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SOME DRAWBACKS OF FINITE MODIFIED
LOGARITHMIC SOBOLEV

INEQUALITIES

LAURENT MICLO

Abstract

Classically, finite modified logarithmic Sobolev inequalities are used to deduce a differential
inequality for the evolution of the relative entropy with respect to the invariant measure. We will
check that these inequalities are ill-behaved with respect, on one hand, to the symmetrization
procedure, and on the other hand, to the umbrella sampling procedure for Poincaré inequalities. A
short spectral proof of the latter method is given to estimate the spectral gap of a finite reversible
Markov generator L in terms of the spectral gap of the restrictions of L on two subsets whose
union is the whole state space and whose intersection is not empty.

1. Introduction

The resorting to the study of the evolution of the relative entropy is a tradi-
tional technique in the investigation of the convergence of Markov processes
to equilibrium. By differentiation with respect to time, one ends up with an
entropy dissipation. To compare this term with the relative entropy, one is led
to introduce modified logarithmic Sobolev inequalities. The goal of this note
is to present some examples of bad behaviors of these inequalities.

More precisely, the setting is as follows: consider V a finite state space
endowed with an Markov generator matrix L := (L(x, y))x,y∈V , namely sat-
isfying

∀ x �= y ∈ V, L(x, y) ≥ 0.

∀ x ∈ V, L(x, x) = −
∑

y∈V \{x}
L(x, y).

We assume that L is irreducible:

∀ x, y ∈ V, ∃ n ∈ Z+ : Ln(x, y) > 0.
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Let μ := (μ(x)
)
x∈V

be the unique invariant probability measure for L, i.e.
satisfying

∀ y ∈ V,
∑
x∈V

μ(x)L(x, y) = 0.

It charges all the points of V : μ(x) > 0 for all x ∈ V . On P(V ), standing for
the set of probability measures on V , define the relative entropy with respect
to μ via

∀ m := (m(x)
)
x∈V

∈ P(V ), Ent(m|μ) :=
∑
x∈V

ln

(
m

μ
(x)

)
m(x).

It is a way to measure the discrepancy between m and μ, in particular Pinsker’s
inequality asserts that the total variation between m and μ is bounded by the
square root of twice the relative entropy, cf. e.g. the book of Ané, Blachère,
Chafaï, Fougères, Gentil, Malrieu, Roberto, and Scheffer [1].

The Markov semigroup (Pt )t≥0 associated to L is given by

∀ t ≥ 0, Pt := exp(tL)

and to any initial law m0 ∈ P(V ), the corresponding distribution mt at time
t ≥ 0 is

mt := m0Pt .

It is the law of the position at time t ≥ 0 of a Markov process generated by L

and whose initial state is sampled according to m0.
The irreducibility of L (equivalent to the positivity of mt for any t > 0

and any initial distribution m0) implies that for any given m0 ∈ P(V ), mt

converges to μ for large t ≥ 0. One way to quantify this convergence is to
study the evolution of Ent(mt |μ) by differentiating it with respect to time:

∀ m0 ∈ P(V ), ∀ t ≥ 0, ∂t Ent(mt |μ) = −F(ft ), (1)

where ft is the density mt/μ and where

∀ f ∈ F+(V ), F (f ) :=
∑

x,y∈V

μ(x)L(x, y)f (x)
(
ln(f (x)) − ln(f (y))

)
with F+(V ) standing for the cone of non-negative functions on V . The quant-
ity F(f ) is called the entropy dissipation and is non-negative (it takes the
value +∞ if there exist x, y ∈ V with L(x, y) > 0, f (x) > 0 and f (y) = 0).
To adopt functional notation, define

∀ f ∈ F+(V ) \ {0}, E(f ) := Ent(f · μ/μ[f ]|μ),
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where f ·μ/μ[f ] is the probability measure admitting f/μ[f ] as density with
respect to μ. To transform (1) into a differential inequality for the evolution of
the relative entropy, one introduces the following modified logarithmic Sobolev
inequality:

∀ f ∈ F+(V ) \ {0}, α E(f ) ≤ F(f ),

where α ≥ 0 is the best constant such that this bound holds (hereafter called
the modified logarithmic Sobolev constant and denoted α(L) when we need
to emphasize the underlying generator).

