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QUANTITATIVE FACTORIZATION OF WEAKLY
COMPACT, ROSENTHAL, AND ξ -BANACH-SAKS

OPERATORS

KEVIN BEANLAND and RYAN M. CAUSEY

Abstract
We prove quantitative factorization results for several classes of operators, including weakly
compact, Rosenthal, and ξ -Banach-Saks operators.

1. Introduction

In recent literature [1], [3], [4], [7], ordinal indices are used to define several
new classes of operators. The main results of the present paper are factorization
results for these new classes analogous to the celebrated Davis, Figiel, Johnson
and Pełczyński factorization theorem for weakly compact operators. Before
we state these results, we recall some of these new classes. In the following
for an operator A, Sz(A) is the Szlenk index and J (A) is the James index of
the operators (the James index was defined in [10]). We recall the necessary
definitions in a subsequent section. Let Ord be the class of ordinal numbers
and ξ ∈ Ord.

(1) Let SZ ξ denote the class of all operators A so that Sz(A) � ωξ . The
class

⋃
ξ∈Ord SZ ξ is the class of Asplund operators.

(2) Let ��
ξ
1 denote the class of all operators that do not preserve Bourgain

�1 trees of order ωξ . The class
⋃
ξ∈Ord ��

ξ
1 consists of the operators

which do not preserve a copy of �1 (also known as Rosenthal operators).

(3) Let Jξ denote the class of operators A so that J (A) � ξ . The class⋃
ξ∈Ord Jξ =: J is the class of weakly compact operators.

(4) For 0 < ξ < ω1 let ��
ξ
1 denote the class of operators that do not

preserve an �ξ1 spreading model.

(5) For 0 < ξ < ω1 let ��ξ denote the class consisting of those weakly
compact operators which lie in ��

ξ
1.
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In [3], [7] it is shown that each of the above classes in (1), (2), (4), and (5)
are distinct for different ordinals. The classes Jω and ��1

1 correspond to the
ideals of super weakly compact and super Rosenthal operators, respectively
([10], [3]). The following result from [3], [7] states that for certain ordinals,
the above subclasses are in fact closed two-sided operator ideals.

Theorem 1.1. Let ξ ∈ Ord. The classes SZ ξ , ��ωξ

1 and J
ωω

ξ are closed,

two-sided ideals. Moreover, if 0 < ξ < ω1, the classes ��
ξ
1 and ��ξ are

closed, two-sided ideals.

In general if I is an operator ideal, we let Space(I ) denote the collection
of Banach spaces X so that the identity IX lies in I . We say that an operator
ideal I has the factorization property if for every A ∈ I there is an X ∈
Space(I ) so that A factors through X. The famous theorem of Davis, Figiel,
Johnson and Pełczyński [11] states that the class of weakly compact operators
has the factorization property. It is known that the classes of Rosenthal and
Banach-Saks operators also possess the factorization property (see [17] and
references therein). The current paper is concerned with results of this kind as
they correspond to the new classes of operators defined above. We first note
that there are well studied operator ideals that do not possess the factorization
property. We will give an example in Section 3 which proves the following
proposition.

Proposition 1.2. Neither the class of super weakly compact operators nor
the class of super Rosenthal operators possesses the factorization property.

More generally, if I , M are two classes of operators, we may say I has
the M factorization property if every member of I factors through a member
of Space(M). The starting point for our quantitative factorization results is
the work of Brooker [7], who showed that for every ordinal ξ , SZ ξ has the
SZ ξ+1 factorization property. Moreover, Brooker showed that both classes

{ξ ∈ Ord : SZ ξ has the factorization property},
{ξ ∈ Ord : SZ ξ does not have the factorization property}

are proper classes (that is, unbounded classes) of ordinals. The question of
determining exactly those ξ such that SZ ξ possesses the factorization property
is still open. The main results of the current paper are analogous to Brooker’s
result for the different operator ideals listed above. As in the proof of Brooker’s
result mentioned above, our main tool is a theorem of Heinrich [17] which
yields factorization results for �p pairs of classes of operators.

Theorem A. For ξ ∈ Ord with 0 < ξ < ω1, ��
ξ
1 and ��ξ have the

factorization property.
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Theorem B. Let ξ ∈ Ord. The following hold:

(i) The class ��ωξ

1 has the ��ωξ+1
1 factorization property. Moreover ��ωξ

1
has the factorization property if and only if ξ has uncountable cofinality.

(ii) The class J
ωω

ξ has the J
ωω

ξ+1 factorization property.

These results together with some deep descriptive set theoretic results
from [13], [14] yield the following. In what follows, � denotes the class of
operators with separable range.

Theorem C. For each countable ordinal ξ , there exists a separable Banach
space S which is reflexive (respectively, which contains no copy of �1) such that
every member of Jξ ∩ � (respectively, ��

ξ
1 ∩ �) factors through a subspace

(respectively, quotient) of S.
In particular, there exist separable Banach spaces S1, S2 such that S1 is

reflexive, S2 contains no copy of �1, every super weakly compact operator with
separable range factors through a subspace of S1, and every super Rosenthal
operator with separable range factors through a quotient of S2.

We note that in [15], Figiel showed that there exists a separable, reflexive
Banach space Z such that every compact operator factors through a subspace
of Z. Theorem C extends this result, since the class of super weakly com-
pact operators with separable range contains the class of compact operators.
Moreover, Johnson and Szankowski [19] showed that there does not exist a sep-
arable Banach space through which all compact operators factor. This shows
that if S1 is the Banach space from Theorem C, the restriction that every super
weakly compact operator with separable range factors only through a subspace
of S1, and not through S1 itself, cannot be removed.

2. Terminology

2.1. Classes of operators

We let Ban denote the class of Banach spaces. We let L denote the class
of operators between Banach spaces. For each pair E,F ∈ Ban of Banach
spaces, L (E, F ) will denote the operators from E into F . Given a class M

of operators, M(E, F ) = M ∩ L (E, F ). Recall that M is said to have the
ideal property if for every E,F,G,H ∈ Ban, A ∈ L (G,H), B ∈ M(F,G),
and C ∈ L (E, F ), then ABC ∈ M(E,H). We say M is an operator ideal if
M has the ideal property, IK ∈ M, and for every E,F ∈ Ban, M(E, F ) is a
vector space. Here, IK is the identity of the scalar field K. We say M is

(i) closed if for everyE,F ∈ Ban, M(E, F ) is a closed subset of L (E, F )

with its norm topology,
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(ii) injective if for any E,F,G ∈ Ban, any A ∈ L (E, F ), and any iso-
morphic embedding j :F → G, if jA ∈ M(E,G), then A ∈ M(E, F ),

(iii) surjective if for anyE,F,G ∈ Ban, any surjection map q:G → E, and
any A ∈ L (E, F ), if Aq ∈ M(G, F ), then A ∈ M(E, F ).

Given an operator ideal M, the super ideal of M is the class of those operators
A:X → Y such that for every ultrafilter U, the induced operator AU :XU →
YU between the ultrapowers lies in M.

Given a class M of operators, we let Space(M) denote the class of Banach
spaces Z such that IZ ∈ M. Finally, given two classes of operators M, I

and 1 < p < ∞, we say (M,I ) is a �p-pair if for every pair of se-
quences of Banach spaces (Xn : n ∈ N), (Yn : n ∈ N) and every operator
A:

(⊕
n Xn

)
�p

→ (⊕
n Yn

)
�p

such that QnAPm ∈ M for every m, n ∈ N, we

have A ∈ I .

