 3 in this paper,
both axioms being equivalent in the case h=1. The other axioms re-
main essentially the same, and all the five axioms are repeated here.
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We write shortly “AB=CD" for the proposition ‘“the segment between
the points 4 and B is congruent with the segment between the points
C and D”.

Axiom 1. AB=CD implies BA=CD and CD=AB. AB=CD and
CD=EF imply AB=EF.

Axtom 2. If AB and CD are parallel, then AB=CD is valid when
and only when either AC is parallel to BD or 4D is parallel to BC.

Axiom 3. If 4, B, C, D are four collinear points and A’, B’, ¢', D’
are four collinear points, and the lines A4’, BB’, CC’, DD’ are parallel,
then AB=A'B' implies CD=C'D’.

Axiom 4. If 4, B, C are three distinct collinear points and 4’, B’, C’
are collinear, then AB=A'B', AC=A'C', BC=B'C’', AD=A'D’, and
BD=B'D' imply CD=C'D".

Axiom 5. There exist four points 4, B, C, D such that for any two
points Z, F there exists a point & such that E, F, G are collinear and
either AB=EG or CD=KG.

Axiom 2 gives immediately the following two theorems.

TaEOREM 1. 44 = BC implies B=C.
TrEOREM 2. If A, B are two distinct points, then there exists one and
only one point C such that A, B, C are collinear, B+C, and AB=AC.

Theorem 2 is demonstrated by constructing a parallelogram ABDE.
According to axiom 2, AB=AC is valid when and only when CADE is
a parallelogram, too. From this construction follows also that the co-
ordinates of 4 equal the mean values of the corresponding coordinates
of B and C.

Axiom 3 gives the following theorem or corollary.

TaroreM 3. If O, I, K are three distinct collinear points, O, J, L are
three distinct collinear points, and IJ is parallel to KL, then OI =0J
tmplies OK =0L.

In order to decide whether or not a given proposition EF =GH is
valid, we may use the transitivity stated by axiom 1 and replace the
segments ZF and GH by other segments, e.g. by two segments O and
0OJ, where O is any chosen point and OF parallel to IF, OI parallel to
EF, Od parallel to JH, and OJ parallel to GH. According to axiom 2,
the proposition O =0J is now equivalent to EF =GH. According to
axiom 3, we can further shorten or lengthen the segments OI and OJ,
by the construction mentioned in theorem 3, so that one of them attains
some given standard length.
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Thus the relation of congruence is decidable if we can construct two
sets of points, X and Y, such that OX=4B for all X, and OY =CD
for all Y, where 4, B, C, D are e.g. those four points 4, B, C, D
assumed to exist by axiom 5. We call these two point sets the measure
curves.

Let the set of all points X satisfying OX = AB be one of the measure
curves. According to theorem 2, every line passing through O meets the
measure curve in either exactly two or exactly no points. Now we shall
demonstrate that also every line not passing through O meets the measure
curve in at most two points.

Let us suppose that a line ZFG not passing through O meets the
measure curve in at least three distinct points K, F, G. We choose a
point H so that O+ H and OH parallel to EFG. We draw through H
a line parallel to OG. Let I be that point where this line meets the line
OE, and J that point where this line meets the line OF. Let K and L
be points on the line OG such that /K and JL are parallel to OH. Ac-
cording to axiom 2, we now have HI=0K, IJ=KL, HJ=0L, and
according to theorem 3, Ol =0K, OJ =0OL. Thus, according to axiom 4,
we have also OH=00. But this is a contradiction, according to theo-
rem 1.

Thus every line meets the measure curve in at most two points, or,
using a term introduced by Segre [12], the measure curve is a k-arc.
It is a well known fact (cf. Segre [12] and Qvist [9]) that a k-arc con-
tains at most ¢+ 1 points when p+2. On the other hand, both measure
curves together must contain at least 2(g+ 1) points, according to axiom
5 and theorem 2. Thus we conclude that each measure curve contains
exactly ¢ +1 points, i.e. each measure curve is a (g+ 1)-arc or an oval,
using another term introduced by Segre [10] [11].

Segre [10] [11] has demonstrated that every oval is an ellipse. Using
a coordinate system z, y with O as origo, the measure curves can thus
be represented by two equations

(1) ?+a’zy+by? =g,
(2) 22+ cry +dy? =

where a'?—4b’ and c2—4d are non-squares in GF, Linear terms in z
and y are lacking because of the symmetry stated by theorem 2.

Using a linear coordinate transformation, we may transform the left-
hand side of (2) in some given standard form, e.g. 22— ky?, where £k is
any given non-square of GF, (cf. Jirnefelt-Kustaanheimo [6]). In this
new coordinate system the equations (1) and (2) read

13+
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(3 r+axy+by* =g,

(4) x2—ky® = h,
where a?—4b is a non-square.

According to axiom 5, every line through O must meet at least one of
the measure curves, and then in exactly two points, according to theo-
rem 2. The total number of points on both measure curves being 2(¢q + 1),
we conclude that no line through O meets both measure curves. A theo-
rem, demonstrated by Bernays [1], states that this is possible only if
@=0 and b= —%k. We reproduce here the proof of Bernays.

Let us consider the x-axis which is a line through 0. It must meet

exactly one of the curves (3) and (4). Thus one of the numbers g and 4
is a square and the other a non-square, e.g. g a square and % a non-
square. Now let us consider the line passing through O and a point (z, y).
It meets (3) when and only when 22+ axy + by? is a square, and it meets
(4) when and only when 22— ky? is a non-square. In order that the line
meet one and only one of the curves (3) and (4), it is thus necessary and
sufficient that
a2 +axy + by*
(5) “}T_iy“kgzi
be a square for all values z, y. We consider only values y=1 and =
running through all the ¢ elements of G, The expression (5) being
always +0, it can assume only 4(g — 1) different values. Thus there exist
three different values x,, ®,, x5, satisfying

zltax, +b  wltar,+b  xlPtawy+b
x2—k  xP—k  x?—k

or
ax;+b+k = avy+b+k = axz+b+k = 0.

But this is possible only if a =b+%k=0. Thus, instead of (3) and (4) we
can write

(6) ?-ky? =g,

(7) x—ky® =h.

Finally, according to axioms 3 and 5, we may use some other standards
of length, AB and CD, and thus transform the right-hand sides of (6)
and (7) e.g. into 1 and %, where & is the same given non-square as on the
left-hand side. Instead of (6) and (7) we then have
(8) 2?2—kyt =1,

9 2?—ky? =k,
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where the last remaining parameter k can be fixed to be any given non-
square.

The five axioms 1-5 determine thus the relation of congruence uni-
quely to within an isomorphic mapping leaving the relations of incidence
and congruence invariant.
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