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ON THE UNIQUENESS OF THE CAUCHY PROBLEM II

LARS HORMANDER

1. Introduction. In this paper we shall again apply the methods used
in [2], this time to elliptic differential equations with variable coefficients.
For elliptic equations we shall thus obtain a new proof and a slight
extension of the results proved by Calderén [1] using singular integral
operators. A simplified version of Calderén’s method has recently been
given by Malgrange [3]. From that paper we have taken over the deci-
sive use in a similar context of the parameter ¢ introduced below.

We shall study the solutions of a differential inequality,

(L.1) |P(x, Dju| = K X' |D,uj,

|xj<m
where m is the degree of the homogeneous operator P. Here u is a func-
tions vanishing for

(1.2) al < a2+ .. 127,

when z is in a neighbourhood of the origin. When using the methods of
[2] we shall first as weight function in the exponents choose

(1.3) @s(x) = (@1 —0)% + 0¥ + ... +2"),

where 6 will be taken sufficiently small. Note that the surface g,(x) = @,(0)
for all 6 has a contact of the second order at the origin with the paraboloid

al = YaP ... +2),

which apart from the origin lies in the set defined by (1.2). We shall
also study more general elliptic operators by means of the weight func-
tion
(1.4) vy(x) = (@1—0) + 2+ ... +2”.
Since the radius ¢ of the sphere y,(«)=1y,(0) must be chosen small, we
can then only obtain unique continuation across ‘‘sufficiently convex”
surfaces.
The basic tool in [2] was an inequality of Tréves [5]. In the next
section we shall examine what the arguments of Tréves yield in the case
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178 LARS HORMANDER

of variable coefficients. In the third section we shall then employ the
arguments involving a partition of the unity used in [2], in order to prove
the desired estimates for operators related to those studied by Calder6n.
In section 4 we study more general operators obtaining the weaker re-
sults referred to above. In section 5, finally, we prove the unique con-
tinuation of the solutions of (1.1) when P(z, &) is the product of two
factors satisfying the hypotheses of section 3 or 4. Such results have
earlier been indicated by Mizohata [4]. Malgrange has (unpublished)
given a simple and precise form to the arguments of [4], using the results
of [3]. We here use the inequalities proved in sections 3 and 4 in a similar
way.

2. The method of Tréves. We first recall Tréves’ arguments for a
differential operator with constant coefficients and shall afterwards
discuss what it yields in the case of variable coefficients.

As usual we denote by D; the differential operator —40/dx7 and by D,
where «=(xy, ..., «;) is a multi-index with components varying from 1
to v, we denote the product D, ... D,. (For a multiindex («,) of length
1 we only write «,.) Similarly we define z*.

With real numbers ¢; we shall use the scalar product

(2.1) T(u,v) = S u(x) v(x) exp(t12x12+ 1220 da .

The formal adjoint of D; with respect to this scalar product is the operator
(2.2) 0; = D; — 2it2a7 .

For if u,v € C®, we have
T(u, D) = S u Dy exp(t2a’ + ... +1,22°) = T((D; — 2it2x))u, v) .

The operators D; and ¢, satisfy the following commutation relations
(2.3) Djé;—6;D; = =22, D=0 D; =0, j+k.
If P(D) is a differential operator with constant coefficients, Tréves
proved that the commutation relations imply the formula
olel
mgﬂmm%mm@=2|l

!

t,2 T(P®(8yu, PO (0)u), wueC™.

Our purpose is to examine the character of the additional terms which
enter in the case of variable coefficients. First we have to prove the
uniqueness of the right hand side of (2.4).
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Lemma 1. Suppose that a,z are continuous functions in Q and that
(2'5) 22 T(aaﬂéau7 (—Sﬂ—u’) = O? u € OOOO(‘Q) ’

where the sum 1s finite and a4 is symmetric for permutations within x or .
Then we have a,z=0 for all x€Q, x and B, if t; ... t,+0.

Proor. Assuming that not all a,, vanish at a point  in 2, which” Jmay
be assumed to be the origin, we denote by m the maximum of |«|+|B]
when a,4(0)# 0. Let 7 be a fixed vector an replace « in (2.5) by the func-
tion

x—> u(@fe — pift,22, .. 0).

After a change of variables and multiplication by a factor independent
of x, we obtain in the limit when ¢— 0

PP SDuDuez@”)dx—O ueCy”

Jo|+]Bl=m

If we here set u = veX® i”>, we obtain

3 a0 (D+ino DFipds =0, velp

Ja|+]Bl=m

Application of the Fourier transformation now gives immediately

' 3 a ,0)(E+in),(E—in) =0,

|a|+|B]=m

for real £ and . But then the last equation also holds for indeterminate
¢ and 7, and since £+ i and £ —in are then independent indeterminates,

it follows that a,;=0 when |x|+ |f|=m. This is a contradiction and so
the lemma is proved.

Now consider a homogeneous differential operator

P(x, D) = a,(x)D,

la|=m

with variable coefficients which are bounded and Lipschitz continuous
uniformly in a domain Q. Write P(x, &)= P(x, £) when e R*. We shall
prove the following modification of (2.5) for ueC,™(R2)

9|al
(2.6) T(P(z, D)u, P(z, D)u) = ]%F t,2 T(P@(x, )u, Pz, b)u) + R.