Theorem 2.1 ([17, Theorem 2.1]). Suppose M, J are two injective, sur-
jective, closed classes of operators such that M is an operator ideal and
J possesses the ideal property. Suppose also that for some 1 < p < ∞,
(M,J ) is a �p pair. Then every member of M factors through a member of
Space(J ).

This theorem was not stated in this way in [17]. We leave it to the reader
to verify that the proof goes through with only notational changes under the
hypotheses here (see [7] for further remarks regarding this use of Theorem 2.1).

2.2. Trees

Given a set �, we let �<N denote the finite sequences in �, including the
empty sequence ∅. We order �<N by letting s � t if s is an initial segment
of t . We let s�t denote the concatenation of s and t . We let |s| denote the
length of s, and if 0 � i � |s|, we let s|i denote the initial segment of s having
length i. Given two trees S and T , we say a function φ: S → T is monotone
if for any s ≺ s1 ∈ S, φ(s) ≺ φ(s1). We let MAX(T ) denote those members
of T which are maximal with respect to ≺. We let T ′ = T \ MAX(T ). We
define the higher order derived trees by transfinite induction by

T 0 = T ,

T ξ+1 = (T ξ )′,

and
T ξ =

⋂
ζ<ξ

T ζ , ξ is a limit ordinal.
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If there exists an ordinal ξ such that T ξ = ∅, we let o(T ) denote the smallest
such ξ . Otherwise we agree to the convention that o(T ) = ∞. We say T is
well-founded if o(T ) is an ordinal, and say T is ill-founded otherwise. We
also establish the convention that ξ < ∞ for any ordinal ξ . Note that T is
ill-founded if and only if there exists an infinite sequence (λi)∞i=1 in � such
that for all n ∈ N, (λi)ni=1 ∈ T . We also define a B-tree, which is a subset T
of some �<N \ {∅} such that T ∪ {∅} is a tree. All of the definitions above
regarding trees can be relativized to B-trees.

In [9], a family (Tξ )ξ∈Ord of B-trees was given such that for any set�, any
tree T on�, and any ordinal ξ , o(T ) > ξ if and only if there exists a collection
(λt )t∈Tξ

⊂ � such that for every t ∈ Tξ , the sequence (λt |i )
|t |
i=1 ∈ T . Similarly,

if T is a B-tree, then o(T ) � ξ if and only if there exists a collection (λt )t∈Tξ

as above.
Given a B-tree T on � and t ∈ �<N, we let T (t) denote the non-empty

sequences in �<N such that t�s ∈ T . This is also a B-tree, and for any
ordinal ξ , T ξ (t) = (T (t))ξ . In particular, if t ∈ T , o(T (t)) � ξ if and only if
t ∈ T ξ .
2.3. Schreier families and the repeated averages hierarchy

We will identify subsets of N with strictly increasing sequences in N in the
natural way. Therefore the set of finite subsets of N can be identified with the
subset ofN<N consisting of strictly increasing sequences. Given finite subsets
E, F of N, we write E < F if maxE < minF or if either set is empty. We
write n � E if n � minE.

For each n ∈ N, we let

An = {
E ∈ N<N : |E| � n

}
.

We let S0 = A1. If Sξ has been defined, we let

Sξ+1 =
{ n⋃
i=1

Ei : n ∈ N, n � E1 < · · · < En,∅ �= Ei ∈ Sξ

}
.

If ξ is a countable limit ordinal and Sζ has been defined for every ζ < ξ , we
fix ξn ↑ ξ and let

Sξ = {E : ∃ n � E ∈ Sξn}.
Finally, for a countable ordinal ξ , n ∈ N, and natural numbersm1 < m2 < · · ·
with M = {mi}, we let

Sξ [An] =
{ k⋃
i=1

Ei : E1 < · · · < Ek, (minEi)
k
i=1 ∈ Sξ , ∅ �= Ei ∈ An

}
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and
Sξ [An](M) = {{mi : i ∈ E} : E ∈ Sξ [An]

}
.

In [2], the repeated averages hierarchy was defined. The precise definition
of the hierarchy is not necessary for this work, so we only state the properties
we will need. Proofs of these facts can be found in [2]. Given a scalar sequence
s = (sn), we let supp(s) = {n ∈ N : sn �= 0}. We let c00 denote those scalar
sequences with finite support and let (ei) denote the canonical Hamel basis
of c00. For every 0 � ξ < ω1 and for every infinite subsetM ofN, the sequence
(ξMn )n∈N is a sequence of members of c00 ∩ [0, 1]N such that

(i) for all n ∈ N, ‖ξMn ‖�1 = 1,

(ii) for all n ∈ N, supp(ξMn ) < supp(ξMn+1),

(iii)
⋃∞
n=1 supp(ξMn ) = M .

We also remark that if M = (mn) with m1 < m2 < · · ·, for each n ∈ N, then
0Mn = emn . Moreover, if (En) is the partition of M such that E1 < E2 < · · ·
and |En| = minEn, we have 1Mn = |En|−1 ∑

i∈En ei .
We will write ξMn = (ξMn (i))i∈N. Given a sequence s = (xn) in a Banach

space, we let ξM.s denote the sequence (yn) where yn = ∑
i ξ

M
n (i)xi for each

n ∈ N. We say a sequence s = (xn) is ξ -convergent to x provided that there
exists an infinite subsetN ofN such that for all further infinite subsetsM ofN ,
the sequence ξM.s converges to x in norm. We say (xn) is ξ -convergent if it
is ξ -convergent to some x. We note that (xn) 1-converges to x if and only if it
has a subsequence whose Cesaro means converge in norm to x, which follows
from the description of (1Mn ) in the previous paragraph.

3. Weakly compact operators

Given an operator A:X → Y and a constant θ > 0, we let J (A, θ) denote
the tree consisting of the empty sequence and those sequences (xi)ni=1 ⊂ BX,
the unit ball of X, such that for every 1 � m < n, every x in the convex hull
co(xi : i � m), and every x ′ ∈ co(xi : m < i � n), we have ‖Ax−Ax ′‖ � θ .
We define J (A, θ) = o(J (A, θ)) and J (A) = supθ>0 J (A, θ). We collect
the following facts from [10].

Theorem 3.1. Let A:X → Y be an operator.

(i) A is weakly compact if and only if J (A) < ∞.

(ii) A is super weakly compact if and only if J (A) � ω.

(iii) The class J
ωω

ξ is a closed operator ideal.

It is quite obvious that for any ordinal ξ > 0, Jξ is injective and surjective.
Indeed, suppose that q:E → F , A:F → G, and j :G → H are such that q is
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a quotient and j is an isometric embedding. For every x ∈ F , choose ex ∈ E
such that qex = x and ‖qex‖ � 2‖x‖. Then for any θ > 0, {(2−1exi )

n
i=1 :

(xi)
n
i=1 ∈ J (A, θ)} ⊂ J (jAq, θ/2). Thus

J (jAq) � J (A),

and if A /∈ Jξ , then J (jAq) > ξ .
The main result of this section is to prove Theorem B(ii) from the introduc-

tion. The following is a restatement of this theorem.

Theorem 3.2. If A:X → Y is weakly compact and J (A) < ωω
ξ

, then A
factors through a member of Space(J

ωω
ξ+1 ).

Before passing to the proof of the above theorem we give the proof of
Proposition 1.2 and the first part of Theorem C from the introduction.

