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ARGUESIAN LATTICES OF DIMENSION n <4

BJARNI JONSSON

Introduction. It is known (cf. Jonsson [3]) that every lattice of
commuting equivalence relations is Arguesian, but it is still an open
question whether, conversely, every Arguesian lattice is isomorphic to
a lattice of commuting equivalent relations. The principal purpose of
this noteis to establish the converse statementforlattices of dimensionn < 4.
Actually we prove a stronger statement, namely that every Arguesian
lattice of dimension = < 4 is isomorphic to a sublattice of the lattice of all
subspaces of an Arguesian projective geometry of dimension n— 1. Thus
it follows that a lattice of dimension n <4 is isomorphic to a lattice of
commuting equivalence relations if and only if it is isomorphic to a
sublattice of all subspaces of an Arguesian projective geometry. The cor-
responding statement for n=>5 is false; in fact it is known (cf. [2]) that
there exists a five dimensional lattice which is isomorphic to a lattice
of commuting equivalence relations but cannot be embedded in a com-
plemented modular lattice.

1. Preliminaries. Our notion of a projective geometry differs from the
classical concept in that we do not exclude degenerate geometries where
some or all of the lines pass through only two distinct points. Thus we
only assume that each line passes through at least two distinct points,
that any two distinet points determine a unique line that passes through
both of them, and that any line which intersects two sides of a triangle
in distinct points also meets the third side.

If a projective plane geometry S contains two distinet non-degenerate
lines, then it is easy to see that every line of § is non-degenerate. From
this it follows that degenerate projective plane geometries are of a rather
trivial nature, in fact, all but one of the points lie on the same line, and
all the remaining lines are degenerate and concurrent. From these ob-
servations we easily obtain:

Theorem 1.1. Suppose S is a degenerate projective plane and 8’ is a
(non-degenerate) projective plane with the property that there are at least
as many points on each line of S’ as there are points in S. Given a one-to-
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one mapping p — p’ of the points p on a line U of S onto points p' on a
line U’ of S', there exists an tsomorphism f of S into S" such that f(p)=p’
for every point p on U.

A projective geometry S is said to be Arguesian if any two triangles
which are centrally perspective are also axially perspective. As is well
known, an n dimensional, non-degenerate Arguesian projective geometry
§ is isomorphic to the projective geometry PG, (D) whose points are the
one-dimensional subspaces of an n+ 1 dimensional vector space over a
suitable division ring D. For later reference we state two simple con-
sequences of this fact:

THEOREM 1.2. If 2<m <n, then every m dimensional non-degenerate
Argquesian projective geometry is isomorphic to an m dimensional subspace
of an n dimensional non-degenerate Argquesian geometry.

THEOREM 1.3. If m is any cardinal and S is an n dimensional non-
degenerate Arguesian projective geometry, then there exists an isomorphism
of S into an n dimensional non-degenerate, Arguesian, projective geometry
S’ with the property that there are at least m points on each line of S'.

We shall later need the notion of a quadrangular sextuplet of points or
of lines, used in the construction of a coordinate system for a non-
degenerate projective Arguesian geometry. Roughly speaking, six points
on a line are said to form a quadrangular sextuplet if they are the points
of intersection of this line with the sides and the diagonals of a quad-
rangle. More precisely, an ordered sextuplet {p,,p1,P2,90,91,92) Of points
on a line U is said to be quadrangular if there exist four distinct points
79571579573, DOt on U, no three of which are collinear, such that p,, r; and
ry are collinear for =0, 1, 2 and g;, r; and r;, are collinear for ¢, j, k=
0,1, 2with ¢ +j+k=+d. Dually, an ordered sextuplet (U, U,U,,V, V1, Vy)
of lines in a plane P and passing through a point p is said to be quad-
rangular if there exist lines Wy, W,,W,, W, in P which do not pass through
p and no three of which are concurrent, such that U,, W, and W, are
concurrent for =0, 1, 2 and V;, W; and W, are concurrent for ¢, j, k=
0,1,2 withesj+k=+1.

