MATH. SCAND. 5 (1957), 236—240

THE THEOREM OF ENESTROM AND THE EXTREMAL
FUNCTIONS OF LANDAU-SCHUR

AUREL WINTNER

1. Let f € £ mean that f(z) is a function which is regular, and does not
exceed 1 in absolute value, on the circle |z| <1 and, if s,(z) denotes the
n-th partial sum,

8,(2) = co+ ... +7¢,2",
of
J(@) = cg+ciz+...,

denote by G, the least absolute constant which, for a fixed =, has the
property that the maximum of |s,(z)| on the closure |2|<1 does not
exceed G, for any fe E. Thus

(1) G, = sup max|s,(z)|, hence @, = sup max]|s,(2)],
feE |2] =1 feE |z|=1

by the maximum principle, and so, since f(ei?z) e £ if f(z) e £ and
0= <2n,

(2) G, = supls,(1)| .
feE
It is known that if C,, is defined by
20,2 = (1-22%F  for |2z| <1
m=0

(this function fails to be of class E), that is to say,

(3) C, = ﬁ @k—1)(2k)  (Co=1),
then B
4) G, = 3 (O

(which implies that G, — co as n - oo, and that the absolute constant
(1) is the n-th partial sum of
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1
(Cn?em = F(3, 3, 152) = (/2)7 \ (1= 2)F(1~2?)Hdy
0

F

m

f
=)

at z=1). In fact, it was shown by Landau ([3, pp. 26-28]) that the sup
oceurring in (2) is a max, since, for every n, there exists in the class &

a function, say
oo

(5) [2*(2) =§0 Cp*(n)2™ ,
satisfying

(6) G, = s,*(1),
where

(7) $u*(2) =§)6m*(n)zm;

and he has also shown that these extremal functions f,* (functions which
are unique up to constant factors of absolute value 1) are the rational
functions

n n -1
(8) fn*(z) = Zon—mzm}{zomzmi s
m=0 m=0
where the coefficients C' are those defined by (3). The existence and the
(substantial) uniqueness of the extremal functions f*(2), f;*(2), . . ., along

with their explicit form (8), was accounted for by Schur within the frame-
work of a general theory ([4, pp. 122-124]; cf. also [1, pp. 12-14]).
In what follows, it will be shown that

(9) cp¥m) >0  for 0= m < m;

in other words, that the n+ 1 coefficients of the n-th partial sum (7) of the
expansion (5) of the n-th extremal function (8) of class E are positive for
every n. Note that (9) is an essential refinement of the inequality

a2

(10) 2 *n) > 0,

whereas (10) is an obvious consequence of (7) and (6) (since the absolute
constant (1) must be positive).

2. Actually, (9) proves to be a corollary of a more general fact, ap-
plying not only to Landau’s functions (8) but to the entire class of
rational functions (‘“Blaschke products’) which go back to Jacobi [2],
and which occur as solutions of the extremal problem considered by
Carathéodory-Fejér in connection with the Carathéodory-Toeplitz pro-
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blem (concerning harmonic functions which are positive within the unit
circle) and its well-known ramifications.
If p(z) is a polynomial of degree » and if every coefficient a,, of

n
(11) p(z) =3 ayzm
m=0
is real, then, as observed by Jacobi, the rational function

(12) q(z) = 2"p(1/2)[p(2)

will have the property that |g(z)] =1 holds at every point z of the circum-
ference |z|=1 (with an obvious interpretation of |g(z)| at a point of the
circumference |z[=1 if the denominator, p(z), of (12) vanishes at that
point; an interpretation made possible by continuity unless p(z) van-
ishes identically, and so (12) becomes undefined for every z). In view
of the maximum principle, this implies that the power series

(13) ¢(z) =4_§J by

(converges and) satisfies the inequality |g(z)| £1 for |2| <1, if p(z) has no
zero in the circle 2| <1. According to the theorem of Enestrém (see
[3, p. 26]; the first edition of [3] attributed the theorem to Kakeya whose
publication is however of a later date than that of Enestrom), this will,
in particular, be the case if

(14) Ay > a3 > ... >a, >0.

It follows for general reasons (reasons which apply also if ¢(z) is derived
from p(z) in a way more general than (12); cf. the Hilfssatz in [3, p. 29])
that, by virtue of (11), (14) and (12), the partial sums of (13) at z=1
must satisfy the inequalities

m
(15) 20, > 0.
£=0
In what follows, it will be shown that (15) can be refined to
(16) b,>0 if O=mzmn.

Note that the proviso of (16), the limitation of m by the degree of (11),
ig not needed in (15).

The inequalitites (9) for the first #» + 1 coefficients of the expansion
(5) of the extremal function (8) are immediate consequences of the
preceding assertion, according to which (16) holds for the first n+1
coefficients of the expansion (13) (for |z| < 1) of the rational function defined
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by (12), whenever the coefficients of the polynomial (11) satisfy the inequal-
sties (14). For, on the one hand, it is clear that the case a,,=C,, of (11)
reduces the function (12) to the function (8) and, on the other hand, (5)
implies that (14) is satisfied if a,,=C,,. Correspondingly, (10) is nothing
but the trivial inequality (15) belonging to the particular case (5)—(8)
of (11)~(14).

3. The proof of (16) proceeds as follows:
If both sides of (12) are multiplied by p(z), substitution of (11) and
(13) shows that

(17) {Zamzm} b =a, m.
m=0 m=0 m=0

Hence, comparison of those powers of z which belong to exponents not
exceeding n leads to
m

(18) 2ab, =0, where 0=mzgn.
i-o

A

If the latter relation is subtracted from what results if m is replaced
by m+1, it follows that

m
%bm+1 +k‘Z: (a’m+1—k"' m~k)bk = Qpem-1""C—m >
=0

where 0 <m <n—1 (so that n > 0; this restriction is allowed, since there
is nothing to be proved if »=0). But (4) shows that the difference on the
right and the coefficient (=a,) of b,,,; on the left are positive, and that
the differences which multiply the numbers b, in the sum on the left
(2 sum in which 0=k=<m) are negative. Consequently, b,,,; must be
positive if b, is positive for 0<k=<m.

This means that (16) follows, by induction, if b,>0 is granted. But
(17) reduced at z=0 to a,b,=a,, and so b,> 0 is clear from (14).

4. The restriction imposed in (16) on m cannot be omitted, since,
under the assumptions of the last italicized assertion,

(19) b1 <0 (n>0).
A corollary is that, besides (9),
(20) Cotr*(n) < O (n > 0)

holds for the coefficients of the expansion (5) of the extremal function (8).
In fact, (20) follows from (19) in the same way in which (9) followed
from (16).
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The proof of (16) depended on (18), and (18) resulted by equating in
(17) the coefficients of z™ for every m <z. But it is also seen from (17)
that

(21) Yab, =0 if m>n,
k=0

and it is clear that (14), (16) and the case m=n-+1 of (21) imply (19).
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