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ON THE UNIQUENESS OF THE CAUCHY PROBLEM

LARS HORMANDER

1. Introduction. The purpose of this paper is to examine the scope of
the method introduced by Carleman [3] for proving uniqueness of the
Cauchy problem. The crucial point in this method is the proof of esti-
mates of the form

(1) r”g |Qu|*e*dx < C’S |Pule™dx, weCy(Q), Tz=1,

where P and @ are two linear differential operators (or systems), 2 an
open set, ¢ a fixed function, C and y constants, independent of » and 7.
(One has to have y 2 0 if (1) shall be useful.) Carleman proved such an
estimate with y =0 when @ is the identity and P is a first order system
in two variables with no multiple characteristics. Douglis [5] proved
that it is sufficient to assume that the real characteristics are not mul-
tiple. (Strictly speaking, these two authors used L! estimates correspond-
ing to the L? estimate (1).)

When P is the Laplace operator A, Miiller [8] proved an inequality of
the type (1) with y 2 0 for @ =1 and Heinz [6] extended it to first order
differential operators. Aronszajn [1] and Cordes [4] proved the same
result when P is a second order elliptic operator with variable coeffi-
cients.

Nirenberg [9] found that when P=P(D), @=Q(D), D= —i0d[ox, are
operators with constant coefficients and ¢(x)={x, N) is a linear form,
necessary and sufficient conditions for (1) to hold can be obtained from
a result of Hérmander [7]. In particular, (1) then holds with y 2 0 for all
@ of degree smaller then that of a homogeneous operator P if and only
if the derivatives 0P(()/0(;, have no common zero =0 of the form
{=¢&+itN with £ and 7 real. It then follows that there is unique con-
tinuation across a convex surface for the solutions of any differential
equation with principal part P(D). This result has been partially ex-
tended by Calderon [2] to variable coefficients (and arbitrary non charac-
teristic boundaries).

The starting point of the present investigation was an inequality of the
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form (1) proved by Pederson [10] with P=A4% any ¢ of order <4, and
y20. According to Nirenberg [9] this would not have been possible
with a linear ¢ since the characteristics are double. Thus it is natural to
raise the question of finding general precise conditions on P and @ for
the existence of a (non linear) function ¢ such that (1) holds. We give a
complete answer to this question (Theorems 1 and 2). The essential tool
in the proof is an inequality given recently by Tréves [11].

For an operator with principal part 42 we get a new proof of the unique
continuation by using the arguments of Nirenberg [9] and our new
inequalities. However, our results are mostly negative from the point of
view of unique continuation. They show, for instance, that the unique
continuation of the solutions of an elliptic equation with triple complex
characteristics, if true, cannot be proved with the Carleman method in its
present form.

2. The main theorems. In order to formulate as general a result as pos-
sible on the validity of (1) we have to take into account exactly how non
linear the function ¢ is. Thus consider the linear hull of the vectors

gradp(x) —grade(y), x,yef.

(We always assume that peC?.) This is a subspace of the dual space R,
and we assume the coordinates so chosen that the subspace is defined by
the equations

(2) fg=...=&=0.

Clearly 1=0 if and only if ¢ is a linear function. If a=(x;, ..., &) is a
multi-index, that is, a set of indices between 1 and v, we denote as usual
by |x| the total number of indices, j. The multi-index obtained by
deleting the indices > p in x will be denoted by «*.

TarorREM 1. If (1) is valid and grade(x)=N at some point in Q, we
have with a constant C,

(3) 7Y QW&+ i) 2 < 0, 3 |[PO(E+irN)2d*, 721, £eR,.
The constant C, ts bounded when x varies in a compact subset of Q.

The converse of Theorem 1 does not hold without additional condi-
tions on the function ¢ (cf. Theorem 4). We shall say that ¢ is essentially
uniformly convex of the quadratic form

3 Xyt gfontnt
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is positive definite in the plane y#*+!=...=y"=0 (it is independent of
these variables in view of the definition of u).

THEOREM 2. If! 9eC3(9) is essentially uniformly convex in 2, if Q is
bounded and

(49 TIRE+ITN)P £ 0, 3 |[POE+itN)P ™, w21, feR,,

where N =grade(x) and C, is independent of x€2, then the inequality (1)
holds true.