Proof of Proposition 1.2. For each n ∈ N, let an = 1/ log(n + 1) and
defineA: c0 → c0 byA

∑
bnen = ∑

anbnen. This is a compact (and therefore
super weakly compact and super Rosenthal) operator, but for any n ∈ N and
2 � p < ∞,

( n∑
i=1

‖Aei‖p
)1/p

� n1/p

log(n+ 1)
= n1/p

log(n+ 1)
E

∥∥∥∥
n∑
i=1

εiei

∥∥∥∥,

whenceA fails to have any non-trivial Rademacher cotype. Thus this operator
fails to factor through any Banach space of non-trivial Rademacher cotype,
and therefore every Banach space is finitely representable in any Banach space
through which A factors. This gives an example of an operator A ∈ Jω not
factoring through any member of Space(Jω). It also gives an example of a
super Rosenthal operator not factoring through any Banach space in which �1

is not finitely representable. The theorem above yields that every super weakly
compact operator factors through a member of Jωω .

The next theorem is the first part of Theorem C. Let � denote the ideal of
operators having separable range. Note that J ∩ � is the ideal of operators
factoring through a separable, reflexive Banach space. In particular, J ∩ �
includes all weakly compact operators between separable spaces.

Theorem 3.3. For every countable ordinal ξ , there exists a separable,
reflexive Banach space S such that every member of J

ωω
ξ ∩ � factors through

a subspace of S. In particular, there exists a separable, reflexive Banach space
such that every super weakly compact operator factors through a subspace
of S.
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This result can be compared to the main result of [5]. In that paper, a
topological space 	 is given such that every operator between separable Banach
spaces can be identified with a member of 	. Thus classes of operators, such as
the class of weakly compact operators between separable spaces, can be viewed
as subsets of 	, and therefore have some Borel complexity. In [4], it was shown
that if A ⊂ 	 is an analytic collection consisting of weakly compact operators
such that every range space of every operator in A has a shrinking basis (resp.
every range space isC(2N), where 2N denotes the Cantor set), then there exists
a separable, reflexive space Z through which every member of A factors. Our
result only allows for factorization through a subspace and not through the
whole space. The reason for this difference is that under the assumption that
every range space of an operator from A has a shrinking basis, interpolation
allows for each member of A to be factored through a separable, reflexive
Banach space with a basis, and the results of [14] allow for these spaces to
be complementably embedded in a universal space. The complementation of
the interpolation spaces allow us to factor through the entire universal space
rather than only through a subspace.

The proof of Theorem 3.3 uses several facts from descriptive set theory. In
order to avoid going too far afield, we refer the reader to [12] for the definition
of “coanalytic rank” and the coding of the class SB of separable Banach spaces
and the pertinent properties regarding these topics.

Proof of Theorem 3.3. Fix a countable ordinal ζ such that ξ � ωω
ζ

.
If A:X → Y is a member of Jξ ∩ �, by Theorem 3.2 and the remark
following Theorem 2.1, A factors through a separable Banach space ZA ∈
Space(J

ωω
ζ+1 ∩ �) = SB ∩ Space(J

ωω
ζ+1 ). We note that J is a coanalytic

rank on the class of separable, reflexive Banach spaces REFL considered as a
subset of SB. In [10], it was shown that J is a coanalytic rank on the class of
all weakly compact operators between separable Banach spaces, and the proof
that it is a coanalytic rank on REFL is an inessential modification of this proof.
From this and the properties of coanalytic ranks, SB ∩ Space(J

ωω
ζ+1 ) is Borel

in SB. By [14], there exists a separable, reflexive Banach space S containing
isomorphic copies of every member of SB ∩ Space(J

ωω
ζ+1 ). In particular, S

contains isomorphic copies of every member of {ZA : A ∈ Jξ ∩ �}, and
therefore every member of Jξ ∩ � factors through a subspace of S.

The final sentence follows from the first together with the fact that Jω is
the ideal of super weakly compact operators.

Before we present the proof of Theorem 3.2 we collect a few useful remarks
regarding J . By the criteria mentioned above, J (A) > ωω

ξ

if and only if there
exists θ > 0 and a collection (xt )t∈T

ωω
ξ ⊂ X such that for every t ∈ T

ωω
ξ ,

(xt |i )
|t |
i=1 ∈ J (A, θ).
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Given aB-tree T , we let c(T ) denote the non-empty subsets of T which are
linearly ordered with respect to �. Given c1, c2 ∈ c(T ), we write c1 ≺ c2 if
s ≺ t for every s ∈ c1 and t ∈ c2. If S, T are B-trees, a block map is a function
h: S → c(T ) such that for every s1, s2 ∈ S \ {∅}, h(s1) ≺ h(s2). Given two
B-trees S, T , a vector space X, and a collection (xt )t∈T ⊂ X, we say (ys)s∈S
is a convex block tree of (xt )t∈T if there exists a block map h: S → T such that
for every s ∈ S, ys ∈ co(xt : t ∈ h(s)). We say that (xt )t∈T is an (A, θ)-tree
if for every t ∈ T , (xt |i )

|t |
i=1 ∈ J (A, θ). It is clear that any convex block tree

of an (A, θ)-tree is also an (A, θ)-tree. If A:
(⊕

n Xn
)
�p

→ (⊕
n Yn

)
�p

is an

operator, we let μ:
(⊕

n Xn
)
�p

→ �p be the map given by μ((xn)) = (‖xn‖),
and let η:

(⊕
n Yn

)
�p

→ �p be defined similarly. Let us say that a collection
(xt )t∈T is ε-close if for every s ≺ t , s, t ∈ T , ‖μ(xs) − μ(xt )‖ < ε and
‖η(Axs)− η(Axt )‖ < ε.

We recall two more facts from [10]. For an ordinal ξ , we let�Tξ = {(s, t) ∈
Tξ × Tξ : s ≺ t}.

Proposition 3.4. Fix an ordinal ξ .

(i) For any finite set S and any function f :�T
ωω

ξ → S, there exists a
monotone map θ : T

ωω
ξ → T

ωω
ξ such that f (θ( · ), θ( · )) is constant on

�T
ωω

ξ .

(ii) There exist monotone maps φ, φ′: T
ωω

ξ → T
ωω

ξ such that for every
t ∈ T

ωω
ξ ,

φ(t |1) ≺ φ′(t |1) ≺ · · · ≺ φ(t) ≺ φ′(t).

We now prove that for any ordinal ξ and 1 < p < ∞, (J
ωω

ξ ,J
ωω

ξ+1 ) is a�p-
pair, which, in light of Theorem 2.1, will complete Theorem 3.2. To that end, fix
1 < p < ∞ and a norm 1 operator A:X := (⊕

n Xn
)
�p

→ Y := (⊕
n Yn

)
�p

.
Let δ�p denote the modulus of uniform convexity of �p. For n ∈ N and S ⊂ N,
let Pn:X → Xn, PS = ∑

n∈S Pn, Qn:Y → Yn, QS = ∑
n∈S Qn denote the

canonical projections.
Note that μ and η are norm-preserving, positive homogeneous, and for any

vectors (xi)ni=1 ⊂ X,
∥∥∥∥μ

( n∑
i=1

xi

)∥∥∥∥ �
∥∥∥∥

n∑
i=1

μ(xi)

∥∥∥∥,
and the analogous statement holds for vectors in Y . To see the last statement,
for each i, let xi = (xij )

∞
j=1 and note that μ(xi) = (‖xij‖)∞j=1. Then

∥∥∥∥μ
( n∑
i=1

xi

)∥∥∥∥ =
( ∞∑
j=1

∥∥∥∥
n∑
i=1

xij

∥∥∥∥
p)1/p

�
( ∞∑
j=1

( n∑
i=1

‖xij‖
)p)1/p

=
∥∥∥∥

n∑
i=1

μ(xi)

∥∥∥∥.
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Lemma 3.5. Let (xt )t∈T
ωω
ξ ⊂ BX be an (A, θ)-tree. For any ε > 0, there

exists a convex block tree (x ′
t )t∈T

ωω
ξ of (xt )t∈T

ωω
ξ which is ε-close.

