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FREE PRODUCTS OF
«-DISTRIBUTIVE BOOLEAN ALGEBRAS

D. J. CHRISTENSEN and R. S. PIERCE

Introduction. In [12], Sikorski introduced the notion of the free pro-
duct of a set of abstract algebras in a class %A. He showed that these
products exist under certain general conditions. In this paper we study
the free product in the class of «-complete, x-distributive Boolean
algebras, where « is an infinite cardinal number (see [6]). It is not obvious
that Sikorski’s existence proof applies to this class. Actually, it can be
used, but to show this requires extension of Birkhoff’s theorem in [1]
on the existence of free algebras.

In section one, we provide a general theorem which can be used to
establish directly the existence of free products of x-distributive Boolean
algebras. Our theorem extensively overlaps Sikorski’s, but its proof is
different and the conditions for its application are somewhat simpler.
Thus, its inclusion seems justified. Some general properties of free
products of «-complete Boolean algebras are proved in section two.
These are followed in section three by the central results of the paper:
the existence and characterization of the free x-distributive product.
This product is shown to be a generalization of the usual product of
Borel fields of sets and it possesses most of the pleasant features of the
latter. Finally, in section four, we examine the relation between the
free products for the classes of x-complete, x-representable and x-distri-
butive Boolean algebras. It is shown that if

x Z expR,,

the free x-complete product of infinitely many non-trivial x-complete
Boolean algebras is never the same as the free «-representable product
of these algebras. However, we do prove that the free x-representable
product coincides with the free «-distributive product for certain kinds
of x-distributive algebras.
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Notation. The Greek alphabet is used as follows: «, 8 and » denote
infinite cardinal numbers, &, %, {, », 4, p and » are used to represent
ordinal numbers, w, 7, g, 0 and 7 are reserved for indices, while ¢, y and
x designate functions. In the Latin alphabet, a, b, ¢ and d usually denote
elements of a set or algebra, while g, 4, ¢, j, k, I, p, ¢ and r stand for map-
pings and particularly homomorphisms or isomorphisms. Capital let-
ters represent sets or algebras and, in particular, capital German letters
stand for sets of sets or classes. Set operations are denoted by rounded
symbols in the usual way. The symbols I] and x represent the infinite
and finite product symbols for sets. These same symbols will also be
used in other technical senses which are explained below. For any set 4,
denote by PB(4) the set of all subsets of 4. The set of all mappings of
the set 4 into the set B is designated by the usual exponential notation
B4, If h is a mapping of the set 4 into the set B, then % induces mappings
h of B(4) into P(B) and k-1 of B(B) into B(A4) by the definitions

hC = {he | ceC}, for Cc<c 4,

and
hD = {acd | hacD}, for D < B.

The cardinality of a set A will be denoted by [4]|. For typographical
reasons, we denote

expa = |B(4)l, where [4] = «.

Most of our notation and terminology for partially ordered sets and
lattices is borrowed from [2]. The lattice operations of join, meet,
complement and the inequality relation are designated v, a, (') and =
(or =) respectively. The symbols o and » (with subscripts or bars)
always stand for the zero and unit of a Boolean algebra. The least
upper bound of a set

PP A=1{a, | o€}
in a partially ordered set, when it exists, is designated either as

Lub. 4 or Va,.
ceX
A similar convention applies to greatest lower bounds.
A Boolean algebra B is called x-complete if every A < B with [4| <«
has a least upper bound in B. Throughout this paper, we are concerned
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with «-complete Boolean algebras almost exclusively. It is convenient
therefore to suppress explicit reference to this fact. In particular, the
terms homomorphisms, subalgebra and ideal will mean homomorphisms
which preserve x-joins and subalgebras and ideals which are closed under
«-joins. When exceptions to this convention occur, they will be so in-
dicated.

A subset 4 of a Boolean algebra B is called an «-partition of B (or
just partition, when its cardinality is immaterial) if l.u.b. 4 =% (the unit
of B), |4] £x and 4 is disjointed, that is, if a+b in A4, then anb=o0
(the zero of B). If {4, | 0eX} is a set of partitions of an x-complete
Boolean algebra, and if |X] <«, then the product of these partitions,
denoted

HUEEAO ’
is defined to be all distinct elements in B which are of the form
A ag, where a,e4,.
oel

An «-complete Boolean algebra B is a-distributive if and only if [T, ;A4
is a partition for all choices of a-partitions 4, o€, |2| S« (see [6]). A
Boolean algebra B is called a-representable if B is the homomorphic
image of an «-field of sets.

1. Products of abstract algebras. The term abstract algebra will be
used in the following (standard) sense. For any ordinal number »x, a
»-ary operation on a set 4 is a mapping

O: 4*— A
of all well ordered sequences (of type x) of elements of 4 into 4. Let

G 7 S

be a well ordered sequence of ordinal numbers. An abstract algebra (or
just algebra) of type (xy, ..., %, ...);_,1is a system

CA50¢, ..., 0 oo e czs

where 4 is a non-empty set and O, is a x,-ary operation on 4. As is
customary, we will not distinguish between the abstract algebra
{A4;0y, ..., 0, ...5 ., and the set A of its elements. The concepts of
isomorphism, homomorphism, subalgebra and direct union of abstract
algebras are defined in the usual way (see [2]). In this connection it
should be noticed that the direct union in a class ¥ can be defined ab-
stractly as the dual (in the sense of the theory of categories—see the

6*
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appendix of [4]) of a free A-product, defined in 1.2 below. This procedure
has two advantages. First, it extends the scope of the main existence
theorem 1.5. More important however, it allows us to dualize this
theorem : under conditions dual to those in 1.5 (omitting (iii) of course),
the existence of a free A-product for all subsets of U implies the existence
of a direct union for all subsets of 9. Of course an abstract direct union
in %A may not be the same as the usual explicitly defined direct union.