REMARES. 1) Note that these two theorems mean in particular that
(4) implies (3), hence that these conditions are equivalent. This is also
easy to prove by a direct algebraic argument.

2) When ¢ is a constant, the result is identical to Theorem 2.2 in Hér-
mander [7]; more generally, for linear ¢ it coincides with the variant of
these inequalities given by Nirenberg [9]. In fact, we have |x*|=0 in
that case. The improvements possible by using non linear weight func-
tions ¢ are thus due to the presence of the factors 7/*! in the right hand
side of (4).

An important special case is the following:

CoROLLARY. Let a homogeneous differential operator P(D) and a vector
NeR, be given. Then, in order that for every @ of lower order than P there
should exist a function ¢ with gradg(x)=N at some point in Q and for
which (1) holds with v 2 0, it is necessary and sufficient that

1° the real characteristics are simple, that is, the polynomials

POE), lalst,

have no common real zero £0;
2° the complex characteristics are at most double in the sense that the
olynomials
P POR),  al s 2,
have no common zero +0 of the form =&+ 1TN with real & and <.
(Note that, as recalled in the introduction, one has to require simple
complex characteristics also if one only works with linear functions ¢.)

Proor. The necessity of 1° is proved as follows (see also Theorem 2.3
in Hérmander [7]). Let P“(£), |x| <1 have a common real zero &, 0.
If we take a homogeneous @ with @Q(&;)= 0 of order m — 1, where m is the
order of P, we find that (4) does not hold by taking = fixed and &=1&,

1 The condition p&C3({2) means that @ is the restriction of a function in C? in a neigh-
bourhood of Q.
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where ¢ -~ o. As shown by Taylor’s formula, the right hand side will
grow at most as t207~? whereas the left hand side will grow as 2D,

The necessity of 2° is proved similarly, but here the factor 7/** in (4)
is important. Thus assume that

PO =0, x| <2, for ¢ =C(p=E&+itgN +0.

Put £=1&), v=t7,in (4). If m is the degree of P, the right hand side will
be of degree at most 2(m—3)+3=2m —3 in {. Thus if @ is homogeneous
of degree m —1 with @({,)+0, we find by letting { — co that (4) does not
hold with y > 0.

Suppose conversely that 1° and 2° are satisfied. We may also assume
that V40 since otherwise we have (1) with ¢ =0 already in virtue of
Theorem 2.3 in Hormander [7]. We shall prove that

(8) |E+1TN]2m=D < O M |PO(E+erN) 2+ 3 |POE +iTN)[2 72
fal=1 |a|=2

In view of the homogeneity it is enough to prove (5) when |&+¢7N|=1.
But then the inequality is trivial since the right hand side is non vanish-
ing. Indeed, this follows when 7=0 from 1° and when 7+ 0 from 2°.
By continuity it follows immediately that, with a different C, (5) is also
valid if N is replaced by an arbitrary vector IV, in a neighbourhood of NV.
Since some derivative of P is a constant 0 we get from (5)

(5" 1+ |E+iTN 2D < ¢ 3| POE N2, 721
lal %0
for all N; in a neighbourhood of N. Hence the remaining half of the
corollary follows immediately from Theorem 2, with y =0, if we take ¢
uniformly convex such that grad¢(x) is in a sufficiently small neighbour-
hood of N when zef2. The proof is complete.
We shall return later on to the study of operators satisfying 1° and 2°.

3. Proof of Theorem 1. Our argument here is mainly taken over from
the proof of Theorem 2.2 in Hormander [7] but the non linearity of ¢
makes some modifications necessary. Assuming that 0€Q and writing
N =grad¢(0) we have to prove (3). Let V be a function which does not
vanish identically such that the functions

V() = e V(ale, ..., a¢e, avtL, ..., 2%)
are all in C3°(22) when e < 1. With £e R, we shall apply (1) to the functions

u(x) = Ve(x)e’i<w,f>—'1<w,N) — Ve(w)ei<x’5+itN>_
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We note that, for instance, |u|2e%? = |V |2¢2% where

(6) p(x) = p(@)—(x, N) .