Proof. Seeking a contradiction, suppose that for some ε > 0, there is no
convex block tree of (xt )t∈T

ωω
ξ which is ε-close. We define convex block trees

(xit )t∈T
ωω
ξ of (xt )t∈T

ωω
ξ and ki, �i ∈ N ∪ {0} such that for each i = 0, 1, . . .,

(i) ki + �i = i,

(ii) (xit )t∈T
ωω
ξ ⊂ (1 − δ)kiBX,

(iii) (Axit )t∈T
ωω
ξ ⊂ (1 − δ)�iBY ,

where δ = δ�p (ε).
We let x0

t = xt . Next, suppose that (xit )t∈T
ωω
ξ has been defined and ki, �i

have been specified. Note that (xit )t∈T
ωω
ξ ⊂ (1 − δ)kiBX and (Axit )t∈T

ωω
ξ ⊂

(1−δ)�iBY . This means that (μ(xit ))t∈T
ωω
ξ ⊂ (1−δ)kiB�p and (η(Axit ))t∈T

ωω
ξ ⊂

(1 − δ)�iB�p . Define the coloring f :�T
ωω

ξ → {0, 1, 2} by letting f (s, t) = 0
if ∥∥μ(xis)− μ(xit )

∥∥, ∥∥η(Axis)− η(Axit )
∥∥ < ε,

f (s, t) = 1 if ‖μ(xis)− μ(xit )‖ � ε, and f (s, t) = 2 if ‖μ(xis)− μ(xit )‖ < ε

and ‖η(Axis)−η(Axit )‖ � ε. Then by Proposition 3.4, there exists a monotone
map φ0: T

ωω
ξ → T

ωω
ξ such that f (φ0( · ), φ0( · )) is constant on �T

ωω
ξ . Let

j be such that f (φ0( · ), φ0( · )) is constantly j . Note that j �= 0, otherwise
(xiφ0(t)

)t∈T
ωω
ξ is an ε-close convex block of (xt )t∈T

ωω
ξ . For each t ∈ T

ωω
ξ , let

yt = xiφ0(t)
. By Proposition 3.4, we may fix monotone maps φ, φ′: T

ωω
ξ →

T
ωω

ξ such that for every t ∈ T
ωω

ξ , φ(t |1) ≺ φ′(t |1) ≺ · · · ≺ φ(t) ≺ φ′(t).
Note that h(t) = {φ ◦ φ0(t), φ

′ ◦ φ0(t)} defines a block map. Let

xi+1
t = yφ(t) + yφ′(t)

2

for each t ∈ T
ωω

ξ . If j = 1, let ki+1 = 1 + ki and �i+1 = �i . If j = 2, let
ki+1 = ki and �i+1 = 1 + �i . If j = 1, then ‖μ(yφ(t)) − μ(yφ′(t))‖ � ε and
‖μ(yφ(t))‖, ‖μ(yφ′(t))‖ � (1 − δ)ki , so that

‖μ(yφ(t))+ μ(yφ′(t))‖
2

� (1 − δ)1+ki = (1 − δ)ki+1 .

Since

∥∥xi+1
t

∥∥ = ∥∥μ(xi+1
t )

∥∥ =
∥∥∥∥μ

(yφ(t) + yφ′(t)

2

)∥∥∥∥
� ‖μ(yφ(t))+ μ(yφ′(t))‖

2
� (1 − δ)ki+1 ,
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we reach the desired conclusion in the case that j = 1. If j = 2, the argument
is similar, only we deduce that

∥∥Axi+1t
∥∥ = ∥∥η(Axi+1

t )
∥∥ � ‖η(Ayφ(t))+ η(Ayφ(t))‖

2
� (1 − δ)�i+1 .

This finishes the recursive construction.
Next, fix i such that (1 − δ)i < θ/2. Then k2i + �2i = 2i, and either k2i � i

or �2i � i. If k2i � i, note that since (x2i
t )t∈T

ωω
ξ ⊂ (1 − δ)k2i BX ⊂ (1 − δ)iBX

and since ‖A‖ = 1, (Ax2i
t )t∈T

ωω
ξ ⊂ (1 − δ)iBY . If �2i � i, (Ax2i

t )t∈T
ωω
ξ ⊂

(1 − δ)�2i BY ⊂ (1 − δ)iBY . Then for any s, t ∈ T
ωω

ξ with s ≺ t ,
∥∥Ax2i

s − Ax2i
t

∥∥ � 2(1 − δ)i < θ.

But since (x2i
u )u∈T

ωω
ξ is a convex block tree of an (A, θ)-tree, it must be an

(A, θ)-tree as well, and we reach a contradiction.

Corollary 3.6. Suppose that for some ordinal ξ , J (A) > ωω
ξ+1

. Then
there exist k, � ∈ N such that J (Q�APk) > ωω

ξ

.

Proof. We may assume without loss of generality that ‖A‖ = 1. Fix θ > 0
such that J (A, θ) > ωω

ξ+1
. We may fix a collection (xt )t∈T

ωω
ξ+1 ⊂ BX which

is (A, θ)-separated. By Lemma 3.5, we may assume that (xt )t∈T
ωω
ξ+1 is ε-close,

where ε = θ/9. Fix any t ∈ T
ωω

ξ+1 such that o(T
ωω

ξ+1 (t)) > ζ , as we may,
since o(T

ωω
ξ+1 ) = ωω

ξ+1
. Fix any monotone ψ : T

ωω
ξ → {s ∈ T

ωω
ξ+1 : t ≺

s}. Such a map exists, since we may first fix a monotone map ψ ′: T
ωω

ξ →
T
ωω

ξ+1 (t) simply by comparing orders of these trees, and let ψ(s) = t�ψ ′(s).
For each s ∈ T

ωω
ξ , let zs = xψ(s).

Fix some n ∈ N such that ‖P(n,∞)xt‖ < ε and ‖Q(n,∞)Axt‖ < ε. Let
π : �p → �p denote the tail projection π

∑∞
i=1 aiei = ∑∞

i=n+1 aiei and note
that μ ◦ P(n,∞) = π ◦ μ and η ◦Q(n,∞) = π ◦ η. Then for any s ∈ T

ωω
ξ ,

‖P(n,∞)zs‖ = ‖πμ(zs)‖ = ‖πμ(xψ(s))‖
� ‖πμ(xt )‖ + ‖μ(xt )− μ(xψ(s))‖ < ‖P(n,∞)xt‖ + ε < 2ε.

Similarly, ‖Q(n,∞)Azs‖ � ‖Q(n,∞)Axt‖ + ε < 2ε.

From this we deduce that

‖Azs−Q[1,n]AP[1,n]zs‖ � ‖Azs−Q[1,n]Azs‖+‖Q[1,n]A‖‖zs−P[1,n]zs‖ < 4ε.

From this it follows that (zs)s∈T
ωω
ξ is a (Q[1,n]AP[1,n], θ/9)-tree, which yields

J (Q[1,n]AP[1,n]) > ωω
ξ

. In order to see that this is a (Q[1,n]AP[1,n], θ/9)-tree,
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we first note that it is an (A, θ)-tree. Fix s0, s1 ∈ T
ωω

ξ with s0 ≺ s1 and fix
x = ∑

s�s0 aszs ∈ co(zs : s � s0), and y = ∑
s0≺s�s1 aszs ∈ co(zs : s0 ≺ s �

s1). Then

‖Q[1,n]AP[1,n]x −Q[1,n]AP[1,n]y‖
� ‖Ax − Ay‖ −

∑
s�s0

as‖Azs −Q[1,n]AP[1,n]zs‖

−
∑

s0≺s�s1
as‖Azs −Q[1,n]AP[1,n]zs‖

� θ − 4ε − 4ε = θ − 8θ/9 = θ/9.