If T' is any non-empty subset of the algebra A4, then there is a unique
smallest subalgebra of 4 containing 7', namely, the set intersection of all
subalgebras containing 7'. This subalgebra is said to be generated by 7.
In the proof of the existence of free products (theorem 1.5 below), we
need the following estimate of the cardinality of an algebra generated
by a subset.

Lemma 1.1. Let A be an abstract algebra of type (xy, ..., %s .. De s
Suppose T is a non-empty subset of A such that the subalgebra generated by
T isall of A. Then

Al = (1T + 1),
where oo =Lu.b. {X,, [A], [%o], ..., | ..., | E<i}.

Proor. Let §=(|T|+1)*. Then f>«, af=p and g*=p. Let u be the
least ordinal of cardinality >«. By transfinite induction, define subsets
8,6 of 4, indexed by the well ordered lexicographic product u-4. as
follows:

(@) S0 = TUO0H(T),

(b) S = T4,0U0:(Tip0), m < s § < 4,
where

To,0 = Yirer <o oSan e

and O(T, ) is the set obtained by applying O, to sequences from 7', .

By induction,
[Spol = p  forall n<pandé<i.

Indeed, ' o .
|S(o,o)l SITI+IT™ s g+~ = 8.
Assuming |8, .| <f for all (', &') <(», £) gives

[T(n,el Sy + 1A = aaf=p

and hence
|S(n,e)| p-S ﬂ+ﬂl"£| s p+p = B -
Let
S = U(n.E)Eu'ZS('J.E) .
Then

IS| = |ul-1A'B =P =§.
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If <ag, ..., a, "‘>;<"£ is a well ordered set of elements from S, then
(since |x; < «) there is some S, , containing all terms of this sequence.
It follows that

Olag, -, a;, ... ) €85 S S

Hence, S is a subalgebra of 4. But S contains T' and 7' generates 4, so
that S=4.

The concept of the free product of a set of abstract algebras is defined
relative to a class U of algebras. It will always be assumed that the
algebras in % are of the same type. Explicit mention of this assumption
will usually be omitted.

DerFiNITION 1.2. Let U be a class of abstract algebras. Suppose
{4, | wel}isa subset of A. A system{A; i), o consisting of an algebra
AeN and a family of isomorphisms

i, A,— A4

is called a free A-product of the set {A, | we} if the following extension
property is satisfied

(E) if {h, | we}isaset of homomorphisms h,: A,—~ B, where Be¥,
then there is a unique homomorphism h: A — B such that h,=hot,
Jor all w.

It is often convenient to speak of the algebra A as the free 9-product.
of the set {4, | weR}. This abuse of terminology causes no trouble,
since the context of the usage always makes the meaning clear.

It is by no means certain that free 9-products exist. However, if the
product of a set of algebras does exist, then it is unique in the following
sense: for any two free U-products

<A; iw)we{) and <g;iw>weﬂ
of a set {4, | weR}<?, there exist unique inverse isomorphisms

i: A- A and it A—> A4
such that

tot, =1, tol,=1
Indeed, the existence and uniqueness of ¢ and 7 comes immediately from
1.2. Since . . oL )

tolog, =1 and totol, =1,
the uniqueness in (E) requires that io7 and 704 be the identity mappings
of 4 and A respectively.
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The definition 1.2 of free UA-products is somewhat different from
Sikorski’s (in [12]). Instead of assuming the existence of specific iso-
morphisms ¢, of the algebras 4, into 4, Sikorski postulates the existence
of subalgebras 4, of A4 which are isomorphic to the given 4,. He as-
sumes that the set U, ., 4, generates 4, but he does not require that the
extending homomorphism 4 in 1.2 be unique. However, in important
cases, these two conditions are equivalent.

Lemma 1.3, Let (4;1,),.0 be a system having all the properties of 1.2,
except possibly the uniqueness of the homomorphism h in (E). Assume that
Ui 4, | weQ} generates A. Then h is unique.

Conversely, if the class A is closed under the formation of subalgebras and
(A; 1, peq 18 a free U-product, then U{i A, | wef} generates A.

Proor. If k and % are homomorphisms of 4 such that koi, =hoi, for
all we, then {acd | ha=ha} is a subalgebra of A4 containing
U{i,4, | wefR}. Since the latter set is a generator of A4, this implies
h=h.

To prove the converse, let C be the subalgebra of A generated by
U{i,4, | «efR}. By (E), there is a homomorphism i: A - C such that
toi,=1,. The uniqueness in (E) requires that ¢ be the identity mapping
on A. Hence, C=A4.

CoroLrLARY 1.4. Let A be a class of algebras which is closed under
Sformation of subalgebras. Suppose (A;1,),co 8 the free A-product of
{4, | weR}. Assume {h, | w2} is a set of homomorphisms

h,. A,~ B, where Beil.

Then the homomorphism
h: A— B  satisfying h, = hoi,
Sor all weQ is onto if and only of Uk, A, | weR} generates B.

Proor. Let C be the subalgebra of B generated by U{h, 4, | weR}.

Then since
h,A, = h(i,4,) < h4d forall wef,

it follows that C<hA. Also, h~'C is a subalgebra of 4 which contains
all 1,4, so by 1.3, A-1C=4. Thus
C = hh~1C = hA .
We conclude this section by proving the existence theorem for free

A-products. It is necessary of course to impose fairly strong restrictions
on A.
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THEOREM 1.5. Let U be a class of abstract algebras of type

gy o vvr Hey oo Deca

with the following properties:

(i) any algebra isomorphic to an algebra of A is in U;
(ii) any subalgebra of an algebra of WA is in A;
(iii) any direct union of algebras of W s in A.

Let {4, | wef} be a subset of . Suppose that for each o€ there is an
algebra B, e and a family h,, of homomorphisms

hyo: A,— B,

cw

with h,, an isomorphism. Then the free A-product of {4, | weR} exists.
Proor. (1) Let a=Lu.b. {X, [A], o], ..., |, ... | §<A} and
B =01+ 2,014,
as in 1.1. Choose a set M of cardinality 8. Let

SB = {<Bg? ggw>weﬂ I QGP}

be the collection of all systems in which B, is an algebra of %, the ele-
ments of which are in M, and for each wef, g,, is a homomorphism of
4, into B, Note that the class B is actually a set, in fact, a subset of

B x I, M) < IT, (M x A,) .