THEOREM 1.4. Suppose 8" and S are non-degenerate n dimensional Argue-
stan projective geometries, and let there be given a one-to-one correspondence
p — p' between the points on a line U of S and the points on a line U’ of S'.
If, for any quadrangular sextuplet {py,p1,P2:90:91.92) Of points on U, the
sextuplet {py', 01’ Ps q0"s91 122’ Y 18 also quadrangular, then there exists an
tsomorphism f of S onto 8’ such that f(p)=p’ for every point p on U.
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For basic notions and results from lattice theory we refer the reader to
Birkhoff [1]. We shall use < for the relation of lattice inclusion and
write x +¥y and xy for the sum, or least upper bound, and the product,
or greatest lower bound, of two elements x and y. If b<a, then a/b is
the sublattice (quotient) consisting of all elements x with b<z<a. If a
covers b, that is, if b <a, and if there is no element x with b <x <a, then
we write b €a. The dimension of an element a of a finite dimensional
modular lattice will be denoted by d(a).

The family L(S) of all subspaces of an n—1 dimensional projective
geometry S is an n dimensional complemented modular lattice under
set-inclusion. Conversely, any » dimensional complemented modular
lattice 4 is isomorphic to the lattice of all subspaces of an »—1 dimen-
sional projective geometry S. In fact, we may take for § the set con-
sisting of all the atoms of 4 and define the line through two distinct
atoms p and ¢ to be the set of all those atoms which are contained in the
lattice sum p+g¢. The isomorphism is then established by associating
with each element z of A the set U, consisting of all those atoms of 4
which are contained in x.

In view of these facts we shall sometimes adopt a geometric language
when speaking of an n dimensional complemented modular lattice 4.
Thus we refer to the one and two dimensional elements of 4 as points
and lines, respectively, and say that 4 is degenerate or non-degenerate
according to whether the projective geometry associated with A4 is
degenerate or non-degenerate.

A lattice A is said to be Arguesian! if it satisfies the following condition :
For any a,,a,,04,00,b1,0,€ A, if

Y = (ay+ag)(by+by)[(ag+ay)(by+by) + (ag+as)(by+bs)]
(@o+bo)(ay +b1)(as+by) < ay(as+y) + by(by+y) -
It is not hard to show that every Arguesian lattice is modular (cf. Jonsson
(2D-
TurEOREM 1.5. In order for a projective geometry S to be Arguesian it is

necessary and sufficient that the lattice L(S) of all subspaces of S be Ar-
guesian.

then

The following theorem (cf. Jonsson [2]) will be used several times in
Section 3:

THEOREM 1.6. Suppose I and D are, respectively, an ideal and a dual

1 A lattice theoretic analogue of Desargues’ Law was first given in Schutzenberger [4],
the particular form of this condition that is used here can be found in Jénsson [3].
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A=IuD and InD4+0.

If f 1s an isomorphism of I into a lattice B, if g is an isomorphism of D
into B, and if f and g agree on IND, then f and g possess a common exten-
ston which maps A isomorphically into B.

2. Modular lattices of dimension n < 4. A zero dimensional lattice con-
sists of just one element, 0=1, and a one dimensional lattice consists of
exactly two elements 0 and 1. A two dimensional lattice consists of 0
and 1, and of one or more atoms. Since the sum of two distinct atoms
is always 1, and their product is always 0, it is clear that such a lattice
is completely determined up to isomorphism if we know the number of
its atoms. The following trivial observation will be used several times
in the next section:

TrEOREM 2.1. If A and A’ are two dimensional lattices and A’ has at
least as many elements as A, then A is isomorphic to a sublattice of A’.
In fact, given an atom p of A and an atom p' of A’, there exists an isomor-
phism f of A into A’ such that f(p)=17p'.

We shall henceforth assume that A4 is an » dimensional modular lat-
tice, let a@ be the sum of all the atoms of A4, and let b be the product of
all the dual atoms of A. The conditions é(a)=n and 6(b) =0 are equiv-
alent and imply that A4 is complemented. If d(a)=1, then a is an atom
of 4, and in fact @ is the only atom of 4. In this case 4 is completely
determined by its n—1 dimensional sublattice 1/a. Similarly, if
d(b)=n—1, then the study of A4 reduces to the study of its n — 1 dimen-
sional sublattice /0. We shall therefore be concerned here with the cases
in which

1 <d@<n and 0<db)<mn—1.

THEOREM 2.2. For n=3, 4, if

0 < 6(b) < é(a) < n,
then
b<a and A =al0uljb.

Proor. Our hypothesis implies that either b is an atom or else a is a
dual atom, for otherwise we would have 1< d(b) < d(a)< 3, which is im-
possible. If b is an atom, then b < a because a is the sum of all the atoms.
Similarly, if @ is a dual atom, then b <a because b is the product of all
the dual atoms. Thus in either case, b < a, and since §(b) < é(a), it follows
that b <a.