The symmetrization G(f ) of the entropy dissipation F(f ) is defined by

∀ f ∈ F+(V ),

G(f ) := 1

2

∑
x,y∈V

μ(x)L(x, y)(f (x) − f (y))
(
ln(f (x)) − ln(f (y))

)
and its interest relies on the symmetric modified logarithmic Sobolev inequality

∀ f ∈ F+(V ) \ {0}, β E(f ) ≤ G(f ),

where β ≥ 0 is the best constant such that this bound holds (called the sym-
metric modified logarithmic Sobolev constant). This bound corresponds to the
previous modified logarithmic Sobolev inequality, but with L replaced by its
additive symmetrization (L + L∗)/2 in L2(μ): L∗ is the adjoint operator of L

in L2(μ), which is a Markovian generator, because μ is invariant for L. More
explicitly, one computes that

∀ x, y ∈ V, L∗(x, y) = μ(y)

μ(x)
L(y, x).

The invariant probability μ is said to be reversible with respect to L when
L∗ = L, i.e.

∀ x, y ∈ V, μ(x)L(x, y) = μ(y)L(y, x).

In this case, we have

∀ f ∈ F+(V ), F (f ) = G(f ). (2)

(In Lemma 2.1 below, we will check that conversely (2) implies that μ is
reversible with respect to L.) When μ is not reversible with respect to L, the
introduction of G and β is an attempt to come back to the reversible situation,
since μ is reversible for the Markov generator (L + L∗)/2. It is then natural
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to wonder if it would not be possible to compare the functionals F and G. An
easy relation is

∀ f ∈ F+(V ), F (f ) ≤ 2G(f ).

This is a consequence of the non-negativeness of the entropy dissipation F and
of the fact that for any f ∈ F+(V ), the quantity

2G(f ) − F(f ) =
∑

x,y∈V

μ(x)L(x, y)f (y)
(
ln(f (y)) − ln(f (x))

)
is also non-negative, since it can be viewed as an entropy dissipation for the
time-reversed generator L∗. As a consequence, we deduce that α ≤ 2β.

Nevertheless, in view of the above considerations, a reverse bound would
be more desirable, unfortunately there is no such relation in general:

Proposition 1.1. As soon as card(V ) ≥ 3, there exists an irreducible
Markov generator L on V such that

inf
f ∈F>(V )

F (f )

G(f )
= 0,

where F>(V ) is set of positive functions on V (considered instead of F+(V ),
just to avoid the value +∞ for F and G).

When card(V ) = 2, μ is necessarily reversible with respect to L, so that (2)
applies.

It is possible to avoid the comparison of the functionals F and G, in particu-
lar through the resort to logarithmic Sobolev inequalities. Due to the inequality

∀ a, b ∈ R+, 4
(√

b − √
a
)2 ≤ (b − a)

(
ln(b) − ln(a)

)
,

we have β ≥ 4γ , where γ is the (symmetric) logarithmic Sobolev constant,
namely the best constant γ ≥ 0 such that

∀ f ∈ F+(V ) \ {0}, γ E(f ) ≤ H
(√

f
)
,

where H is the energy associated to L:

∀ f ∈ F (V ), H(f ) := 1

2

∑
x,y∈V

μ(x)L(x, y)
(
f (x) − f (y)

)2
.

(F (V ) is the space of all real functions defined on V .) The energy is automat-
ically symmetric and there is no need to consider a non-symmetric version.
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Indeed, we compute that for any f ∈ F (V ),∑
x,y∈V

μ(x)L(x, y)f (x)
(
f (x) − f (y)

) = −μ
[
f L[f ]

]
= −μ

[
f L∗[f ]

]
= −μ

[
f

L + L∗

2
[f ]

]
= H(f ).