(2) The key to the proof of 1.5 is the following property of the collection
B if
hy,: A,—~ BeU

is a set of homomorphisms, then there is a o€ P and an ismorphism

g: B,—~ B
such that
by =g°g,, forall wel.

To prove this, let C be the subalgebra of B generated by U{k, 4, | w2}
Since Be, assumption (ii) implies CeA. By lemma 1.1, it follows that
|C] £B. Thus, there is a one-to-one mapping ¢ of C into M. Let N =¢C.
Clearly ¢ induces unique operations

Op 04 ... (E< A

on N in such a way that ¢ becomes an isomorphism. With these opera-
tions N is an algebra of U because of (i), and the mappings goh, are
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homomorphisms of 4, into N. Since N = M, there is a pc P such that
N is the algebra B, and g,,=g¢°hk,. Finally, define g=¢-1. Then g is an
isomorphism of B, into B satisfying

h’m = g ° gpw *
(3) Let D=2 p B, be the direct union of the algebras of 8. Assumption

(iii) implies that De. Denote by p, the projection homomorphism of D
on B,. Define

i,: A,—> D by i, a)=(...¢.a)...),

that is, 7, is the unique homomorphism such that

pgozw:: ggw‘

By (2) and the last hypothesis of the theorem, there exists for each
wef, some g such that g, is one-to-one. Thus, 7, is an isomorphism of
A, into D. Let A be the subalgebra of D which is generated by
U{i,4, | weR}. Then i, determines an isomorphism of 4, into 4
(which will still be denoted by ¢,). The proof is completed by showing
that (4;1,),cq is the free A-product of {4, | wel}.

Suppose {k, | w€2} is a set of homomorphisms

h,: A,—~ Bed.

w

By (2), there exists g€ P and an isomorphism
g: B,~ B  satisfying h,=goh,,.
Define
h: A- B by h=geogq,,
where g, is the restriction of p, to 4. Then
hoiw = gOQQOiw = gopgoiw = goggm = hw'

Since U {i, 4, | weQ} generates 4, lemma 1.3 implies that % is unique.
This completes the proof.

CorOLLARY 1.6. If the class N of abstract algebras satisfies conditions (i),
(ii) and (iii) of 1.5, and if, in addition, every algebra of U contains a one
element subalgebra, then every subset of U has a free A-product.

For in this case, we can satisfy the last condition of 1.5 by taking
B,=A,, with h_, the identity on 4, and h,, the unique homomorphism
of 4, onto the one element subalgebra of A, (for ¢+ w). Another situation
in which the last condition of 1.5 is obviously satisfied is where all the
algebras 4, are isomorphic. In particular (see Sikorski [12, p. 215]):
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CoroLLARY 1.7. Let A be a class of algebras satisfying (i), (i) and (iii)
of 1.5. Let A, be a free A-algebra with one generator and let y be any car-
dinal number. Then the free N-algebra with v generators exists and is the
free A-product of y replicas of A,. More generally, the free A-product of
any set of free N-algebras exists and is a free -algebra.

The free A-algebra with y-generators is an algebra Be containing a
subset G of cardinality y with the property that any mapping of @ into
an algebra A€ can be uniquely extended to a homomorphism of B
into 4.

Proor oF CororraRY 1.7. The existence of a free ¥-product of free
A-algebras comes from 1.5 and the observation that a free %A-algebra can
be mapped homomorphically into any algebra of the class %. The fact
that such a product is a free algebra is a consequence of the following
easily verified associativity property (see [12, p. 214]): let {4, | weR}
be a set of A-algebras; suppose 2=U, _,9Q,. where the Qs are disjoint
non-empty sets; assume that for each re7, the system{4_; 7., .. o, 188
free A-product of {4, | wef.} and that (4;7.), . is a free A-product of
el eel Then A ot Yueanrer

is a free -product of {4, | wef}.

This corollary contains Rieger’s theorem (in [9]) on the existence of
a free x-complete Boolean algebra with y generators, since the four ele-
ment Boolean algebra is a free algebra with one generator. It is easy to
modify the proof of 1.5 to establish the existence of free U-algebras
directly. Indeed, this was the method of proof used by Rieger in the
paper cited above. The same idea is also used in Birkhoff’s paper [1].

2. Products of Boolean algebras. An x-complete Boolean algebra is an
abstract algebra of type (1, x), where x is the least ordinal of cardinality «.
Our interest will be directed toward free 9-products, where U is a sub-
class of the class of all x-complete Boolean algebras. Ultimately, we will
concentrate on the class of x-complete, x-distributive algebras. However,
it is possible to establish some interesting properties of free products of
Boolean algebras in a more general setting.

It B is any Boolean algebra and % is a homomorphism of B, then £
will be called a principal homorphism if its kernel is a principal ideal.
Thus, if a is a non-zero element of B, the mapping

b>baa

is a principal homomorphism of B onto
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(@) ={ceB | ¢ £ a}

(with kernel (a’)), and every principal homomorphism (onto) is equiva-
lent to one of this form. The following restriction on the class A will
be needed in this section:

(iv) if Bisin % and A is a principal homomorphism of B onto C, then
Cisin U.

As noted in the proof of 1.7, free A-products satsify an infinite asso-
ciative law. We will now prove that free products in certain classes of
Boolean algebras also satisfy a distributive law.

ProrosiTioN 2.1. Let A be a class of x-complete Boolean algebras
satisfying conditions (i), (ii), (iii) (of 1.5) and (iv). Suppose

{B,| ceP}=A and |P| £ «.