By the definitions of @ and b, 0 and all the atoms of 4 belong to a/0,
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and 1 and all the dual atoms belong to 1/b. It follows that if n=3, then
every element x of A belongs to either a/0 or to 1/, and in order to prove
this for n =4 we need only consider the case when 6(x)=2.

Assume that b is an atom. If x does not belong to a/0, then there
exists a unique atom p such that p <, for if ¢ were another such atom,
then we could have x=p+q¢=<a. For each dual atom y we have
o(x +y) = 4, and therefore

O(xy) = 6(@)+0(y) —d(x+y) 2 24+3—4 =1,

which shows that xy=+0. Therefore xy contains an atom, and since p
is the only atom contained in x we infer that p <zy <y. Thus p is con-
tained in all the dual atoms, and is therefore contained in their product b.
Inasmuch as b was assumed to be an atom, it follows that b=p <=z, and
therefore ze1/b.

The case in which a is a dual atom can be treated similarly.

THEOREM 2.3. If n=4, 6(a)=2 and 4(b)=2, then
al0ulfb = A4-X

where X s the set of all irreducible elements xe A with d(x) = 2. Furthermore,
each element of X covers a unique atom and is covered by a unique dual atom,
and two elements of X cover the same atom if and only if they are covered
by the same dual atom. Finally, if a =+ b, then ab is an atom and ts covered by b,
a+b is a dual atom and covers a, and ab <x <a+ b for every element xe X.

Proor. Observe that all the two dimensional elements of 4 except a
are additively irreducible, and that all the two dimensional elements
except b are multiplicatively irreducible. Hence the only two dimen-
sional elements which belong to 4 —X are @ and b. Since a/0 consists
of 0 and a and of all the atoms of A4, while 1/b consists of 1 and b and of
all the dual atoms of 4, the first part of the theorem follows.

Being irreducible, each element x of X covers a unique atom and is
covered by a unique dual atom. If two distinct elements x and y of X
cover the same atom, then this atom must be equal to xy. But zy <=z
implies that y <z +y, and zy <y implies that x <z +y. Therefore x and y
are covered by the same dual atom, namely x+y. Similarly, if z and y
are covered by the same dual atom, then they cover the same atom.

Now suppose a+b. Observe that ab=0 because b contains an atom
and all the atoms are contained in a. Therefore ab must be an atom,
and inasmuch as b is additively irreducible, ab must be the only atom
covered by b. Similarly a+b is a dual atom and is the only dual atom
covering a.
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If ze X, then z covers a unique atom p, and since p <a it follows that
p=ax. From ax<x we infer that a <a +x. and hence that a+x=a +b.
Therefore a +b is the unique dual atom which covers x. Similarly ab is
the unique atom which is covered by a.

These two theorems give a reasonably complete picture of all modular
lattices of dimensions 3 and 4. The complemented case is regarded for
this purpose as being known, and the case in which either a is an atom
or b is a dual atom reduces trivially to a lower dimensional case. The
remaining possibilities are illustrated in Fig. 1.

Fig. 1.

3. Arguesian lattices of dimension n <4. Our principal result is

THEOREM 3.1. In order for a lattice A of dimension n < 4 to be isomorphic
to a sublattice of the lattice of all subspaces of an n— 1 dimensional Arguesian
projective geometry it is necessary and sufficient that A be Arguesian.

Proor. Since every sublattice of an Arguesian lattice is Arguesian,
the necessity of this condition follows from Theorem 1.5.

For n<2 it follows from Theorem 2.1 and the remark preceding it
that every n dimensional lattice is isomorphic to a sublattice of the lat-
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tice of all subspaces of an n —1 dimensional Arguesian projective geome-
try. We may therefore assume that n=3 or n=4.

Let a be the sum of all the atoms of 4 and let b be the product of all
the dual atoms of 4. In view of Theorem 1.5 we may assume that 4 is
not complemented, and hence that a + 1 and b+ 0. Also, the cases in which
a is an atom or b is a dual atom reduce trivially to lower dimensional
cases. We therefore assume that

1 <é(a) <n and 0<ob)<n-1.

If n=3, then this implies that é(a) =2 and §(b)=1. For later use (Case 3
below) we shall prove for this situation a somewhat stronger conclusion
than is called for in the theorem.

Lemma A. Suppose n=3, 6(a)=2 and 6(b)=1. If S is any plane
projective geometry with the property that there are at least as many points
on each line of S as there are elements in A. then A is isomorphic to a sub-
lattice of L(S).