Since Q[1,n]AP[1,n] = ∑
k,��n Q�APk and J

ωω
ξ+1 is closed under finite

sums, we deduce the result.

4. �
ξ

1 spreading models and ξ -Banach-Saks operators

For an ordinal 0 < ξ < ω1, a bounded sequence (xn) in the Banach space X
is said to be an �ξ1 spreading model if there exists K > 0 such that for every
E ∈ Sξ and every set of scalars (ai)i∈E ,

K−1
∑
i∈E

|ai | �
∥∥∥∥
∑
i∈E

aixi

∥∥∥∥.

For every 0 < ξ < ω1, we let ��
ξ
1 denote those operators A:X → Y such

that for any �ξ1-spreading model (xi) ⊂ X, (Axi) is not an �ξ1-spreading model.
We deduce that ��

ξ
1 is injective and surjective in a way similar to that of the

weakly compact operators.
The main result of this section is the Theorem A from the introduction.

Before providing the proof we introduce new classes of operators which we
call the ξ -Banach Saks operators. These classes naturally generalize the well-
known class of Banach-Saks operators and coincide with to two other classes
of operators studied in [3], [4].

In [3] it is shown that for each 0 < ξ < ω1, the class ��ξ := ��
ξ
1 ∩ J

coincides with the classes of Sξ -weakly compact operators from [4]. We now
define the class of ξ -Banach-Saks operators for 0 < ξ < ω1.

Fix an operatorA:X → Y and suppose that (xn) is a bounded sequence inX.
We may define BS((xn), A) to be the smallest countable ordinal ξ (if any such
exists) such that (Axn) is ξ -convergent to a member of Y . If no such countable
ordinal exists, we write BS((xn), A) = ω1. It is shown in [2] that such a
countable ordinal exists provided (Axn) has a weakly convergent subsequence.
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Conversely, if (Axn) is ξ -convergent, it has a subsequence with convex blocks
(the coefficients of which are given by (ξMn ) for someM) converging in norm
to some vector y ∈ Y , and therefore this subsequence converges weakly to y.
Thus there exists some countable ξ such that (Axn) is ξ -convergent if and only
if (Axn) has a weakly convergent subsequence. This motivates the following
definition which was not isolated in [3] but was implicitly contained.

Definition 4.1. For ξ < ω1, we sayA:X → Y is ξ -Banach-Saks provided
that for every bounded sequence (xn) inX, BS((xn), A) � ξ . Let 
�ξ denote
the class of ξ -Banach-Saks operators.

For completeness we recall the definition of Sξ -weakly compact.

Definition 4.2. For ξ < ω1, we say an operator A:X → Y is Sξ -weakly
compact if it fails to have the following property: there exists a constantK > 0
and a seminormalized basic sequence (xn) ⊂ X such that for every E ∈ Sξ

and all scalars (an)n∈E ,
∥∥∑

n∈E anAxn
∥∥ � K

∥∥∑
n∈E ansn

∥∥. Here (sn) is the
summing basis, the norm of which is given by

∥∥∥∥
k∑
n=1

ansn

∥∥∥∥ = max
1���k

∣∣∣∣
�∑
n=1

an

∣∣∣∣.

In summary, we have following theorem whose proof can be found in [3].

Theorem 4.3. Let ξ be an ordinal with 0 < ξ < ω1. The following classes
of operators are the same.

(i) The ξ -Banach-Saks operators 
�ξ .

(ii) The class ��ξ = ��
ξ
1 ∩ J .

(iii) The Sξ -weakly compact operators.

Our previous discussion guarantees that ifA is ξ -Banach-Saks, it is weakly
compact. A standard “overspill” argument guarantees that if X is separable,
then the converse is also true. That is, if A:X → Y is weakly compact and X
is separable, then there exists ξ < ω1 such thatA is ξ -Banach-Saks. However,
there are examples of operators on non-separable domains which are weakly
compact but not ξ -Banach-Saks for any ξ < ω1.

We summarize this discussion in the following. Items (iii) and (iv) follow
from our description of the level (1Mn ) of the repeated averages hierarchy.

Proposition 4.4. Fix an operator A:X → Y .

(i) If A is ξ -Banach-Saks for some ξ < ω1, A is weakly compact.
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(ii) If A has separable range and is weakly compact, there exists ξ < ω1

such that A is ξ -Banach-Saks.

(iii) 
�1 coincides with the class of Banach-Saks operators.

Below we restate Theorem A.

Theorem 4.5. Let ξ with 0 < ξ < ω1. Then ��
ξ
1 and 
�ξ have the

factorization property.

The fact that 
�1 has the factorization property is due to Beauzamy [6].
We make one final remark before presenting the proof of Theorem A.

Remark 4.6. Fix n ∈ N and let M = (in)∞i=1. Then an easy proof by
induction yields that Sξ [An](M) ⊂ Sξ and if (xi) is an �ξ1 spreading model
with constant K , and if E1 < E2 < · · · are subsets of M with |Ei | = n,
then the blocking (n−1 ∑

i∈Ej xi)j of (xi) is also an �ξ1 spreading model with
constant K . Here

Sξ [An] =
{ k⋃
i=1

Ei : k ∈ N, Ei ∈ An, E1 < · · · < Ek, (minEi)
k
i=1 ∈ Sξ

}
.

and
Sξ [An](M) = {

(mi)i∈E : E ∈ Sξ [An]
}
.

Proof of Theorem A. To prove the theorem we will again apply The-
orem 2.1. That is, we must show that (��ξ ,��ξ ) is a �p-pair for any
1 < p < ∞ and 0 < ξ < ω1. Combining this with the fact that (J ,J )

is a �p-pair for any 1 < p < ∞ (which is a consequence of Theorem 3.2)
yields that for any 1 < p < ∞ and 0 < ξ < ω1, (
�ξ ,
�ξ ) is a �p-pair,
since 
�ξ = J ∩ ��

ξ
1.

Suppose that A:
(⊕

n Xn
)
�p

→ (⊕
n Yn

)
�p

is an operator which preserves

an �ξ1 spreading model. The fact that (��ξ ,��ξ ) is a �p-pair is implied by
the following three items:

(i) there exists m ∈ N such that AP[1,m] preserves an �ξ1 spreading model;

(ii) there exists n ∈ N such that Q[1,n]A preserves an �ξ1 spreading model;

(iii) there exist i, j ∈ N such that QjAPi preserves an �ξ1 spreading model.

Assume without loss of generality that ‖A‖ = 1. In the proof, let X =(⊕
n Xn

)
�p

and Y = (⊕
n Yn

)
�p

. As in the previous section, let μ:X → �p

denote the function μ((xn)) = (‖xn‖) and η:Y → �p denote the function
η((yn)) = (‖yn‖). Assume 0 < ξ < ω1, (xi) ⊂ BX, and ε > 0 are such that
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for every E ∈ Sξ and all scalars (ai)i∈E ,
∥∥∑

i∈E aiAxi
∥∥ � 4ε

∑
i∈E |ai |. For

m ∈ N, let p(m,∞): �p → �p denote the tail projection in �p.
Write xi = (xij )

∞
j=1 with xij ∈ Xj andAxi = (yij )

∞
j=1, yij ∈ Yj . By passing

to a subsequence, we may assume that μ(xi) →
w
μ0 and η(yi) →

w
η0. Fix

m, n ∈ N such that ‖p(m,∞)μ0‖ < ε and ‖p(n,∞)η0‖ < ε. By passing to a
subsequence once more, we may assume there exist block sequences (ui), (vi)
in B�p such that

(i) for every i ∈ N, ‖μ(xi)− (μ0 + ui)‖ < ε,

(ii) for every i ∈ N, ‖η(yi)− (η0 + vi)‖ < ε,

(iii) min supp(u1) > m,

(iv) min supp(v1) > n.

