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FINITE BOUNDARY VALUE PROBLEMS SOLVED
BY GREEN’S MATRIX

S. 0. ASPLUND

0. Introduction. This paper proposes to study the problem of inverting
a non-singular symmetric matrix

(1) ¢ = [cy]
whose components satisfy
cp =0 for |k—d| > 1.

This matrix arises naturally in many technical problems (Clapeyron’s
equations etc.). The first and last rows of ¢ may be associated with
(finite) homogeneous boundary conditions of such problems. In the
limit when the number of equations under proper conditions tends to
infinity, the matrix tends to a linear self-adjoint differential operator
with in general variable coefficients, together with homogeneous boundary
conditions. Therefore the theory of such differential equations
(ey')' +fy =p

and especially the solution of their boundary problems by Green’s func-
tion may be simply founded upon properties of the finite matrices c.

But the type of matrices in question, which are called band matrices in
the sequel, are also of a more general interest. Givens [4] has shown that
every symmetric matrix can be transformed into a band matrix by a
finite number of rotations. Givens uses this result to compute the eigen-
values and eigenfunctions of a symmetric matrix. By what is here called
Green’s matrix, Egervary [3] has recently treated simple cases of beams
and suspension bridge girders on hinged supports but with no general
treatment of boundary conditions.

The method of inverting a band matrix which is given here is modeled
on the ordinary method of solving a linear differential equation by means
of a Green’s function. Another method has been proposed by W.J.
Berger and E. Saibel [2]. The method proposed in this paper is capable
of considerable generalization, which will be carried out in a forthcoming
paper by E. Asplund [1].
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Band equations. The system of equations cy=z or

n
Doyi=2, k=01 ...,n,
i=0

with detc,;+0, has “band form” if
¢ =0  for lk—1] > e.

The coefficients of the unknowns y can be in order the same in each
equation (except in the e first and e last equations); the system of equa-
tions can be said to have “‘constant coefficients’’. The coefficients may
also vary from equation to equation so that one may speak of ‘“‘variable
coeffficients”. Linear differential equations with constant or variable
coefficients give rise to band equations when they are transformed into
difference equations.

One- and two-point boundary problems. Among the e first unknowns,
e further linear relations can be prescribed at the same time as the e last
equations are dropped. Then all the unknowns can be found by con-
sidering the equations successively, starting from above. The problem
is then called a ‘‘ome-point” or ‘‘starting value’’ boundary problem of
order 2e.

The e first equations can also be interpreted, as prescribed homogene-
ous or inhomogeneous relations, ‘‘boundary conditions’, between the
unknowns

Yoo Y15 -+ 5> Y2e1
involved and analoguously for the e last equations. Then a ‘“two-point
boundary problem” is at hand or, simply, a ‘“boundary value problem’’.
The 7+ 1 — 2¢ middle pure band equations with n+1 unknowns then as
a rule can be directly solved: y=c-1z.

Another method to solve this boundary value problem is by Green’s
matrix as will be demonstrated presently.

1. Inversion of a band matrix. In a system of band equations for a
finite boundary value problem of the second order (e=1) (arising e.g.
when approximating a boundary problem of a second order linear differ-
ential equations by a difference equation):

€ €2 O O . 0 Yo 2
Clo €11 €12 0 . 0 Y 21
0 €y Cyp Coy - 0 = |z
cy =z, 21 C22 Co23 Ya 2 | m=n—1,

00 Col Cmm Cmn Ym Zm
|0 0 . 0 ¢y ¢

nm nn .l _yn_ _Zn_
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the first and last equations are interpreted as inhomogeneous boundary
conditions

(2) Co0YotCo1¥%1 = Zos Cnm¥Ym T Cpnl¥n = 2y
When z,=2, =0 the boundary conditions are homogeneous.