Proor or LEMMA A. By Theorem 2.2, we have 4=a/0ul/b. Our
assumptions regarding S imply that there are at least as many lines
through each point of S as there are elements in 4. By Theorem 2.1 it
follows that if p is any point of S and U is any line through p, then a/0
and 1/b are isomorphic to sublattices of the quotients U/@ and P/[p of
L(8). The isomorphism of /0 into U/ necessarily maps a onto U, and
it can be so chosen that it maps b onto p. Similarly, the isomorphism of
1/b into P/p necessarily maps b onto p, and it can be so chosen that it
maps @ onto U. Then the two isomorphisms agree on the common part
of a/0 and 1/b, and it follows by Theorem 1.6 that they have a common
extension which maps A isomorphically into L(S).

We henceforth assume that n=4 and therefore d(a)=2,3 and
4(b)=1, 2. The proof will be divided into six cases.

Case 1. 6(a)=2 and 6(b)=1.

By Theorem 2.2 we have b<a and A=a/0Ul[/b. Let S be a three
dimensional Arguesian projective geometry with the properties that
there are at least as many points on each line of S as there are atoms
in A4, and that 1/b is isomorphic to a sublattice of L(P)=P/0 where P
is a plane in S. The existence of S with these properties is guaranteed
by Theorems 1.2 and 1.3 in case the projective geometry associated with
1/b is non-degenerate, and by Theorem 1.1 in the alternative case. If
p is a point in § which is not in P, then

P+p=S and Pp=0.
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The quotients S/p and P[0 are therefore isomorphic, and consequently
1/b is isomorphic to a sublattice of S/p. This isomorphism g maps b onto
p and maps a onto a line U through p. By Theorem 2.1 there exists an
isomorphism f of /0 into U/@ which maps b onto p, and since f and ¢
agree on the common part of the quotients a/0 and 1/b, they have a
common extension which maps 4 isomorphically into L(S).

Case 2. d(a)=3 and 6(b)=2.
This is the dual of Case 1 and can be treated similarly.

Case 3. 6(a)=2, 6(b)=2 and a+b.

Let X be the set of all irreducible elements xed with d(z)=2. By
Theorem 2.3, the sublattice B=A4 — X of A is the union of the quotients
a/0 and 1/b, and every element of X belongs to the quotient (a + b)/ab.
Hence

A = (a+b)jou1)b.

The atoms of the three dimensional lattice (a+b)/0 are precisely the
atoms of 4, and their sum is the dual atom a of (a+5)/0. The dual
atoms of (a+b)/0 are @, b, and the elements of X, and their product is
ab. We can therefore apply Lemma A with the lattice 4 replaced by
(@+b)/0. Let S be a three dimensional Arguesian projective geometry
with the property that there are at least as many points on each line of §
as there are elements in 4, and let P be a plane in S. By Lemma A4, the
quotient (@+b)/0 is isomorphic to a sublattice of L(P)=P/¢. This iso-
morphism f maps a+b onto P and maps b onto a line U in P. By
Theorem 2.1 there exists an isomorphism g of 1/b into S/U which maps
a+b onto P, and since f and g agree on the common part of the quotients
(a+b)/0 and 1/b, they have a common extension which maps A4 isomor-
phically into L(S).

Case 4. 6(a)=2, 6(b)=2 and a=b.

Let X and B be as in Case 3. By Theorem 2.3 B is the union of the
quotients a/0 and 1/a. Furthermore, if P is the set of all those atoms
of A which are covered by some member of X, and if P’ is the set of all
those dual atoms of 4 which cover some member of X, then there exists
a one-to-one correspondence p — p’ between P and P’ such that, for each
zeX and pe P, x covers p if and only if « is covered by p’. Each quotient
p’[p then consists of p, p’ and a, and of all those elements x of X which
cover p, each element X belongs to exactly one such quotient, and if
p=q, then p’[p and ¢’'/q have only the element @ in common.

Let S be a three dimensional Arguesian lattice with the property that
there are at least as many points on each line of S as there are elements
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in 4, and let U be a line in §. By Theorem 2.1 there exist isomorphisms
f and g of a/0 and 1/a into U@ and S|U, respectively. For any peP,
f(p) is a point of U and g(p’) is a plane through U. Applying Theorem 2.1
again we infer that there exists an isomorphism A, of p’/p into g(p")/f(p)
which maps a into U. Inasmuch as any two of the mappings f, ¢, and
h, with pe P agree on their common domain, we see that they all have
a common extension » which maps 4 into L(S). We complete the proof
by showing % is an isomorphism.