Fix a natural number k such that 1/k1/q < ε, where 1/p + 1/q = 1. Fix
M = (ik)∞i=1 and recall that Sξ [Ak](M) ⊂ Sξ and B1 < B2 < · · · such that
|Bi | = k and Bi ⊂ M . Let gi = 1

k

∑
j∈Bi xj . Of course, gi ∈ BX. Note that

since Sξ [Ak](M) ⊂ Sξ , for any E ∈ Sξ and any scalars (ai)i∈E ,
∥∥∥∥
∑
i∈E

aiAgi

∥∥∥∥ � 4ε
∑
i∈E

|ai |.

Claim. For every i ∈ N, ‖gi−P[1,m]gi‖ < 3ε and ‖Agi−Q[1,n]Agi‖ < 3ε.

In order to see the claim, recall that xi = (xij )
∞
j=1. Then

‖gi − P[1,m]gi‖

= 1

k

( ∞∑
j=m+1

∥∥∥∥
∑
�∈Bi

x�j

∥∥∥∥
p)1/p

� 1

k

( ∞∑
j=m+1

(∑
�∈Bi

‖x�j‖
)p)1/p

= 1

k

∥∥∥∥
∑
�∈Bi

p(m,∞)μ(x�)

∥∥∥∥

� 1

k

∑
�∈Bi

‖p(m,∞)(μ(x�)− (μ0 + u�))‖ + 1

k

∥∥∥∥
∑
�∈Bi

p(m,∞)(μ0 + u�)

∥∥∥∥

� 1

k
· ε|Bi | + ‖p(m,∞)μ0‖ + 1

k

∥∥∥∥
∑
�∈Bi

u�

∥∥∥∥

< 2ε + 1

k

(∑
�∈Bi

‖u�‖p
)1/p

< 3ε.
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The proof that ‖Agi−Q[1,n]Agi‖ < 3ε is similar, and we deduce the claim.
Then for any E ∈ Sξ and any scalars (ai)i∈E ,

∥∥∥∥
∑
i∈E

aiAP[1,m]gi

∥∥∥∥ �
∥∥∥∥
∑
i∈E

aiAgi

∥∥∥∥ −
∑
i∈E

|ai |‖gi − P[1,m]gi‖

� 4ε
∑
i∈E

|ai | − 3ε
∑
i∈E

|ai | = ε
∑
i∈E

|ai |.

Similarly,∥∥∥∥
∑
i∈E

aiQ[1,n]Agi

∥∥∥∥ �
∥∥∥∥
∑
i∈E

aiAgi

∥∥∥∥ −
∑
i∈E

|ai |‖Agi −Q[1,n]Agi‖

� 4ε
∑
i∈E

|ai | − 3ε
∑
i∈E

|ai | = ε
∑
i∈E

|ai |.

This means that (gi), (AP[1,m]gi), and (Q[1,n]Agi) are all �ξ1 spreading
models, yielding (i) and (ii).

For (iii), first suppose that A preserves an �ξ1 spreading model. Then by (i),
there exists m ∈ N such that AP[1,m] preserves an �ξ1 spreading model. By (ii)
applied to AP[1,m], there exists n ∈ N such that Q[1,n]AP[1,m] preserves an �ξ1
spreading model. But

Q[1,n]AP[1,m] =
n∑
i=1

m∑
j=1

QiAPj .

Since this is a finite sum, we know that if for each 1 � i � n and 1 �
j � m, if QiAPj fails to preserve an �ξ1 spreading model, then Q[1,n]AP[1,m]

fails to preserve an �ξ1 spreading model. Thus if Q[1,n]AP[1,m] preserves an �ξ1
spreading model, there exists (i, j) ∈ {1, . . . , n}×{1, . . . m} such thatQiAPj

preserves an �ξ1 spreading model.

5. Rosenthal operators

5.1. Factorization of Rosenthal operators

Given an operator A:X → Y and K > 0, we let T1(A,K) denote the set
consisting of the empty sequence and those sequences (xi)ni=1 ⊂ BX such that
for all scalars (ai)ni=1, K

∥∥∑n
i=1 aiAxi

∥∥ �
∑n

i=1 |ai |. We then let NP1(A) =
supK>0 o(T1(A,K)), where o(T ) denotes the order of a tree. The operator A
is a Rosenthal operator if and only if NP1(A) is an ordinal. Given an ordinal
ξ , we let ��

ξ
1 denote the class of operators A such that NP1(A) � ωξ . It was
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shown in [3] that for every ordinal ξ , ��ωξ

1 is a closed operator ideal. The class
corresponding to ξ = 0 is class of super Rosenthal operators. Moreover, there
exist Rosenthal operators with arbitrarily large NP1 index, and there exist
Rosenthal operators on separable domains with arbitrarily large, countable
NP1 index. Injectivity and surjectivity of these classes are easily established.
The main result of this section is the following theorem, which is a restatement
of Theorem B item (i) from the introduction.

Theorem 5.1.
(i) For every ordinal ξ , ��ωξ

1 has the ��ωξ+1 factorization property.

(ii) ��ωξ

1 has the factorization property if and only if ξ has uncountable
cofinality.

As is now routine, we only need to show the following in order to deduce
Theorem 5.1(i).

Proposition 5.2. Suppose that for everym, n ∈ N, if NP1(QnAPm) � ωω
ξ

,
then NP1(A) � ωω

ξ+1.

Proof. Again, assume ‖A‖ = 1. We will show something stronger than
what is stated under slightly different assumptions. Assume that for anym, n ∈
N, NP1(Q[1,n]AP[1,m]) � ωξ . We will show that NP1(A) � ωξ+1. This will
imply the proposition as stated. Indeed, since ��ωξ

1 is closed under finite
sums, it follows that if NP1(QnAPm) � ωω

ξ

for every m, n ∈ N, then
NP1(Q[1,n]AP[1,m]) � ωω

ξ

, for every m, n ∈ N.
To obtain a contradiction, suppose that NP1(A) > ωξ+1 and

NP1(Q[1,n]AP[1,m]) � ωξ for every m, n ∈ N. Fix K � 1 such that
o(T1(A,K)) > ωξ+1. We fix n ∈ N and 1 = r0 < · · · < rn, 1 = s0 < s1 <

· · · < sn, and a member (yi)ni=1 of T1(A,K) such that for each 1 � i � n,

(i) 1/n1/q < 1/5K ,

(ii) ‖Q[s0,si−1]AP[r0,ri−1]yi‖ < 1/5K ,

(iii) ‖P(ri ,∞)yi‖ < 1/5K ,

(iv) ‖Q(si ,∞)AP[r0,ri−1]yi‖ < 1/5K .