Since by hypothesis grady is always contained in the subspace (2),  is a
function of !, ..., x* only, and assuming (which is no restriction) that
¢(0)=0 we have for small «1, ..., a#

() = 0@+ ... +2¢°) .

We want to choose ¢ so that the exponent 7y is kept under control in the
support of V,, which leads us to put &2=1/7.

&

Application of Leibniz’ formula gives

(7) P(Dyu = <= &N} 31 p@(g 4 iaN) DV, (x)/|x|!
= @ N) 31 PO(E 4 aN) 2 M DV ()|,

and similarly for Q(D)u. With a constant @ we have 7|p(x)| <a when z
is in the support of ¥, in view of our choice of e. Hence we get from (1)

(8) r"S

37 QOE+iTN) A DV |l 12 dz

§ Ce4aS

X POE+itN) 21 D V|« * dx

after substituting 21, ..., 2# for z'/e, ..., 2#/c in the two sides. To com-
plete the proof of Theorem 1 we now only have to recall that, as noted
in Hoérmander [7], p. 179, if m is the highest of the orders of P and Q,
the quadratic form

of the array ¢,, symmetric for permutations of the indices «, is positive
definite. Estimating the two sides of (8) by means of this fact, we
immediately get (3). Since the last statement of the theorem is an ob-
vious consequence of the above arguments, the proof is now complete.

D V| d

lol =m

REMaRK. It follows with the same proof that the result would remain
unchanged if we suppose that an inequality similar to (1) is valid where
the square integrals are replaced by the squares of L? norms. (Carleman
used p=1.) Hence no improvement in the Carleman method can be
expected by operating in such spaces instead of in L2

4. A reduction of Theorem 2. The following theorem reduces the proof
of Theorem 2 to the study of the special case where @ =P®.

Math. Scand. 6. 15
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THEOREM 3. Let 2 be a bounded domain, peC%(L), and assume that (4)
holds with N =grade(x) for all xe€2. Then we have

9 S QD2 v de < Cy 3 r'“*‘S \PO(DyuPedz,  we CX(Q).

RemARK. The fact that Theorem 3, which does not involve any con-
vexity assumption on ¢, could be extracted from the proof of Theorem 2
given in a preliminary version of this paper was pointed out to the author
by B. Malgrange.

ProOF OoF THE THEOREM. Let y(x)=y(z!, ..., x#) be the characteristic
function of the unit cube defined by |2*| <}, k=1, ..., u. With a func-
tion ¥ 0 in Cy’(R*) with integral 1, we form the convolution @ =y * ¢
in the «1, ..., 2" space. This is a function in Cy(R*); moreover we may
assume ¢ so chosen that the support is contained in the cube
ekl <1, k=1, ..., u. We obviously have

1=2"0(—9g)
where g runs through all points
g = (gl’ "'7g”’0’ ""O)

with integral coordinates. This notation will be used in what follows.

In proving inequality (9) we shall use the partition of the unity given
by the functions 0((x—ge)/e) where we put é=7-t as in the proof of
Theorem 1. Write

(10) u,(x) = O((x—ge)le) u(x),
where u€C7’(2). Note that at most 2 functions u, can be different from
0 at any point.

Let u, be one of the functions which does not vanish identically. If z,
is in the support of u,, we have x,€Q, and the whole support will be

contained in the set |x —x,|* <2e. (Here and in what follows we denote
by |y|* the maximum of the numbers |y/| when 1<j<u.) Let

_ N, = gradg(z,) .
Since peC%(£2) we have

|p(2) — @(ay) — =2y, Npp| = Kl —z,|*®

where K is a constant. Hence we have in the whole support of , that

(11) (@) ~ play) —(x—2,, Np)| < 4K]7.
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Since x,€2 the inequality (4) is fulfilled with N =N, by the hypothesis
of Theorem 3. Thus we get by Parseval’s formula, if veCy’,

(12) TVS QUD+iTN ol de 5 €, 3 \ POD +iwN,) ol 7™ da .