Let B=2X,.p B, be the direct union of this set of Boolean algebras. Suppose
that B'e and for each o€ P that (B,; i, 1), where
': B—>B and i, B,—B,,

Qe e e

i8 a free A-product of {B’, B,}. Put B=ZX, pB,. Then there exist isomor-
phisms . _ —

t: B->B and ¢ B—>B
such that (B; ', i) is a free A-product of {B’', B}. In less precise terms:

B’X(Z EPBQ) = 2 EPB’XBQ'

e Q

Proor. (1) Let ¢,: B—~ B, and p,: B~ B, be the component projection
homomorphisms. Define i': B’ > B, i: B— B to be the unique homo-
morphisms satisfying

Ppot =14,  P,ot =1,09,.

F0) = (. 7 0) ...), i(e) = (- iy(g,C) ) -

It is clear that ¢’ and ¢ are isomorphisms.

(2) We will next show that i'B’UiB generates B. Let C be the sub-
algebra of B generated by i'B’UiB. For each e P, p,C is a subalgebra of
B_ with the property

Thus,

p.C 2 p(i'B' UiB) = p,i'B')UpB) = i",B' Uiq,B) = i',B' Ui,B,.
By 1.3, this implies p,C = B,. Hence, if @B, there exists ¢,€C such that

p,C, = pa foreach veP.
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Let bg=(. ce 04Uy ... 0, ... )EB, s0 that q,bezo,lf T+ and q9b9=ue.
Set .
C =V (b,Ac,).
eeP

Then ¢eC, because |P| <x. Moreover, for all 7P,
pta = v (pz(zbq) A ptaq) = V (ir(qrbg) A ptég) = pv-c-x = p'ta *
eeP oeP

Hence, a=ceC.

(3) Let Ae and suppose h': B'—> A, h: B~ A are homomorphisms.
Define b,e B as in (2). Then V, pb,=u and b,ab =0 if g+ 7. Moreover,
there is an isomorphism j,: B, (b,) satisfying

Jo(a,0) = bab, foral beB.

Let a,=hb,eA. By (iv), (a,) e, provided a,+o0. Letr,: A — (a,) be the
corresponding principal homomorphism. For any beB,

(r,oh)(b) = a,Ahb = hb, s hb = (ko j,0 q,)(b) .
Thus, .
r,0h = hoj,oq,.
By the extension property of the free product (BQ; ', 1,0, there exists
(for each g such that a,+0) a homomorphism %,: B, (a,) satisfying

hoj, = h,oi, and r,o b = h,od,.
The composition %, p, maps B into (a,). Define h: B~ A4 by
hb = Lub. {h(p,b) | o€ P, a, + 0}.

Since V,.pa,=u and a,Aa, =o for g+ 7, the mapping h is a homomorph-
ism satisfying -
r,oh = hyop,.

Q
Thus’ T . 7 . T . .
rgokoz = hgop@o@ — heozeoqe = ho]goqg - rgoh

and 7, r 7 3 T ./ ’

reohoz = hgopeoz = hgoq,e = Tgoh
for all ¢ such that a,+o0. This implies

hoi =h and  hoi =h.
It follows from 1.3, (2) and (3) that (B;1’, t) is a free product of {B’, B}.

DeriNiTiON 2.3. Let B be an x-complete Boolean algebra and let =
{4, | 0} be a set of subalgebras of B. The set P is called x-independent
in B if for any subset < with |X| Sa and any choice of a,eA, with
a,=+o for all o€ X, the greatest lower bound A,.»a, s not zero.
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ProrosimioNn 2.4. Let A be a class of «-complete Boolean algebras
satisfying (i), (ii), (iii), (iv) and having the property that every subset of A
admits a free N-product. Suppose (B; 1, ),co i a free A-product of the set
{B, | wel}. Then the collection of subalgebras {i,B, | weR} s a-inde-
pendent in B.

Proor. Let 2=, |Z| <x and ¢, a,+0in B for all ceX. The proposition

is proved by showing )
At,a, + 0.

Define 4,=B, if o¢X and A, =(a,) for seX. By (iv), A, €U for all
wef. Denote by p, the principal homomorphism of B, on A4, (the
identity if w¢ZX). Let (4;j,),.o be a free A-product of {4, | weR}.
This exists by assumption. Since (B;%,),.o is a free product, there
exists a homomorphism h: B - 4 satisfying ho¢,=j op, for all wef2.
Then
h( A iats) = Ajupaa) = Aoty = u + o
g€

ceX el

in A. Thus, A, si,a,%*0.

3. Free products of x-distributive Boolean algebras. To prove the
existence of free a-distributive products it is sufficient to show that the
last condition of 1.5 is satisfied. We will prove a slightly stronger result:
for any set {B, | we®} of «-distributive Boolean algebras, there is an
a-distributive Boolean algebra B containing subalgebras isomorphic to
the B 's.

Let {B, | weR} be a given set of Boolean algebras. Define @ to be
the set of all functions ¢ on £ such that

(a) @(w) is a non-zero element of B,
(b) {w | ¢(w)=+u,} has cardinality at most x.

In addition, let @ contain the symbol 0. Define ¢ Sw if p(w) Sy(w) for
all we. Set o <¢ for all pe®P. Then @ becomes a meet closed partially
ordered set with

) = @(w) A plw) if p(w) A p(w) + o for all w e 2,

() (pay 0 otherwise.

Moreover @ is disjunctive. Indeed, ¢ & v implies g0 and p(w,) £ p(w,)
for some w,, or else y=o0. Define y by y(w)=¢(w) for w+w, and
2(@4) = @(wo) A (Y(wo))’, or x =@ if p=0. Then

oy =¢ and yAap=o0.
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The disjunctive property implies that it is possible to embed @ as a
dense sub-semi-lattice in a complete Boolean algebra B (see [3]). Denote
by I1,., B, the subalgebra of B which is generated by ®.

For a later application we define another Boolean algebra by replacing
(b) above by

(b") {o | plw) *+ u,} is finite.

Denote the Boolean algebra obtained in this way by IT ., B,
We now define mappings j,: B,—~ II,.,B,. For a+o,in B, let j_a
be the function on @ defined by

(j.2)() = a, (J.0)w) =u, if ow*xn, and j,0,=o0.