We first finish the proof, and then show how to choose the yi vectors. Let
ui = P[r0,ri−1]yi , vi = P(ri−1,ri ]yi , and wi = P(ri ,∞)yi . Furthermore, let u′

i =
Q[s0,si−1]Aui , u′′

i = Q(si−1,si ]Aui , and u′′′
i = Q(si ,∞)Aui . Then Ayi = Avi +

Awi+u′
i+u′′

i +u′′′
i . Note that the vectors v1, . . . , vn are successively supported

in
(⊕

i Xi
)
�p

and have norm at most 1, since each yi has norm at most 1, so that
1
n

∥∥∑n
i=1 vi

∥∥ � n1/p/n = 1/n1/q < 1/5K . Since ‖A‖ = 1,
∥∥ 1
n

∑n
i=1Avi

∥∥ <
1/5K .
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Similarly, the vectors u′′
1, . . . , u

′′
n are successively supported, so that∥∥ 1

n

∑n
i=1 u

′′
i

∥∥ < 1/5K .
Furthermore, by our choices, ‖u′

i‖, ‖wi‖, ‖u′′′
i ‖ < 1/5K , so that

1
n

∥∥∑n
i=1 u

′
i

∥∥, 1
n

∥∥∑n
i=1Awi

∥∥, 1
n

∥∥∑n
i=1 u

′′′
i

∥∥ < 1/5K . From this it follows that

1

n

∥∥∥∥
n∑
i=1

Ayi

∥∥∥∥ � 1

n

∥∥∥∥
n∑
i=1

Avi

∥∥∥∥ + 1

n

∥∥∥∥
n∑
i=1

Awi

∥∥∥∥

+ 1

n

∥∥∥∥
n∑
i=1

u′
i

∥∥∥∥ + 1

n

∥∥∥∥
n∑
i=1

u′′
i

∥∥∥∥ + 1

n

∥∥∥∥
n∑
i=1

u′′′
i

∥∥∥∥
< 1/K.

But this is a contradiction, since (yi)ni=1 ∈ T1(A,K),
∥∥∑n

i=1
1
n
Ayi

∥∥ � 1/K ,
and this contradiction yields the desired conclusion.

We return to the choice of the vectors yi . Let us recall some notation and
facts mentioned above. Given a tree T and an ordinal ζ , T ζ will denote the
ζ th derived tree. Given a sequence t ∈ T , we let T (t) denote those non-empty
sequences s such that the concatenation t�s ∈ T , which is a B-tree. We note
that if t ∈ T , t ∈ T ζ if and only if o(T (t)) � ζ . Moreover, T ζ (t) = (T (t))ζ

for any t ∈ T and any ordinal ζ . We also note that for any r, s ∈ N, if T is a
B-tree in BX with o(T ) � ωξ , then there exist (xi)

j

i=1 ∈ T and scalars (ai)
j

i=1

such that
∑j

i=1 |ai | = 1 and
∥∥∑j

i=1 aiQ[1,s]AP[1,r]xi
∥∥ < 1/5K . Indeed, if it

were not so, then o(T1(Q[1,s]AP[1,r], 5K)) � o(T ∪ {∅}) > ωξ , contradicting
the hypothesis that NP1(Q[1,s]AP[1,r]) � ωξ .

First fix n ∈ N such that 1/n1/q < 1/5K . Let r0 = s0 = 1. Fix any
y1 such that the length one sequence (y1) is a member of T1(A,K)

ωξ (n−1).
We may do this, since ωξ(n − 1) < ωξ+1. Next, assume that (y1, . . . , yk) ∈
T1(A,K)

ωξ (n−k), r0 < · · · < rk , and s0 < · · · < sk have been chosen for some
k < n. Let t = (y1, . . . , yk) and let T = T1(A,K)

ωξ (n−k−1)(t). Note that
o(T ) � ωξ by our remarks above. Then there exist (xi)

j

i=1 ∈ T and scalars
(ai)

j

i=1 such that
∑j

i=1 |ai | = 1 and
∥∥∑j

i=1 aiQ[1,sk ]AP[1,rk ]xi
∥∥ < 1/5K . Let

yk+1 = ∑j

i=1 aixi . Choose rk+1 > rk such that ‖P(rk+1,∞)yk+1‖ < 1/5K and
sk+1 > sk such that ‖Q(sk+1,∞)AP[1,rk ]yk+1‖ < 1/5K . This completes the
recursive construction, since (yi)

k+1
i=1 ∈ T1(A,K)

ωξ (n−k−1).

Remark. For any 1 < p < ∞ and an operator A:X → Y , we may define
the index NPp(A) to be the supremum over allK > 0 of the orders of the trees
Tp(A,K) consisting of the empty sequences together with those sequences
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(xi)
n
i=1 such that for every (ai)ni=1 ∈ S�np ,

∥∥∥∥
n∑
i=1

aixi

∥∥∥∥ � 1, K

∥∥∥∥
n∑
i=1

aiAxi

∥∥∥∥ � 1.

We define ��ξ
p to be the class of those operators A such that NPp(A) � ωξ .

Arguing as in the previous proof, we may deduce that for any 1 � p <

q < ∞, if A:
(⊕

n Xn
)
�q

→ (⊕
n Yn

)
�q

is such that for all m, n ∈ N,

NPp(Q[1,n]AP[1,m]) � ωξ , then NPp(A) � ωξ+1. However, this does not
yield a factorization result, since the class ��ξ

p is not surjective. Indeed, the
first step of the proof of Theorem 2.1 is to pass from an operator A:X → Y

to the induced operator B:X/ ker(A) → Y , and the estimate we used was
actually on the NP1 index of B. For 1 < p < ∞, if A: �1 → �p is a quotient
map, NPp(A) � NPp(�1) � ω2 [9], while the induced operator is the identity
on �p and therefore has NPp index ∞.

Proof of Theorem 5.1(ii). If NP1(A) � ωω
ξ

and ξ has uncountable
cofinality, then the inequality must be strict [3], and there exists ζ < ξ such
that NP1(A) � ωω

ζ

. Then A factors through a Banach space Z such that
NP1(Z) � ωω

ζ+1 < ωω
ξ

.
Next, suppose that ξ has countable cofinality. If ξ is a limit ordinal, it

was shown in [3] that there exists an operator A with NP1(A) = ωω
ξ

. It
was shown in [9] that there is no Banach space with this NP1 index. Thus
anyZ through whichA factors must satisfy NP1(Z) > ωω

ξ

. We must consider
the cases that ξ = 0 and ξ is a successor. First assume that ξ = ζ + 1.
It was shown in [3] that for every n, there exists a Banach space Xn with
o(T1(Xn, 1)) > ωω

ζ 2n and NP1(Xn) = ωω
ζ 2n+1. Moreover, it was shown there

that the operatorA:
(⊕

n Xn
)
�2

→ (⊕
n Xn

)
�2

such thatAn := A|Xn = 2−nIXn
satisfies NP1(A) = ωω

ξ

. It follows from the construction that o(T1(A, 2n)) �
o(T1(Xn, 1)) > ωω

ζ 2n . We will show that this A does not factor through any
Banach spaceZwith NP1(Z) = ωω

ξ

. To that end, note that ifA factors through
Z, there exists a constant C such that o(T1(A,K)) � o(T1(Z,CK)) for all
K > 0. Suppose that NP1(Z) � ωω

ξ

, which implies that o(T1(Z, 2)) < ωω
ξ

.
Since supm ω

ωζm = ωω
ξ

, there exists m ∈ N such that o(T1(Z, 2)) < ωω
ζm. It

was shown in [9] that for any n ∈ N,

o(T1(Z, 2n)) � o(T1(Z, 2))n < (ωω
ζm)n = ωω

ζmn.