In our finite setting, it is well-known thatγ > 0 if and only ifL is irreducible,
see e.g. the lecture notes of Saloff-Coste [4]. Nevertheless, β can be more
convenient than γ , as there are natural examples on denumerable state spaces
with β > 0 while γ = 0 (see for instance Wu [5]). In fact, if one intends to use
the logarithmic Sobolev constant γ , it is pointless to consider the functional
G, since it follows from [3] that F and H are easy to compare directly: we
always have

∀ f ∈ F+(V ), F (f ) ≥ H(f ). (3)

In particular, this bound implies 2β ≥ α ≥ γ and so the (symmetric)
modified logarithmic Sobolev inequality constants α and β are positive for the
irreducible Markov generator L.

In fact, (3) and (2) imply that it would only have been interesting to bound
below F in terms of G in the non-reversible situations where it is possible to
estimate the modified logarithmic Sobolev constant β without going through
the logarithmic Sobolev constant γ .

Another usual way to measure the discrepancy between two probability
measures m and μ is the chi-2 distance defined by

χ2(m, μ) :=
√√√√∑

x∈V

(
m

μ
(x) − 1

)2

μ(x).

The corresponding functional is

∀ f ∈ F (V ), D(f ) :=
√

μ
[
(f − μ[f ])2

]
=
√√√√1

2

∑
x,y∈V

μ(x)μ(y)
(
f (y) − f (x)

)2
.
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Considering the evolution of the chi-2 distance of the time-marginal laws to
equilibrium instead of the relative entropy, one is led to the Poincaré inequality

∀ f ∈ F (V ), λ D(f ) ≤ H(f ),

where the spectral gap λ ≥ 0 is the best possible constant in this bound. There
is a general comparison between the logarithmic Sobolev constant and the
spectral gap: 2γ ≤ λ, cf. e.g. the book of Ané, et al. [1].

For any positive μ ∈ P(V ), consider the generator Lμ defined by

∀ x �= y, Lμ(x, y) := μ(y).

It is irreducible and μ is its unique invariant measure which is furthermore
reversible. It is the generator of the Markov process which, from any initial
distribution, waits an exponential time of parameter 1 and then choose as next
position a point sampled according to μ. In some sense, this process jumps
directly to equilibrium. In this situation, we have D(f ) = H(f ), for any
f ∈ F (V ) and by consequence λ = 1.

This observation is the key point in the intersection method. It amounts to
the following procedure for the Poincaré inequality. Assume that V = Ṽ ∪ V̂

and that Ṽ ∩ V̂ is the singleton {x0}. Let L̃ (respectively L̂) be an irreducible
and reversible Markov generator on Ṽ (resp. V̂ ). Denote by μ̃ and λ̃ > 0
(resp. μ̂ and λ̂ > 0) the reversible probability measure and the spectral gap
of L̃ (resp. L̂). Define χ̃ := λ̃μ̃(x0) and χ̂ := λ̂μ̂(x0). Consider L = L̃ + L̂,
namely the Markovian generator given by

∀ x, y ∈ V, L(x, y) :=
{

L̃(x, y), if x, y ∈ Ṽ ,

L̂(x, y), if x, y ∈ V̂ .

Theorem 1.2. The Markov generator L is irreducible and reversible and
its spectral gap λ satisfies

λ ≥ min
(
λ̃, λ̂, χ̃ + χ̂ −

√
χ̃2 + χ̂2 − χ̃ χ̂

)
> 0.

The hypothesis that Ṽ ∩ V̂ is a singleton can be relaxed, for instance the
proof of Theorem 1.2 can be extended immediately to the situation where the
restrictions of μ̃ and μ̂ on Ṽ ∩ V̂ are proportional. Then in the definition of
χ̃ and χ̂ , μ̃(x0) and μ̂(x0) have to be replaced respectively by μ̃(Ṽ ∩ V̂ ) and
μ̂(Ṽ ∩ V̂ ). More generally, the intersection method is a particular case of the
procedure of umbrella sampling described in Madras and Randall [2]. There,
the authors start with a reversible Markov transition kernel P and relate its
spectral gap to the spectral gaps of the restriction of P to several subsets and to



FINITE MODIFIED LOGARITHMIC SOBOLEV INEQUALITIES 153

the spectral gap of another transition kernel standing for the motions between
the subsets. Theorem 1.2 is more precise than Theorem 1.1 from Madras and
Randall [2], because we will encapsulate the spectral gaps λ̃ and λ̂ of the
subsets Ṽ and V̂ into the definition of the generator describing the motions
between them. This slight improvement could be extended to the setting of
Madras and Randall [2].