First observe that if peP, then the quotient 1/p is the union of its
ideal p’/p and of its dual ideal 1/a. From this it follows by Theorem 1.6
that » maps 1/p isomorphically into L(S). Similarly, » maps p’/0 iso-
morphically into L(S). If p, g€ P, then the set

Cpqe =700 1/q

is a sublattice of 4, and since

p’lonllg + 0,

we may apply Theorem 1.6 again to infer that A maps C,, , isomorphically
into L(S). Also by Theorem 1.6, ~ maps a/0uUl/a isomorphically into
L(8S). Finally, for any two elements x, ye 4, either x and y both belong
to a/0ul/a, or else they both belong to C,, , for some p, ge X. In either
case it follows that

Me+y) = h(x)+h(y) and  hzy) = k(x)h(y) ,

and that k(x) =~h(y) if and only if x=y. This shows that A is in fact an
isomorphism.

Case 5. d(a)=3, 6(b)=1, and the projective geometry associated with
one of the quotients /0 and 1/b is degenerate.

We shall assume that the quotient associated with 1/b is degenerate;
the proof under the alternative assumption is analogous. By Theorem 2.2
we have

b<a and 4 =af0ulfb.

Let S be a three dimensional non-degenerate (hence necessarily Argue-
sian) projective geometry with the properties that there are at least as
many points on each line in S as there are dual atoms in 4, and that a/0
is isomorphic to a sublattice of L(P)= P[0 where P is a plane in 8. The
existence of S with these properties follows from Theorems 1.2 and 1.3 in
case the projective geometry associated with a/0 is non-degenerate, and
from Theorem 1.1 in the alternative case.

The isomorphism f of a/0 into P/@ maps b onto a point p in P, and it
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maps the ideal a/b of 1/b isomorphically into the ideal P/p of S/p. Our
hypothesis regarding S implies that in the projective geometry associated
with S/p there are at least as many points on each line as there are atoms
in 1/b. From this it follows by Theorem 1.1 that there exists an isomor-
phism g of 1/b into S/p which agrees with f on a/b. Therefore f and g
have a common extension which maps 4 isomorphically into L(S).

Case 6. d(a)=3, 6(b)=1, and the projective geometries associated with
the quotients a/0 and 1/b are non-degenerate.
By Theorem 2.2 we have

b<a and A=al0ulfd.
The proof in this case will be based on the following
Lemma B. Suppose the hypothesis of Case 6 is satisfied, and assume that
b<a; <a and by, <a for 1=0,1,2.

Then {x4,%1,%5,Y0:Y1,Y2y 8 @ quadrangular sextuplet of points in 1/b if and
only if (Yo,:Y1,Y2:%0,T1,%o) 18 @ quadrangular sextuplet of lines in a/0.

RemaRrk. This is closely related to thefact that a quadrangular sextuplet
of lines in an Arguesian projective geometry meet a line (in their plane
but not passing through their point of intersection) in a quadrangular
sextuplet of points. Of course, if we wanted to make use of this result
in the present situation, we would have to assume the theorem that we
are trying to prove. However, our reasoning is motivated by the proof
of the classical theorem, as illlustrated in Fig. 2.

Proor or LEMMA B. The elements z;, y, are points on the line a in
1/b, and they are also lines through the point & in a/0.

Assume that {@y,2;,24.¥0,41,Y2) is & quadrangular sextuplet of points in
1/b. Then there exist distinct points ¢,,c,,¢5,¢5 in 1/b, none of which lies
on a and no three of which are collinear, such that

Ty = a(Co+cs), & = a(ct+cs), Ty = a(cyt+cy),
Yo = a(cy+cy), Y1 = alcy+cy), Yo = a(Co+¢q) .
It readily follows that
(1) woFx, YoF Y T F Y T F Yo Y2 F ToTrYols -

For instance, since the lines cy+c; and ¢, +c¢; are distinct and meet in
the point ¢, which is not on the line a, the points x, and ; in which these
two lines cut the line @ must be distinct. From (1) we easily see that there
exists a line z of a/0 passing through the point b, such that (yo,y;,¥,%q, 1,2
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Fig. 2.

is a quadrangular sextuplet of lines in a/0. Consequently we can find
four distinct lines d,,d,,d,,d; in a/0 such that none of them passes through
b, no three of them are concurrent, and

Yo = b+dyd,, Yo =b+did;, Yy, = b+dydy,
xy = b+dyd,, ¥, = b+dyd,, z=b+dyd, .
Applying the definition of an Arguesian lattice with
a, = ¢, a, = ¢y, a, = ¢,

by = dody b, = dyds, by, = dgd,,
and therefore

(2) ¥y = (co+ca)dads+dsdy)[(c5+co)(dody+dyds) + (¢34 o) (dody +dgdy)] ,
we obtain

(3) (cg+dody)(cy+ dydy)(co +dods) £ colca+y) +dads(dady+y) .