The system of equations cy=z can be solved by a fitting together of
the solutions c,, ¢, of two homogeneous ‘“‘starting value boundary prob-

lems’” and subsequent superposition:
Consider the homogeneous equations

(ccg); = 0, 1=0,1,...,n—-1;

cancelling (cc,),=0. For an arbitrarily chosen starting value ¢,, com-
pute c,, from the first equation

(cCa)o = CooCaptCo1€a1 = 0

and cg, ..., €y, from (cc,);=0 in order ¢=1, ..., n—1. (None of ¢y,
¢y ete. is supposed to be equal to zero. If any ¢y, ¢, etc. vanishes, the
matrix ¢ can be split in parts which can be inverted separately by this
same method.)

Consider also the homogeneous equations

(ccy); = O, 1 =1,...,n;

cancelling (cc,)o=0. For an arbitrarily chosen starting value c,, compute
¢y, from the last equation (cc,), =0 and ¢, ,,_,, .. ., ¢y from (cc,); =0 in
reversed order t=m, ..., 1. Writing

k-1 =j, k+1 =1

we have

(3)

=)

(Cde =0 18 €4iCoj+ CrpCap+ Cralar =
() = 0 18 CrjCoj + CrieCon + Cralor =

|
=)

Multiplication by ¢, ¢, and subtraction yields

Caj b Cak Cok

Cat Col

aj “bj

Cak: Cok

= W.

(4) Crj

For a symmetrical matrix c it follows inductively (write (4) for k=k+1)
that W takes on the same value for all &k from 1 to m. This W will corres-
pond to Wronski’s determinant in the theory of Green’s functions.

The solution of (1) will be obtained after further simplifications: Make
2z,=1 and all other z=0, including zy=z,=0, that is, z=1 ,=the (k)th
column of the unit matrix. Then the solution of the system cy®=1I ,
can be written

4%
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ac,, for 1=k
k) — at = ’
(9) Ys bey,, for k=1,
and thus
(6) Yi® = acy = boy, .

The (k+ 1)st equation in (1) is then (cy®), =1, or

(7) ckjacaj+ckkbcbk+cklbcbl = ]. .

Subtract b times (3b):
Crpj(ac,;—bey;) = 1.

Multiply by c,, and apply (6):

Cj (acajcbk—acakcbj) = Cpg »

or by (4): a = Cbk/W ’
and (6): b= c,/W.
Thus by (5)
C..C ,/W' for 1=k
w — g — ai “bk - ’
(8b) Y =0l = oW for k<.
For

cy®) =2z =1 .2,
instead of z=1 ;, the solution will be
¥® = cylz; .

When several elements on the right hand side 2z differ from zero and
when the inhomogeneous boundary conditions z,, z, are entered, super-
position of solutions y,* will yield the solution of cy==2:

(8a) y =c92 =clz,

where ¢c—1 may be called “Green’s matrix”

Ca0Cb0 Ca0Cb1 - Cao Con
C,0C C,1C . C,1C
(80) c-l = a0“b1l “al®™bl al “bn /W .

Ca0Cn Ca1Cbn - CanCon

The homogeneous boundary conditions y,=y, =0, 2,=2,=0 require
that ¢y, =0, ¢,,,=0 in (42) ¢ g=¢p,=0. Then Green’s matrix ¢-! will be
entirely bordered by zero elements that, together will all ‘border ele-
ments” in y and z can be omitted for convenience (‘‘abbreviated’”’ matrix,
cf. Egervary [3]).
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2. Finite boundary value problems of higher order. Finite boundary
value problems of a higher order 2e than the second are solved analo-
guously. The band matrix in question has

¢ =0  for lk—1i| > e.

If it is symmetric, the solution can always be written in terms of a Green’s
matrix of higher order.

The classical theory for Green’s functions follows by a passage to the
limit from these finite cases. Symmetry in the matrix ¢ of (1), will result
in self-adjoint differential expressions. For symmetric band matrices of
order two the differential expression will be of the form

() +fy =p.