However, our goal here is to give a straightforward spectral proof of The-
orem 1.2 and to show that he relative entropy does not follow the same pattern:
when L = Lμ, we compute that

∀ f ∈ F+(V ), F (f ) = E(f ) − μ[ln(f )]

≥ E(f ),

where we used the Jensen’s inequality with respect to the convex function
(0, +∞) 
 u �→ − ln(u) to deduce the last inequality. In particular we get
α(Lμ) ≥ 1.

By analogy with the Poincaré inequality, one can wonder if there exists
a constant κ > 0 such that the following bi-modified logarithmic Sobolev
inequality holds:

∀ f ∈ F+(V ), κ Em(f ) ≤ F(f ), (4)

where the modified relative entropy Em(f ) is the quantity E(f ) − μ[ln(f )]
(since E ≤ Em, of course we have κ ≤ α).

Unfortunately, it is often not possible:

Proposition 1.3. The best constant κ in (4) satisfies

κ ≤ min
x �=y∈V

L(y, x)

μ(x)
.

In particular it is non-null if and only if the transition graph of L is the complete
graph on V .

The latter drawback prevents the obtaining of (bi-)modified logarithmic
Sobolev inequalities by an intersection method, whose crucial observation
was that D = H for L = Lμ. Of course (4) would have not been satisfactory
in itself, since F(f ) should be replaced by the dissipation functional associated
to Em(f ), namely

∀ f ∈ F>(V ),∑
x,y∈V

μ(x)L(x, y)f (x)

(
ln(f (x)) − ln(f (y)) + 1

f (y)
− 1

f (x)

)
,
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leading to a new type of modified logarithmic Sobolev inequality. But we will
not push further in this direction here.

2. Proofs and examples

Here we check the results presented in the introduction, via the exhibit of
appropriate examples for Propositions 1.1 and 1.3.

Let us begin with the assertion made after (2):

Lemma 2.1. The identity (2) is satisfied if and only if μ is reversible with
respect to L.

Proof. Fix x0 ∈ V and consider a function U ∈ F (V ) such that U(x0) =
0 > max

{
U(x) : x ∈ V \ {x0}

}
. For r ≥ 0, define fr ∈ F (V ) via

∀ x ∈ V, fr(x) := exp(rU(x)).

Letting r go to +∞ in F(fr) = G(fr), we get

−
∑
y∈V

μ(x0)L(x0, y)U(y)

= −1

2

(∑
y∈V

μ(x0)L(x0, y)U(y) +
∑
y∈V

μ(y)L(y, x0)U(y)

)
,

i.e., ∑
y∈V

μ(x0)L(x0, y)U(y) =
∑
y∈V

μ(y)L(y, x0)U(y).

Fix another point x1 ∈ V \ {x0} and let U(x1) go to −∞, while letting the
other other values of U fixed: it follows that μ(x0)L(x0, x1) = μ(x1)L(x1, x0).
Since this is true for all x0 �= x1 ∈ V , we get that μ is reversible with respect
to L.

Next we find an example leading to the assertion of Proposition 1.1.

Proof of Proposition 1.1. We begin with the case where V := Z3.
Consider the irreducible and Markov generator L given by

∀ x �= y ∈ Z3, L(x, y) :=
{

1, if y = x + 1,

0, otherwise.

Its invariant probability measure is the uniform measure μ on Z3.
For r > 1, let fr ∈ F>(Z3) defined by

fr(0) = 1, fr(1) = r, fr(2) = r/ ln(r).
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We compute that

F(fr) =
∑
x∈Z3

μ(x)L(x, x + 1)fr(x)
(
ln(fr(x)) − ln(fr(x + 1))

)
= 1

3

∑
x∈Z3

fr(x)
(
ln(fr(x)) − ln(fr(x + 1))

)
= 1

3

(
− ln(r) + r

(
ln(r) − ln

(
r

ln(r)

))
+ r

ln(r)
ln

(
r

ln(r)

))
= 1

3

(
− ln(r) + r ln(ln(r)) + r

ln(r)

(
ln(r) − ln(ln(r))