If we set v=e"® "Ny  this inequality reduces to

(13) T"S QD) u,[? ¥ N0 de < 0228 |PO(D)u,|* <@ Ne) ¢lo*l da |
or, if we multiply both sides by ¢ (#@0 (%N and use (11),

(14) ﬂS IQ(D)u,|* &% da < Cye'®X ZS |PO(D)u,|* € 71" dax .

Obviously (14) is also valid if u,=0 identically.
Recalling now that at most 2" of the supports of the functions u, can
meet at any point and using Cauchy’s inequality, we get since u= X'u,

(15) RD)ul® = 2¢ 3 1Q(D)uyl?.
Adding the inequalities (14) and using (15) we thus get
(16) ﬂg QD) ul? &7 da < 210, 8K 3 71 S |P@(D)u, |? 7 da: .

o, g

Writing 69 = DFf@/|8|! we have
PODyu, = 3 POO(Dyu e 0P((x—ge)/e) .
B

Hence Cauchy’s inequality gives, if €' is an upper bound for 3" |0P?,

18] =m

A POD)u P = | X PCP(D)u Té(la*l‘rlﬁ*l)@(ﬁ)((x_ga)/g)!z
ﬁ .

< 02 Ip(a+ﬁ)(1))ul‘z LB
B

Noting again that no more than 2* functions u, are + 0 at any point and
that the number of multi-indices occurring in the sums is (v + 1)™ at most,
we get

(17) 27 .[la*] IP(W)(D)ugI2 g O(’V+ l)m 2/42 'P(a)(D)uIZ Tl"‘*l ,
&, 9 zx

which combined with (16) proves Theorem 3.
REMARK. In the case u=0 the proof should be read as follows: The

partition of the unity disappears and (13) with u,=w is already the
desired inequality.
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5. Proof of Theorem 2. Theorem 3 shows that to complete the proof of
Theorem 2 it only remains to prove the inequality

b

(18) 7 S |PO(D)uf? & de < 04S IP(D)uf? 7 dw,  ueC(Q)

assuming that ¢ and Q fulfill the assumptions in that theorem. When ¢
is a quadratic polynomial, the inequality (18) is almost identical with
the following inequality proved by Tréves [11] (Chap. IV, § 2, Théoréme
4.4)

(19) (ta)z S [P(“)(D)ulZ et12x1'+. . '+tl'2xv’ dx
< a! gm-lel S |[P(D) ’Mlz et12x1.+...+t,.2xv! dz, u e 08° .

In fact, let [z#+!|<B, ..., [2"|<B in 2 and set {,,,=...=B"1in (19).
We then obtain

(ta*)ZS |P(a)(D)uI2 et12w1’+...+t,,2x”’ dx < OS IP(D)uIZ eil'12:l31'+..,+t,,,2a:"2 dx ,
ue (),

where C = |x|!2m1%l B2lal-la*l) =1 Replacing u by uel®™ =y e~*<*~" and
P(D) by P(D +1n), we obtain

(20) (t“*)2S [P@(D)u? etlzac"+...+t,,zx"'+2(x, Y da

= OS P(D)uf? et?e" -4 tae 20em) g

Now let ¢ be a quadratic polynomial whose second order part only in-
volves «!, ..., a* and is bounded from below by ¢ (!’ + . .. +2*) where
¢>0. Then we claim that

(21) gl gl S |PO(D)ul? e da < C, S |IP(D)u|* e dz, weCy(Q),

where C; is a new constant depending only on B, m and ». This is an
obvious consequence of (20) with C;=C if the second order part of ¢ is
a sum of squares; the general case is however immediately reduced to
this by an orthogonal transformation of the variables «2, ..., 2. Thus
we have now proved that Tréves’ inequality really contains (18) when
@ is of the second order.

It remains to extend the result to an arbitrary essentially uniformly
convex @. This can be done by means of an argument similar to the proof
of Theorem 2. There we used a partition of the unity
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1= 3 0((z—ge)e)

with e=7-% in order that the exponent 27¢ should be nearly linear in
the support of each u,, which was necessary for the use of Fourier trans-
forms. Here, however, we only have to reduce ourselves to nearly quad-
ratic exponents in order to be able to use Tréves’ result (21), so we now
choose e= 7"}, As in the proof of Theorem 2 we again write

w=u,.