3. Band matrices of divergence type. If the row sums of a band
matrix vanish, except possibly for the sums of the first and last rows,
the matrix will be said to be of divergence type, which name is borrowed
from the corresponding type of differential equation. If all row sums
vanish, the matrix is obviously singular. Berger and Saibel have discussed
in [2] the case when only one row sum differs from zero, which they call
the gnomonic symmetry case. It will here be supposed that both the first
and the last rows have non-vanishing sums, and also, according to a
remark in section 1, that all elements immediately above and below
the main diagonal are non-zero. Such a divergence type band matrix,
belonging to a ‘“‘divergence type’’ second order boundary value problem
Ny =z, may thus be written

-1 -1 -1 1
—Ngo ™t — Ny gy 0 . 0 |
-1 -1 -1 -1
N1 —MNor” —Nye Nyo . 0 l
- -1 “1_p -1
(9) N = 0 (O — Ny Ngg™1 . 0 '
-1 -1
| 0 0 0 bl (Y

By adjusting n,g, %, 2o, 25, the first and last equations Ny =z will
represent any prescribed homogeneous or inhomogeneous boundary con-
ditions.

The symbols N,, N, will be used to denote the counterparts of ¢,, ¢,
in section 1. If one assumes that N, =n,, the equations for N,
(NN,)y=0, (NN,),=0 etc., yield by induction

— N[tz + (Ngy—Ngo)/noy = 0, —1 + (Ngz—7g0)/m01 = 0,

Na = Ngo+ o1 = Ma1;
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= (N1 —Nyo)[ngy + (Nyo—Ngy)/nyg = 0, =1 4+ (Nga—ng1)/nyp = 0,

Nz = gy +15 = ngy;
etc., inductively.

(10) Ny = ng = Mg gy + Mg,k

=nao+n01+...nk_1'k fOl' k= 1’2,.'.,7&.
Analoguously assuming N,,=n,.

T — —_—
Now = My = Ny g + M0
=Nt ANty  for  k=01,...,m.

By (4), writing n,o+ %+ .« o + Wy + By + Py = Mgy

W =c Nao Nyo Nao Top /n _ | Mab Mob ’/ _ 1 0 ny /
=iy N AT . n 0= |, M1 = o1 »
a1 {Vp1 a1 M1y ab M1p | Nap T1p
(ll) W = - nub .

Entering (10) and (11) into (8a, b, ¢) yields the solution

(12a) y=~N7z,
o _ | —maus/nes  for i sk,
(12b) Nyt = — Ny Mp[ney for k <1,

Naofop Mao™1b - MaoMnp
NaoMipy Nga™ .M
(120) N-1 = a0’“1b "al’°1b al “nb /( _ nab) .

Pao®nb Pa1®nb - Man"nb

4. A geometric application: Deviation-angles in polygons. The poly-
gon of Fig. 1 has consecutive corners (x;, ¥;), (T, ¥x), (3, ¥;) on the ab-
scissa intervals x;, =, —x; and x,.
The corner deviation angle A4, (as
defined in Fig. 1) at x;, is

(13) Ay = 1= Y — Y —Y)|%i

or
Ay = 27y +

+ (=2 =2 Ny, + MYy

Adding equations for k=0 and », representing boundary conditions, all
corner deviation angles may be written
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(14)

[ =%t — 2! Zo 0 0. 0 [ % [ 4]
Tyt — Ty =2 X, O 0 vl | 4

| 0 0 0 0 ——xmn-l.—xnb“l y'ﬂ A.,,_

or

(15) Xy=4.

The matrix X may be called the “deviation-angle matrix’’. The solution
of (15) is given by (12) with n; =z, :

(162) y=X"4,
— X X[ for 1=k
1 -1 i Tip/ Tap sk,
(16b) X — Xy [T for k< d,
—xaoxob Laol1p - xaoxnb—
(16¢) x-1 = | YaoT1o ZTarTrp - xal-xnb [(~ ) -

La0Tnb La1Tnd - LanTnb

A correct choice of z,, and 4, in (14) expresses any prescribed homogene-
ous or inhomogeneous boundary condition.

Ayzqg

(¥1—¥0)/ %01

The inhomogeneous boundary condition in (14),

—Yol/Tao + Y1—Y0)[Tor = Ao >

is equivalent to the condition in Fig. 2, that the polygon side Ol shall
pass through P. For homogeneous boundary conditions 4,=0 and thus
the side 01 passes through @.
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