))
∼ r ln(ln(r))/3,

as r > 1 goes to +∞.
Similarly, we have

G(fr)

=
∑
x∈Z3

μ(x)L(x, x + 1)(fr(x) − fr(x + 1))
(
ln(fr(x)) − ln(fr(x + 1))

)
= 1

3

∑
x∈Z3

(fr(x) − fr(x + 1))
(
ln(fr(x)) − ln(fr(x + 1))

)
≥ 1

3
(fr(0) − fr(1))

(
ln(fr(0)) − ln(fr(1))

)
= (1 − r)(0 − ln(r))/3

∼ r ln(r)/3,

as r > 1 goes to +∞. In particular, we get

lim
r→+∞

F(fr)

G(fr)
= 0.

To get the same result on any finite set V with card(V ) ≥ 4, choose two
points x0 �= x1 in V and consider the irreducible and Markov generator L

given by

∀ x �= y ∈ V,

L(x, y) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1/(card(V ) − 2), if x = x0 and y �∈ {x0, x1},
1, if x /∈ {x0, x1} and y = x1,

1, if x = x1 and y = x0,

0, otherwise.
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By considering functions which are constant on V \ {x0, x1}, we are brought
back to the previous situation on Z3.

We now come to the positive result about Poincaré inequality.

Proof of Theorem 1.2. The Markov generator L is clearly irreducible:
from x0, the transitions of L̃ (respectively L̂) enable to rejoin any point of Ṽ

(resp. V̂ ) and to come back to x0. Furthermore, from the reversibility of μ̃

and μ̂ with respect to L̃ and L̂, it appears that if we can find a probability
measure μ on V which is proportional to μ̃ (resp. μ̂) on Ṽ (resp. V̂ ), then μ is
reversible with respect to L (and in particular is invariant for L). Indeed, this
is a consequence of the fact that if L(x, y) > 0 then x, y are both belonging
to Ṽ or to V̂ . We are thus looking for three positive constants ã, â and b such
that

μ := ãμ̃ + âμ̂ − bδx0

is a probability measure satisfying

μ(x0) = ãμ̃(x0) and μ(x0) = âμ̂(x0).

These equalities lead to

ãμ̃(x0) = b = âμ̂(x0) (5)

and since we must also have ã + â − b = 1, we deduce that the solution to
this problem is

ã = μ̂(x0)

μ̃(x0) + μ̂(x0) − μ̃(x0)μ̂(x0)
,

â = μ̃(x0)

μ̃(x0) + μ̂(x0) − μ̃(x0)μ̂(x0)

(and b given by (5)).
By definition of the energy H associated to L, we have for any f ∈ F (V ),

H(f ) := 1

2

∑
x �=y∈V

μ(x)L(x, y)
(
f (x) − f (y)

)2
= 1

2

∑
x �=y∈Ṽ

μ(x)L(x, y)
(
f (x) − f (y)

)2
+ 1

2

∑
x �=y∈V̂

μ(x)L(x, y)
(
f (x) − f (y)

)2
= ãH̃ (f ) + âĤ (f ),
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where H̃ (resp. Ĥ ) is the energy associated to L̃ (resp. L̂) and H̃ (f ) is standing
for H̃ applied to the restriction of f to Ṽ .

By definition of the spectral gaps λ̃ and λ̂, we have

λ̃D̃(f ) ≤ H̃ (f ) and λ̃D̂(f ) ≤ Ĥ (f ),

so that ∀ f ∈ F (V ), H(f ) ≥ ãλ̃D̃(f ) + âλ̂D̂(f )

= HK(f ),

where HK is the energy associated to the Markov generator K defined by

∀ x �= y ∈ V, K(x, y) :=
{

λ̃μ̃(y), if x ∈ Ṽ and y ∈ Ṽ ,

λ̂μ̂(y), if x ∈ V̂ and y ∈ V̂ .