Clearly j, is one-to-one. It preserves finite meets by (c). Suppose A< B,
and Lu.b. 4 =b. Evidently j_.b is an upper boound of the set {j,a | ac4}.
If j.b were not the least upper bound there would exist some y+o0 in @
such that p <j.b, but paj,a=o0 for all acd. If w*ax,

(j,,a)(a)) = u’m' S0 V’(w) Ajna(w) 4: Ow *
Hence y(rn) A (j,a)(w) =o0,, that is.
yir)aa =0 forall aecAd.

Therefore y(w)ab=0, and consequently aj,b=o. This contradicts
o+y<=j.b. Hence

v Jub =1lub.{j,a | acd}.
This shows that j, is an isomorphism which preserves all existing least
upper bounds in B,

In the same way we can define isomorphisms j',: B,— IT', ,B,,.
These isomorphisms also preserve any bounds which exist in B,.

DeriNiTioN 3.1. Let {B, | wef} be a set of x-complete Boolean alge-

bras. The system .
<Hm€.QBw;.7>meQ

will be called the minimal x-product of this set.

The concept of a minimal «-product generalizes to arbitrary cardinal «
the minimal o-product introduced in Sikorski’s paper [10]. However
Sikorski defines this concept in a somewhat different way. The choice
of terminology is justified by 3.10 below.

For convenience we summarize some evident properties of the products
defined above.

ProrposiTioN 3.2. Let {B, | weR} be a set of x-complete Boolean
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algebras. Then II, ,B, and IT . ,B, are x-complete Boolean algebras
and the mappings j, and j’, are a-homomorphisms. Moreover,

(a) U{j,B, | weR} generates 11, .,B, and U{j’ B, | wel} gener-
ates II' .o B.,;

(b) the subalgebras {j,B, | weRl} are x-independent in I, ,B,;

(©) {Agezde@s | 29, |2 &, a,eB,)} is dense in I1,.,B,;

(d) of T is an infinite subset of 2 and if, for each €T, a, is an element
of B, distinct from w,, then \,.pj @, =0 in IT', ., B,,.

The above construction, together with 1.5, establishes the existence of
free products in the class of x-complete Boolean algebras (see [12]). In
section 4, we will show that if each B, above is «-representable, then
I, ,B, is also «-representable. By this means, Sikorski’s theorem on
the existence of the free product in the class of x-representable Boolean
algebras is obtained. Our present aim is to show that if all B, are x-dis-
tributive, then I1,_,B, is also «-distributive, so that the free product
exists in the class of «-distributive algebras as well. The following
lemma, together with 3.2, proves this result.

LemMma 3.3. Let B be an «-complete Boolean algebra. Suppose
{B, | weR} is an x-independent set of subalgebras of B such that each B,
s «-distributive and U{B, | weRl} is an «-generator of B. Then the
Jollowing are equivalent:

(a) B s x-distributive;
(b) the set {A,cs0, | 22, || Sx, a,eB,} ts dense in B.

Proor. Let B be the normal completion of B, i.e., the unique complete
Boolean algebra containing B as a dense subalgebra. It is well known
(see [2, p. 58]) that the least upper bounds (when they exist) in B coincide
with those in B. Let B be the collection of all sets of the form

4 = H{aal’ a’vz} = { A a’mp(o) I (p€2): >
oelX oceX
where a,,=(a, )’ belongs to U{B, | wef} and |2| 2x. The elements of
every Ae‘® are pairwise disjoint, since if ¢y there exists reX with
o(t)+v(t). Hence ,
Uiy = (Aoy(o)
and

( A “aw(a)) A ( A “uw(a)) S Q) A Qryzy = 0 -
ceX oceX

We will show that under either hypothesis (a) or (b) each Ae is a
partition, that is,
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lub. 4 =u.
If B is «x-distributive this is clear:

lub.4 =V Aa,, = /\ (@, va,) =u

pe2Z oeX ex

in B and hence also in B. To prove that [T, ;{a,,, 02} is a partition
under hypothesis (b), let 2" be written as a disjoint union

X=U,.p2, where 7'cQ and oel

if and only if
{@ ag,} < B, .

(Note that since the algebras B, are independent, B,nB,={o, u} for
o+ 7. There is no loss of generality in assuming that a, +o, u for all
oeZX.) For each zeT", the product I1, ., {a,, a,,} is a partition of B,
by the «-distributivity. To prove that l.u.b. A =u, it suffices by (b) to
show that every non-zero A,.pa, (I'<c®, |T|<«, a,eB,) has non-zero
meet with some element of 4. If teT'n7’, then a, has non-zero meet
with an element of the partition /1, 5 {a,,. a,,}, say

b, =a,A A, 0,  where ¢ €25,

geXy

Forte T—(T'nT’),let b,=a,. For v € T'—(T'nT’), choose an arbitrary
@.€2% such that
A Q) F 0

cely

and let b, be this non-zero element of B. Since the family {B, | weQ}
is x-independent and the b, are not zero,

b= A b,%0.
€Ty
By construction,
b<Aa,
zeT
and
b=A A Cogie) = N Bopo) >
oeX

tel’ oeZy

where pe2* is defined by ¢(0)=g¢,(0) for ceX,. Hence

A AN, * 0,
el ceX
which is the required conclusion.
We next observe that the family ® has the x-refinement property, that
is, if
{Aelgep}_C_SB and |P| £ &,
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there exists A€ P such that A4 refines every A,: for each acA there
exists a,e 4, with a <a,. Indeed, suppose

e

A, = Haeze{a"cl, a%,} foreach peP
(where a?, = (a%,)" and |Z,| <«). Then clearly
4 = HQGP GEZQ{agal‘ agoz}

is in P and refines every 4,.