There exist n, n0 ∈ N such that 2n0 > C and 2n > m(n+ n0). Then

o(T1(A, 2n)) > ωω
ζ 2n > ωω

ζm(n+n0)

� o(T1(Z, 2n+n0)) � o(T1(Z,C2n)) � o(T1(A, 2n)), a contradiction.
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For the ξ = 0 case, we may appeal to our compact diagonal operator A on
c0 having no non-trivial Rademacher cotype. Since this operator is compact
and not finite rank, NP1(A) = ω. However, c0, and therefore �1, is finitely
representable in any Banach space through which A factors, whence the NP1

index of any space through which A factors exceeds ω.

We now prove restate and prove the second part of Theorem C from the
introduction.

Theorem 5.3. For every countable ordinal ξ , there exists a separable
Banach space S containing no copy of �1 such that every member of ��ωξ

1 ∩�
factors through a quotient of S.

Proof. By Theorem 5.1, every operator A:X → Y lying in ��1 ∩ �
factors through a separable Banach space ZA with NP1(ZA) � ωω

ξ+1 =: γ .
By a result of Dodos [13], there exists a separable Banach space S containing
no copy of �1 such that every Banach spaceZ with NP1(Z) � γ is isomorphic
to a quotient of S. In particular, every member of {ZA : A ∈ ��1 ∩ �} is
isomorphic to a quotient of S.

Remark. We note that a universality result analogous to Theorem C is not
possible for ��

ξ
1 or 
�ξ for any ordinal 0 < ξ < ω1. Indeed, in [3], for

every countable ordinal ξ , an example was given of a Banach-Saks operator
Pξ from a separable Banach space into itself such that NP1(Pξ ) > ξ . If S is a
separable Banach space such that Pξ factors through a quotient of a subspace
of S, then NP1(S) > ξ . From this it follows that if S is any separable Banach
space such that every Banach-Saks operator factors through a quotient of a
subspace of S, then S contains a copy of �1.

6. Relationship between the �1 and Szlenk indices

The factorization result of Theorem 5.1 can be improved for operators mapping
into Banach spaces with an unconditional basis. It was shown in [8] that for
any operator A:X → Y , NP1(A) � ωSz(A) (where we obey the convention
that ω∞ = ∞). It was also shown in [8] that if Y has an unconditional
basis, Sz(A) � NP1(A). It follows that if Y has an unconditional basis and
NP1(A) � ωξ , then Sz(A) � ωξ , andA factors through a Banach spaceZwith
Szlenk index not exceeding ωξ+1 by [7]. Then NP1(Z) � ωSz(Z) � ω1+ξ+1.
It follows that if ξ is infinite and A:X → Y is an operator into a space with
unconditional basis such that NP1(A) � ωξ , then A factors through a Banach
space Z with NP1(Z) � ωξ+1. We collect this in the following theorem.

Theorem 6.1. For any ordinal ξ , ifA:X → Y is a member of ��
ξ
1 and if Y

has an unconditional basis, A factors through a member of Space(��
1+ξ+1
1 ).
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The assumption of some form of unconditionality is necessary in order to
guarantee that Sz(A) � NP1(A). For example, the James tree JT space fails
to be Asplund, so Sz(JT ) = ∞, while NP1(JT ) is countable, since JT is
separable and does not contain an isomorph of �1. Moreover, we conclude by
presenting a more interesting class of examples demonstrating the lack of a
general relationship between the Szlenk and NP1 indices.

Proposition 6.2. There exists a countable ordinal γ such that for any
ordinal ξ , there exists an Asplund spaceZ such that NP1(Z) � γ and Sz(Z) >
ξ .

Proof. Given a set �, let JT� denote the completion of c00(�
<N) under

the norm
∥∥∥∥

∑
t∈�<N

atet

∥∥∥∥ = sup

{( n∑
i=1

∣∣∣∣
∑
t∈�i

at

∣∣∣∣
2)1/2

: (�i )
n
i=1 are disjoint segments

}
.

Here, a segment is a subset of �<N of the form {u : s � u � t} for some
s, t ∈ �<N. We let (e∗t )t∈�<N denote the coordinate functionals on JT�, noting
that these functionals all have norm 1. We claim the following facts.

(i) Any separable subspace X of JT� is isometrically isomorphic to a sub-
space of JTN.

(ii) For any set �, NP1(JT�) � NP1(JTN) < ω1.

(iii) If T is a well-founded B-tree on�, JT�(T ) := [et : t ∈ T ] is Asplund.

(iv) For any ξ , there exists a set � and a B-tree T on � such that
Sz(JT�(T )) > ξ .

These facts complete the theorem with γ = NP1(JTN). We remark that JT{0,1}
is the usual James tree space defined in [18] and JTN is the variant of the James
tree space defined in [16].

(i) By the definition of JT�, for any x ∈ JT�, there exists a countable
subset S(x) of �<N such that x ∈ [et : t ∈ S(x)]. From this it follows that
there exists a countable subset �(x) such that x ∈ JT�(x) ⊂ JT�. Hence
for any separable subspace X of JT�, there exists a countable subset �0

of � such that X ⊂ JT�0 ⊂ JT�. Fix an injection φ:�0 → N and define
ϕ:�<N

0 → N<N byφ(∅) = ∅ andϕ((λi)ni=1) = (φ(λi))
n
i=1. Then the operator

�: JT�0 → JTN which is the linear extension of the function et �→ eφ(t) is an
isometric embedding of JT�0 into JTN.

(ii) That NP1(JTN) < ω1 follows from the fact that JTN is separable and
contains no copy of �1. The fact that for any �, NP1(JT�) � NP1(JTN) fol-
lows from the fact that if NP1(JT�) > NP1(JTN), then since NP1(JTN)
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is countable, exists a separable subspace X of JT� such that NP1(X) >

NP1(JTN), contradicting (i).
(iii) We prove by induction on ξ that if T is a well-founded B-tree on �

with o(B) � ξ , JT�(T ) is Asplund. If ξ = 0, T = ∅ and JT�(∅) is the zero
vector space. Next, assume T is a tree on the set � with o(T ) = ξ > 0 and
JT�(S) is Asplund whenever S is a B-tree on� with o(S) < ξ . Let R denote
the set of members λ of � such that (λ) ∈ T , noting that since o(T ) > 0,
R �= ∅. For every λ ∈ R, let T (λ) denote the set of non-empty sequences s
in �<N such (λ)�s ∈ T . Then JT�(T ) = (⊕

λ∈R span(e(λ)) ⊕ [e(λ)�t : t ∈
T (λ)]

)
�2

. Moreover, since o(T (λ)) < o(T ) and for each λ ∈ R, et �→ e(λ)�t
extends to an isometric isomorphism of JT�(T (λ)) with [e(λ)�t : t ∈ T (λ)],
[e(λ)�t : t ∈ T (λ)] is Asplund. From this we easily deduce that JT�(T ) is
Asplund.

(iv) Fix an ordinal ξ and let� = [0, ξ ] ×N. Let T denote the B-tree on�
consisting of all sequences (ζi, ki)ni=1 such that n ∈ N and ζ1 > · · · > ζn. One
can easily check by induction that for any ordinal 0 � ζ � ξ , T ζ consists of
all sequences (ζi, ki)ni=1 such that n ∈ N and ζ1 > · · · > ζn � ζ . In particular,
o(T ) = ξ+1. Moreover, it is easy to see that for every 0 � ζ � ξ , 0 < ε < 1,
and t ∈ T ζ ,

∑
∅≺s�t e∗s |JT�(T ) lies in the ζ th ε-Szlenk derivation of BJT�(T )∗ ,

which shows that Sz(JT�(T )) > ξ .
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