It is immediate to check that μ is also reversible for K . Let θ be the spectral
gap of K . From the above considerations, we have

∀ f ∈ F (V ), H(f ) ≥ θD(f ),

namely λ ≥ θ . To prove Theorem 1.2, it remains to show that

θ ≥ min
(̃
λ, λ̂, χ̃ + χ̂ −

√
χ̃2 + χ̂2 − χ̃ χ̂

)
. (6)

To go in this direction, we compute that for any f ∈ F (V ),

∀ x ∈ V,

K[f ](x) =

⎧⎪⎪⎨⎪⎪⎩
λ̃μ̃[f ] − λ̃f (x), if x ∈ Ṽ \ {x0},
λ̂μ̂[f ] − λ̂f (x), if x ∈ V̂ \ {x0},
λ̃μ̃[f ] + λ̂μ̂[f ] − (̃λ + λ̂)f (x0), if x = x0.

Let W be the vector subspace of F consisting of the functions which are
constant on Ṽ \ {x0} and constant on V̂ \ {x0}. From the above expression, W

is left stable by K , so by reversibility, the same is true for W⊥, its orthogonal
complement in L2(μ). A function f ∈ F (V ) belongs to W⊥ if and only if
μ[f 1V \{x0}] = μ[f 1V \{x0}] = f (x0) = 0. In particular, for f ∈ W⊥, we have

∀ x ∈ V, K[f ](x) =

⎧⎪⎨⎪⎩
−̃λf (x), if x ∈ Ṽ \ {x0},
−̂λf (x), if x ∈ V̂ \ {x0},

0, if x = x0.
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It follows that λ̃ and λ̂ are the only possible eigenvalues of the restriction of
−K to W⊥ (and they are indeed eigenvalues, as soon as card(Ṽ ) ≥ 3 and
card(V̂ ) ≥ 3 respectively).

In the basis
(
1{x0}, 1Ṽ \{x0}, 1Ṽ \{x0}

)
of W , the matrix associated to K has

the form ⎛⎝−χ̃ − χ̂ χ̃ χ̂

χ̃ −χ̃ 0

χ̂ 0 −χ̂

⎞⎠ .

Thus the eigenvalues of the restriction of K to W are exactly the eigenvalues
of this matrix. The characteristic polynomial of the opposite of this matrix is

X3 − 2(χ̃ + χ̂)X2 + 3χ̃ χ̂X

whose roots are 0 and X± := χ̃ + χ̂ ±√χ̃2 + χ̂2 − χ̃ χ̂ . As a consequence,
we get, when λ̃ and λ̂ are eigenvalues of −K|W⊥ ,

θ = min
{̃
λ, λ̂, X−, X+

}
= min

{̃
λ, λ̂, X−

}
.

When λ̃ or λ̂ is not an eigenvalue of −K|W⊥ , we only end up with the lower
bound (6), thus always valid as announced.

Remark 2.2. Assume for instance that χ̃ ≤ χ̂ . Using the bound χ̃2 ≤
χ̃ χ̂ ≤ χ̂2 in the definition of X−, we find that

χ̃ ≤ X− ≤ χ̂ ,

with strict inequalities when χ̃ < χ̂ . Thus if furthermore μ̃(x0) is sufficiently
close to 1, we can end up with λ̃ < X−. In more “typical” situations where
μ̃(x0) and μ̂(x0) are quite small, we will get that X− < min

(̃
λ, λ̂
)
.

Finally, we come to the last assertion of the introduction.

Proof of Proposition 1.3. Fix x ∈ V and f ∈ F (V \ {x}) such that
μ[f 1V \{x}] = 1. For any ε > 0, define fε ∈ F+(V ) via

∀ y ∈ V, fε(y) :=
{

f (y)/Zε, if y �= x,

ε/Zε, if y = x,

where Zε := 1 + μ(x)ε is the normalization such that μ[fε] = 1. Letting ε

go to 0+, we get

Em[fε] ∼ μ
[
ln[1/fε]

] ∼ μ(x) ln(1/ε)
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and
F [fε] ∼

∑
y �=x

μ(y)L(y, x)f [y] ln(1/ε).

It follows that

κ ≤ inf

{∑
y �=x μ(y)L(y, x)f [y]

μ(x)
: f ∈ F (V \ {x}) with μ[f 1V \{x}] = 1

}
= min

y∈V \{x}
L(y, x)f [y]

μ(x)

whence the announced result, since x was arbitrary chosen.
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