Let C be the set of all elements of B which are the least upper bounds
of subsets of the members of B. By [7, lemma 3.2], C is an «-complete,
«-distributive Boolean algebra containing all B, and such that the set of

all elements

{ Aaa|z:gsz|2,ga,aoeBJ

oceX

is dense in C. Since U{B, | w € 2} generates B, it follows that B<('.
This conclusion is true under either of the hypotheses (a) or (b). Thus.
if (b) holds, it follows that B is «-distributive (since it is a subalgebra of
an «-distributive Boolean algebra). If (a) holds, then the set

{ Aa, | 2@ 5 s a,eB,}

ceX

is contained in B and is dense in C. Hence, this set is also dense in B.

CorOLLARY 3.4. The minimal o-product algebra I, o, B, of a-complete,
a-distributive Boolean algebras is «-distributive.

THEOREM 3.5. The free a-distributive product of any set of x-complete.
a-distributive Boolean algebras exists.

Proor. This follows from 3.4 and 1.5.

Lemma 3.6. The free «-distributive product {(B;t,),.o of a set
{B, | wef} of x-distributive Boolean algebras has the property that the set

{Aib, | 2@ 12 54 beB,
oeX
s dense in B.

Proor. By 1.3, 2.4 and the assumed «-distributivity the hypotheses of
3.3 are satisfied.

ProrosiTiON 3.7. Let (B;1,),.0 be a free «-distributive product of the
set {B, | weR} of x-distributive Boolean algebras. Suppose A is x-dis-
tributive and h,: B, —~ A are homomorphisms for each wef. Leth: B—~ A
be the homomorphism such that h,=hot,. Then h is one-to-one if and only
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if each h,, is one-to-one and {h,B, | weR} is an x-independent set of sub-
algebras of A.

Proor. Suppose 4 is one-to-one. Then since h,=ho1 , each h, is also
one-to-one. Moreover, if 2= @, |2| <« and a,eB, are non-zero elements
for every o€, then

A ba, = A h(ia,) = h( A iaad) * 0

ceX ceX oceX
by 2.4 and the fact that A is one-to-one. Thus {k,B, | wefR} is an
«-independent set of subalgebras of 4.

Conversely, suppose each %, is one-to-one and {h,B, | wef} is an
«-independent set. Let b=0in B. By 3.6 there is a set 2'<= 2 of cardinality
at most « and for each o€ an element b, € B, such that

o+ Aib, £b.

oeX

Then clearly b,+o0 for all . Thus,

0+ A}z,abo=h( /\iaba) < hb.

ceX geX

This shows that the kernel of A is zero so that % is one-to-one.

THEOREM 3.8. Let {B, | wef2} be a set of x-distributive Boolean alge-
bras. A system (A4;j,ueq consisting of an «-complete, «-distributive
Boolean algebra A and a family of isomorphisms j,: B,— A (for each
wef) is a free a-distributive product of the set {B,, | wef} if and only if

(@) {joB, | weR}is an x-independent set of subalgebras of A, and,
(b) U{j,B, | wef} generates B.

Proor. By 1.3 and 2.4 a free «-distributive product has properties (a)
and (b). Conversely suppose (4;j,>,co has properties (a) and (b). Let
(B;i,),c0 be a free a-distributive product of {B, | wef}. Then there
is a homomorphism j: B 4 such that j,=je1, for all weQ. By 1.4
and (b), j maps B onto A. By 3.7 and (a), j is one-to-one. It follows
easily that (4;j,),cq is a free a-distributive product of {B, | we}.

COROLLARY 3.9. The minimal x-product of x-distributive Boolean alge-
bras is a free «-distributive product of these algebras.

Proor. By 3.2, 3.4 and 3.8.

CoROLLARY 3.10. Let U be a class of «-distributive Boolean algebras
satisfying conditions (i), (ii), (iii) of 1.5, (iv) of section 2, and such that

Math. Scand. 7. 7



98 D.J. CHRISTENSEN AND R.S. PIERCE

every subset of W has a free NA-product. Then a free N-product of a subset
of A is also a free x-distributive product of this subset.

Proor. By 1.4, 2.4 and 3.8.

In particular it follows from 3.10 that the usual x-product of a set of
x-fields is a free «-distributive product of these fields (considered as
x-distributive Boolean algebras).

4. Relations between free products. Let {B, | wef2} be a set of
x-distributive Boolean algebras. Then it is possible to form various free
products of these algebras, according to the class of algebras in which
they are considered. Important cases are the free x-complete product,
the free a-representable product, and the free «-distributive product. In
this section we consider the relations among these various products and
in particular the conditions under which they are the same.

LeMMA 4.1. Let A and B be classes of x-complete Boolean algebras
satisfying conditions (i) and (ii) of 1.5. Assume A<B. Let {B, | wef}
be a subset of A and suppose that (B; i,),ca (B'; ¥ »Dueca are free A- and
B-products respectively of this set of algebras. Then there is a unique
homomorphism h of B' onto B such that

i, =hot', forall wef.
Moreover the following are equivalent:

(a) h s one-to-one,

(b) B' e N.
If A is closed under the formation of homomorphic images, then (b) s
equivalent to

(¢) if Be®B contains subalgebras B, isomorphic to B, such that
U,..B, generates B, then Bedl.

This lemma is an elementary consequence of definition 1.2 and we
omit its proof.

The theorem of Loomis implies that the classe of R,-complete Boolean
algebras coincides with the class of R,-representable algebras. This is
not true for « = exp(R,), so we may ask whether the x-complete product
of a-representable algebras differs from the «-representable product
of these algebras. The following theorem settles this question for infinite
products.

TueorEM 4.2. Let {B, | weQ} be a set of wa-representable Boolean
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algebras, where x Zexp(R,). Assume that infinitely many B,’s contain at
least four elements. Then the free x-complete product of this set is not the
a-representable product.