Since b <¢,, we have

Co+dody = co+b+dydy = cot+Y,,
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and inasmuch as c,, ¢;. and y, are distinct but collinear points in 1/b, it
follows that
¢, £ cot+dydsy .

For similar reasons we have
¢ £ Cot+dydy, and ¢y S cy+dyd, .
It follows by (3) that
(4) ¢ £ coleg+y) +dyds(dydy+y) .
We have
(Co+Co)(dads+dsdy) S (Co+Ca)ds = (Co+Co)ad,

= ydsy = (b+didy)d; = bdy+d,dy = dydy
and, similarly,

(c3+co)(dydy + dydy)

IIA

dyd,. (c3+Co)(dody +dydy) < 7,d,

Consequently, by (2),
y < dydy(dydy+x,d,)

Now if z, and z were distinct, then the three points d,d,, d,d,, z,d, would
not be collinear. We would then have y=0 and consequently, by (4),

€1 = CoCyt+dydyd,y .

But ¢ycy=0 because ¢, and ¢, are distinet points in 1/b, and dyd,d;=0
because the lines d, d, and d, in a/0 are not concurrent. We would there-
fore have ¢, <b, which is impossible because ¢, is a point in 1/b. We
therefore conclude that z=ux,, and the proof of the forward implication
is complete.

Now suppose {Yp.Y1,¥s:Tg,%1,T5) is 8 quadrangular sextuplet of lines in
a/0. Then (1) holds and, regarding z,,2,%0.41.Y» as points on the line a
of 1/b, we infer that there exists a point z on a such that (zy,%;,2,49.¥1,Ys)
is a quadrangular sextuplet of points in 1/b. By the first part of the proof
it follows that {¥,,41,¥2:%0,%1,2) i a quadrangular sextuplet of lines in a/0.
Consequently, z=x,. This proves the backward implication.

We now return to the proof of the main theorem for the case under
consideration, Case 6. By Theorem 1.2 there exists a non-degenerate,
three dimensional projective geometry § such that a/0 is isomorphic to
P[0 where P is a plane in S. Let f be such an isomorphism, and let p
be the point onto which f maps the atom b of a/0. The function f maps
the ideal a/b of 1/b isomorphically onto the ideal P/p of S/p. Observe
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that if (xy,2,,05,40,%1,Y5) is & quandrangular sextuplet of points on the line
a of 1/b, and if f maps z; onto X; and y; onto ¥ then (X,,X,,X,,Y,,Y,,7,)
is a quadrangular sextuplet of points on the line P of S/p. In fact, by
Lemma B, (¥,,Y1,¥2,%0,%1,%5) is a quadrangular sextuplet of lines in /0,
whence it follows that (Y,,Y,,Y,,X,X,,X,) is a quadrangular sextuplet
of lines in P/@. Applying Lemma B again, this time with 4 replaced by
the sublattice P/OuS[p of L(S), we conclude that (X, X,,X,,Y,,Y,,Y,)
is a quadrangular sextuplet of points in S/p.

Using Theorem 1.4 we see that there exists an isomorphism g of 1/b
onto S/p which agrees with f on a/b. Therefore f and g have a common
extension which maps 4 isomorpically into L(S).

Since Cases 1-6 exhaust all the possible situations which were not
disposed of in the preliminary discussion, this completes the proof of
Theorem 3.1.

BIBLIOGRAPHY

1. G. Birkhoff, Lattice theory (Amer. Math. Soc. Colloquium Publications 25), Revised
edition, New York, 1948.
2. B. Jénsson, Modular lattices and Desargues’ theorem, Math. Scand. 2 (1954), 295-314.
. B. Joénsson, On the representation of lattices, Math. Scand. 1 (1953), 193-206.
. M. Schiitzenberger, Sur certains axiomes de la théorie des structures, C. R. Acad. Sci.
Paris 221 (1945), 218-220.

o

UNIVERSITY OF MINNESOTA, MINNEAPOLIS, MINN., U.S.A.

Math. Scand. 7. 10