We denote by ¢, the Taylor expansion of order 2 of ¢ at the point z,.

Thus we have
[p(x) — @y ()] = O(jx—zy|*3) .

Since by assumption (2 is bounded and pe(C3(£2), the ordo will be uniform.
Since 7| —x,|**<e*r=1 in the support of u,, we have there

(22) Tlp) — g ()] = M,

where M is a constant. Now the assumption of essentially uniform con-
vexity for ¢ means precisely that the assumptions of (21) are satisfied by
@, with a constant ¢ independent of g and of 7. Thus we get

(23) 7!* ¢l S [P (D)u,|? e dz < C < |P(D)u,|* € dx,  we Cy(R2)

and using (22) we get if O = Cye*M ¢l

(24) S |POD) u, 2 5 de < CGS \PD)u, > do,  ue CX(Q).
Using (15) with @ = P® we obtain

(25) 7l* S |PO(D)u|? e dx < Cy 2“28 |P(D)u,|* € dz, ueCy(Q).
g

With the notations of p. 219 we have

P(D)u, = Y PO(D)u e OD((x—ge)le)

and hence by Cauchy’s inequality, noting that ¢ =13,
(26) |P(D)u,|* < C 3 |PO(D)ul® 731="1 .

Since no point is in the support of more than 2# functions u,, we get

(27) 2 IP(-D)uy|2 < 02;:2 lP(a)(D)ulz ‘CH"‘*I .
g

a=ao*
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Summing (25) for all multi-indices « with |x| £m and using the inequality
(27) in the right hand side, we get with C,=CCg4* (v +1)™

(28) X S |[PYD)up ¥ dx < O 3 v g |PP(D)ul|? e d .
When 72> C,+1 we shift the terms on the right hand side with |x|+0 to
the left hand side using the fact that when |x*| &0 we have

o — 0 V1 2 2l (1-0yf(Cr+ 1)) = 1 )(C,+1) .

Thus we get
3 (POt e de < 0,00+ 1) {IPO)up 7 da

when 74> (C,+1, which clearly proves (18) for all t=1. The proof is
complete.

6. The role of the convexity of ¢. Most of the inequalities of type (1)
referred to in the introduction involve a non convex function ¢ such as
—log|z|. As we shall see in the next section, the applications to unique
continuation theorems here get too special since we only have results for
convex p. However, the following theorem shows that our convexity
assumption cannot be relaxed without the loss of part of our results.

THEOREM 4. Let peC? be a function such that (18) holds true for every
first order operator P, with a constant C, independent of P. Then ¢ is
essentially uniformly convex.

Proor. To get simpler notations we place the origin at a general point
in 2. We write grad¢(0)=2N and

p(@) = @(0)+{w, N)+ A(x)+o(|2[?) .

Let y be a vector with |y|* = 0; we have to prove that 4(y)>0. To do so
we apply (1) to P(D)=(D —itN, y) and replace u by ue &N, Noting
that P@ =9/, 1 <j<u, for an « with |x*| =1, we get

rly*2 | fuf? e @ d < 0, (KD, yyu? el .

We now set u(x)=¢# V(z/e), where e2=17-1 and VeCy(R’). When ¢ is
small enough, weCy’(2), and passing to the limit when & — 0 after a
change of variables we get

(29) |y[*2§ V|2 4@ da < 0, S KD, y)V |2 4@ dys .
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As a limiting case (29) also holds if 4(x) is the second order part of the
Taylor expansion of ¢ at a point on the boundary of Q.

Now (29) implies that A(y) =0 if |y|*+0. In fact, if A(y) <0 for some
such y we set

V(z) = V(@) f(ex)

where V,=0 satisfies the equation (D, y>V ;=0 and has compact sup-
port modulo {ty}; feCy, f(0)=1. Writing (D, y)f=g, we get

(30) (7@ fepeads < 00§ 17@gen o1 o

and since
Slvo(xnzeuw dz < oo

we get a contradiction when ¢ -~ 0. Hence A(y) is semi-definite.