Proor. Let B be the a-complete algebra IT', ., B, defined in section 3.
Let B,=j',B,. By 3.2 the algebra B, is an «-subalgebra of B and
U, B, generates B. Hence 4.2 follows from 4.1 (c) by showing that B
is not a-representable. If B were x-representable, it would be X,-distrib-
utive because x = exp(R,). Choose w,, o, ..., w,, ..., an infinite subset
of Q, and elements a,eB, which are neither the zero nor the unit.
Denote

anl = jwnan and a’nZ = jwn(an), .
Then by 3.2,

o0 o0
U= A (G VApns) 0=V, A8ppen>

n=1 n=1
where ¢ runs through all functions from the natural numbers to {1, 2}.
Therefore B is not 8,-distributive.

This theorem gives no information about the free products of finite
sets of Boolean algebras. The following result shows that finite products
in the class of x-complete Boolean algebras may even be «-distributive
products.

TuroreM 4.3. Let By, ..., B, be a-complete Boolean algebras all of
which satisfy the following condition: if {4, | c€X} is a set of x-partitions
of B; and |X| S«, then there is an x-partition of B; refining all 4,. If A
is a class of a-complete Boolean algebras closed under the formation of sub-
algebras, and if (B; i;;_q,s, .. a 15 @ free U-product of {B,, ..., B,}, then
B is x-distributive.

Proor. By the general distributive law ([2, p. 165]), the sets of the

form .
GA A . A A, = (e A . ATa, | a;E 45},

with 4; an «-partition of B;, are «-partitions of B. Let ‘B be the class
of all such patitions of B. It is clear from the refinement property of
the a-partitions of each B; that any subset of B which hais cardinality
not exceeding & will have a common refinement in B. Let B be the sub-
algebra of B composed of joins of subsets of the a-partitions in B. By
[7, lemma 3.2] B is an x-complete, x-distributive subalgebra of B which
clearly contains i;B; for j=1, ..., n. Thus according to 1.3, B=B, so
that B is «-distributive.

A class of Boolean algebras to which 4.3 applies is obtained as follows.

*
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Let X be a set of cardinality f. Let (7,; consist of all ¥ < X such that
either ¥ or X — Y has cardinality at most «. Then &,; is an x-field. Any
«-partition of G, consists of one set ¥ with [X — Y| <«, together with at
most « sets of cardinality <«. It is clear that a set B of partitions of
this kind has a common refinement of the same type, provided |B| <.
Note that if # <«, then (4 is a complete atomic Boolean algebra.

Now let us consider the relation between the free x-representable and
free «-distributive products. First note the following general fact.

Lemma 4.4. Let A and B be classes of x-complete Boolean algebras with
A< B. Assume that the free A-product of any subset of W exists and that A
is closed under the formation of subalgebras. Then a free A-product of a set
{4, | we}=Wis a free B-product of the set if and only if

(L) for any set {h, | wefl} of homomorphisms h,: A,— B, where
BeB, there exists AW, a homomorphism k: A—~ B and a set of
homomorphisms g,: A, — A such that h,=kog, for all we®.

Proor. Suppose that the free A-product (C;i, ), .o of {4, | weR}
is a free B-product as well. Then there is a homomorphism A: C -~ B
satisfying )

h,=hoi, foral o,
so (L) is satisfied with A=C, k=h, and g,=1,. Conversely, let (L) be
satisfied. Then there is a homomorphism g: C — 4 such that

g, = goi,.
The homomorphism kog: C'— B satisfies
(keg)ot, =kog, =h,.
Thus by 1.3 the product {C'; ¢,), .o is also a free B-product.

In particular, if 2 is the class of x-distributive algebras and % is the
class of a-representable algebras, then 1.7, 4.4 and 3.10 give the following
theorem due to Sikorski (see [11]).

COROLLARY 4.5. A4 free x-representable Boolean algebra is isomorphic to
an «-field of sets.

It is now possible to give a simple proof of Sikorski’s theorem (see
[12]) on the existence of the free «-representable product of any set of
a-representable Boolean algebras. By 1.5 and 3.2, we only have to show
that the minimal «-product [1, ., B, of «-representable Boolean algebras
is a-representable. Let k,: F,— B, be homorphisms of the free «-re-
presentable algebra ' onto B,. Let (F;1,),.q be the free a-representable
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product of {F, | wef}. That this product exists and is in fact a free
«-representable Boolean algebra follows from 1.7. Let k: F— Il _,B,
be the homomorphism satisfying

koiy=j,ok,.

By 1.4, k maps F onto ], ,B,. Since F is an «-field by 4.5, we con-
clude that 1., B, is x-representable.

Let A be a class of x-complete Boolean algebras satisfying the condi-
tions (i), (ii) and (iii) of 1.5. Following the terminology of homological
algebra (see [4]), we will say that 4 is 9-projective (or projective with
respect to A) if A4eN, and if, for any homomorphisms h: 4 - B and
p: C— B, where B, Ce and p is onto, there exists a homomorphism
g: A— C such that h=pecg. The following properties of projective
algebras are easy consequences of this definition and 1.2 (see [4, Ch. I,
2.1 and 2.2).

w

(4.6) Any free A-product of A-projective Boolean algebras is A-projective.

(4.7) An x-complete Boolean algebra A is UA-projective if and only if
there is a free -algebra F and homomorphisms q: F -~ A and k: A - F
such that qok is the identity mapping on A.

Now let U be the class of x-representable algebras. By 4.5 and 4.7, any
A-projective algebra is «-distributive and therefore projective with
respect to the class of «-distributive Boolean algebras. The converse is
also true by 4.7. Hence, by 4.6:

THEOREM 4.8. Let {B, | we2} be a set of x-complete Boolean algebras,
each of which is projective with respect to the class of x-distributive Boolean
algebras. Then the free x-distributive product of {B, | wef} is also a free
w-representable product.

By 4.7 and 4.5, any «-distributive algebra is projective and any
projective «-distributive Boolean algebra is an «-field. However, it is
not easy to decide whether or not a specific «-field is projective in the
class of «-representable Boolean algebras. Hence the scope of 4.8 is
somewhat obscure. Our next theorem singles out a more tangible class
of «-distributive algebras in which the «-representable and «-distrib-
utive products coincide, namely the class considered in 4.3.

THEOREM 4.9. Let {B, | weQ} be a set of x-complete Boolean algebras,
each of which has the following property: if {A, | c€X} is a set of a-parti-
tions of B, and |X| S«, then there is an x-partition of B, which refines all
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A, oeX. Then the free o-distributive product of {B, | wef2} is also «a
free a-representable product.

Proor. Let (B;1,),.o be a free x-representable product of
{B, | we}.

Then B is the homomorphic image of an «-field. Moreover, it is possible
(see [8]) to find a representation of B which “splits’ in the following
sense: there is an «-field F, a homomorphism p of ¥ onto B preserving
«-joins (that is, a homomorphism of F considered as an «-complete
Boolean algebra) and an isomorphism j of B into F (preserving only
finite joins) such that poj is the identity mapping of B onto itself. Let
D be the «-field in F generated by jB. Clearly p maps D onto B. Define
J to be the «-ideal of D generated by the elements of the form

I(4,) = (U{jG,a) | ac4d,}),

where A4, is an «-partition of B,. Let B=D/J and define q: D — B to be
the natural projection of D onto its quotient algebra D/J. We will prove
the following facts:

(a) J is contained in the kernel of p, so there exists a homomorphism
l: B— B satisfying p=1logq;
(b) (B, judwee is a free a-distributive product of {B, | wefR}, where
jw = q oj ° im'
From these it will follow that (B; j,), .o is a free x-representable product.
Indeed, given homomorphisms %,: B,— B, into an «-representable
Boolean algebra B,, there exists a homomorphism %4: B — B, such that
h,=hoi,. Then hol: B B, satisfies
holojw = holoqojoiw = hopojoiw = hoiw = hw7
for all we®.
To prove (a), note that

p(I(4,) = (V{p(jG,a) | ac4,}) = (V{i,a | acd}) =u =o0.

Hence, every I(4,) is in the kernel of p. Since the kernel of p is an
«-ideal containing the set which generates ./, it must contain /.

The proof of (b) will be based on 3.3 and 3.8. First observe that since
U{i,B, | weR} generates B and jB generates D, it follows that
U{j,B, | e} generates B. Next, suppose that for each o in an index
set 2= 2, with |2| £ «, the element a, is a non-zero element of B,. Then

Aj,a,+0 in B.

ceX
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Indeed,
U Adot) = A Lsa) = A L{g(ili,a,))
ceX

oceX cel

A p(jli,a,) = Ay, % o
oceZ oelX
by 2.4. In particular, every j, is one-to-one.

We wish to show next that the elements of the form A, ;j,a, are
dense in B. For this purpose, consider the collection 9 of all partitions
A of D for which there is a collection {4, | 0€2}, |Z| Z«, of x-partitions
of B, such that every aeA is either contained in U,_, I(4,) or equal to
a set of the form N__,j(i,a,), where a,e A,. It is easy to see that since
every collection of x-partitions of B, with cardinality <« has a common
refining «-partition, the set ‘§ has the x-refinement property. Hence, by
[7, lemma 3.2], the set of all unions of subsets of the partitions of PR
form an «-field which contains U, _,j(¢,B,) for all we®2, and therefore
also contains D. This implies that every a€D is either contained in
some U _;I(A4,), or contains a set of the form N _;j(i,a,), with a %o,
in B,. Consequently, if

a@a=pa+o0 in B,

there exists 2= Q with |X| <« and a,+0, in B, for each o€l such that

a = A)st, ¥ 0.
oceX

That is, elements of the form A,.sj,a, are dense, as claimed.

To complete the proof of (b), it suffices to show that the mappings j,
are isomorphisms (preserving «-joins). We have already seen that the
j,’s are one-to-one. Let 4, be an «-partition of B,. Then

U{jli,a) | aed,}ul(4,)
is the unit of D. Hence,
Vijua | aed,} = V{g(jli,a) | ac 4}
= q(U{j6,a) | aed,})uq(l(4,)

is the unit of B. Consequently (see [8, 3.2 and 3.3]) j,, is an isomorphism.
It is possible to show that neither of the classes of algebras in 4.8 and
4.9 contains the other. Clearly, the free a-representable Boolean algebra
with x generators does not satisfy the hypotheses of 4.9. On tne other

hand, the algebras @, in the example following 4.3 above are not pro-
jective in the class of x-distributive algebras, provided
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f > exp(exp«x) .

To see this, note that G,; has # distinct atoms, so §(G,;)=p (where
6(B) denotes the smallest cardinal i such that every disjointed set of
non-zero elements of B has cardinality at most v). However, if F is a

free «-representable Boolean algebra, it is possible to show, using 1.7,

4.5 and 3.9, that
O(F) = exp(expox) .

Thus, G,,; cannot be isomorphic to a subalgebra of any free x-represent-
able algebra (hence, by 4.7, cannot be projective) if g >exp(exp«).

We have given no examples of x-distributive products which are not
also «-representable products. Such an example, for the case x=R,,
was constructed by Sikorski in [13]. If Sikorski’s example is translated
into our notation and generalized slightly, the following result is obtained.

ProposiTIiON 4.10. Let B, be an x-complete Boolean algebra whose normal
completion is x-distributive. Suppose B, is an «-complete and «-distributive
Boolean algebra. Let {B;1,, 1,y be a free x-distributive product of B, and
B,. Assume that an element a B exists such that the ideal

Jy={beB, | i,bray = o}
s not principal. Denote by J,* the ideal
Jy*=1{beB, | baa=o0 forall acd,}.

Then B,[J,* is x-complete, x-distributive and the free x-distributive product
of B,[J,* and B, is not a free x-representable product.

By combining this result with the existence theorem for projective
sets of class 1 which are not of class 0 (see [5, pp. 360—-368]) in a separable
metric space, one obtains Sikorski’s example. The attempt to generalize
Sikorski’s procedure to higher orders of completeness leads to a new realm
of problems lying beyond the intended scope of this paper.
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