Now if A(y)=0 for some y satisfying |y|*=+0 we can repeat the same
argument. Indeed, since we already know that A4 is semi-definite, we
have A(x+ty)=A(x), hence the left hand side of (30) grows like -1 and
the right hand side tends to 0 as e. Thus we get again a contradiction.
The proof is complete.

REMARK. Even if it is only required that (18) holds for every fixed P
of order 1, with C, depending on P, it is still easily proved that the level
surfaces of ¢ are convex.

7. Results on unique continuation. We do not formulate the most
general result which can be deduced from Theorem 2, but give an im-
portant special case which already illustrates what can be achieved by
our inequalities and the Carleman method.

THEOREM 5. Let uw be a classical solution of an equation P(x, D)u=0
with continuous coefficients, which is defined in a neighbourhood of 0, and
let w=0 outside of a sphere passing through 0 with normal N at 0. Suppose
that the principal part of P(x, D) has constant coefficients and satisfies the
conditions 1° and 2° of the Corollary to Theorems 1 and 2. Then u vanishes
in a neighbourhood of 0.

Proor. Let A(x) £ 0 define the interior of a sphere through 0 containing
the sphere mentioned in the hypothesis, except for the origin; 4 is a
polynomial of the second order. Let P(D)=P(0, D). From (5') it follows
immediately, since « #0 in the terms on the right hand side, that

m—1
7 am-1-B|E 4 GoN, (2 < 07 3 [P@@E iR, vz 1,
0
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for all N, in a neighbourhood of N. Let 2 be a spherical neighbourhood
of 0 such that grad A(z) is in the permissible neighbourhood of N for all
zef. Then we get from Theorem 2

(31) 2 TZ(m—l—la”S |Dv|2 exd@ dx < C, S |P(D)v|? 4@ dx, 721,

o] < m—1
provided that veCy(RQ); obviously (31) extends by continuity to all
ve(Cy'. Now the operator P(x, D)— P(D) is of order m —1 and its coeffi-
cients tend to 0 when  — 0. Let £, be the smallest of the spheres 2
and {z; |x| <é}. Then we have
(32) |P(D)v? £ 2|P(x, D)v|2+w(6) ' |D>v|?,

|a] £ m—1

where the function w(d) -~ 0 when § - 0. Combining (31) with (32) and
choosing 4 so small that C,w(d) <1, we obtain

(33) 2 Tz(m—1~lal)g |D*v|2 e274@ dg < O S |P(x, D)v|? 2 4@ dx, 72>1.
lo] =m—1

Now let y be a function in C7(£2,) such that p=1 in a neighbourhood

of 0. Put v=vu in (33), which is permitted since veCy' (£2). The function

J = Pz, D)v

vanishes when A(z)> —x, for some »>0. In fact, f=P(x, D)u=0 in a
neighbourhood of 0, and since % vanishes outside a sphere contained in
the interior of the sphere A (x) <0 except for the point 0 the assertion is
obvious. Now (33) gives if we only keep one term on the left and restrict
the range of integration there

027 (—1) lv|2da = O(e2—9)
A@)>—}»
and hence
|v|]2dz = O(e=™) -0 when T->o00.
A@S —dx

Thus v and consequently % also vanishes in a neighbourhood of 0. The
proof is complete.

This theorem is weak in two respects: it assumes that the principal
part has constant coefficients and only gives unique continuation across
convex surfaces. The reason for the latter defect is that Theorem 2 is
restricted to convex functions ¢, a fact which was discussed in the pre-
vious section. To extend the results to variable coefficients is probably
considerably more difficult than in the case of simple characteristics
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studied by Calderon [2]. Our reason for believing that the situation is
much more delicate is that when there are double characteristics the
constant y in (1) cannot be taken >0 in estimating the derivatives of
order m — 1, in the constant coefficient case, whereas we can take y=1 if
all characteristics are simple.

Theorem 5 applies in particular to differential operators with prineipal
part 42. Thus Theorem 5 combined with an argument based on reflection
in a spherical surface used for A4 in Nirenberg [9] proves the following

THEOREM 6. A solution of a differential equation with principal part
A? and continuous coefficients vanishes identically if it vanishes in an open
sel.

This result is due to Pederson [10].
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