Here R is a sum of terms of the form

(2.7) t, T(@,a,) (D, 8)yu, (D,d)gu)
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with [8'|<m, |8”|<m and |f’'|+|8"'| +|y|=2m—1. The abbreviation f’
means D;f for some j, and (D, ); means an arbitrary product of the form
D ﬁlD ﬂzéﬁaDﬂ«: Tt
To prove (2.6) we first note that
(2.8) T(P(x, Dyu, P(x, Dyu) = 3 T(a,Du, azDgu) .
o,

We rewrite a typical term in the sum by integrating by parts
T(a,D;D,u, a;DiDyu) = T(84(@a,D;D u), Dyu)

= T(@y,0,D;D,u, Dyu) + T((Dy(@ga,))D;D u, Dyu) .
The last term we include in the sum R in the right hand side of (2.6).
In the other term we use the commutation relations (2.3) in order to
replace 6,D;D, by D;D,d, + a combination of operators D, with
lyl=m—1 having coefficients which are multiplies of #,2. When this
procedure has been applied to all terms in (2.8) we operate again on the
terms which have not been included in the sum R, this time shifting a
differential operator D; from left to right. Continuing in this fashion by

transporting components of D alternatively from right to left and left to
right, we can finally write

T(P(x, D)yu, P(x, Dyu) = X' T(c,z0,u, 0,u) + R,
B
where c,;, besides being polynomials in ¢;, are quadratic expressions in

the coefficients a, alone (nof involving their derivatives). But since R=0
if the coefficients are constant, the sum

Zﬂ' T(c 40,8, O5u)

must then be identical to the right hand side of (2.4) in view of Lemma 1.
This completes the proof of (2.6).
Next we shall estimate B. Writing

Ty(u, w) = 3 T(Du, D)
we shall prove that la[=k

(2.9) |R|2 £ CT,(u, w) T,y _1(, ) .

To do so we first note that it follows from Theorem 4.4 in Tréves [5] that
(2.10) Ti(u,u) < [H20-PT\(u,u), j=k.

Using this inequality we shall prove

(2.11)  |¢[2*~l=b T((D, 8),u, (D, 8),u) £ CTi(u,u), |x| £k

Once this inequality is proved, the estimate (2.9) follows immediately
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from the fact that the terms of R are of the form (2.7) by using Cauchy-
Schwarz’ inequality and (2.10).

The left side of (2.11) can be rewritten by shifting components of é to
the other side, using the commutation relations. Noting that when the
commutation relations give a factor ¢;%, we loose at the same time a
factor D; and a factor ¢;, we find that to prove (2.11) it is enough to prove
that

(2.12) Y- (T(Du, Do) S CThu,w), 10| S b 07 S k.

But this follows immediately from Cauchy-Schwarz’ inequality and
(2.10).

We shall now besides (2.6) and (2.9) use the corresponding identity
and inequality obtained by replacing P by P®. With a trivial com-
parison between the first sum occurring in the right hand side of (2.6) in
the two cases, we obtain

(2.13)  t2T(PP(x, D)yu, PO (x, D)u)
< C{T(P(x, Dyu, P(x, D)u) + (T, (u, w) T, _y(u, w))} +
+ tH(T i, w) Ty (0, w))2}
Using (2.10) again we get
TurorEM 1. Let P(x, D) be a homogeneous differential operator of order
m with uniformly bounded and Lipschitz continuous coefficients in Q.

Then we have with a constant C' depending only on m, v and the bounds for
the coefficients a, and their first derivatives

(2.14)  t2 T(P®(x, D)u, PPz, D)u)
< C{T(P(w, Dyu, P(z, D)u) + (Tm(u, w)T 1 (%, u))*}, ueCy”(R2).
REMARK. We obtain the same result with the same constant C if we
modify the definition (2.1) of T'(u, v) by a factor ¢X* ™ with fixed 5 under

the integral sign. This follows immediately from the fact that C' does not,
depend on the choice of the origin.

3. Elliptic operators with “simple characteristics”. In this section we
use our methods to prove an extension of the results of Calderén con-
cerning elliptic operators. Thus we assume in the whole section, besides
the regularity assumption in Theorem 1, that P is elliptic at the origin,

(3.1) PO,&) £ 0, 0=*¢&eRn,

and that the equation
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(3.2) P(O, Clr 527 sty gu) = 0
has distinct zeros for real (£,....,&,)+0. We then have with N,=
(-1,0,...,0)

[E+iTNy 2 < C(|P(0, E+4TN)® + 12| PO, £+3TN,)[%) .

In fact, the polynomial in £ and 7 on the right is homogeneous of degree
m and is +0 for real (£, 7)+(0, 0). It follows by continuity and homo-
geneity arguments that there is a neighbourhood U of 0 and an open
cone V3 N, such that for real (&, 7)

(3.3) [E+iTN[Em < Oy(|P(x, £+iTN)® + 72| N|2|PO(x, E+iTN)[2),

Similarly we get for real £ and v xelU, NeV.

(3.4) |E+iTN|Em-D < ¢, 3T |PO(x, E+itN)2, acU, NeV.
1

For if the right hand side should vanish for some real (&, t)+ (0, 0) when
x=0 and N =N, we have also P=0 and hence the equation (3.2) would
have a multiple zero.

Let U,=U be a neighbourhood of 0 such that grad gszx)eV and
lgrad g,(x) — grad @,(0)| <6 when xeU, (The function g, is defined by
(1.3).) We shall prove

THEOREM 2. Suppose that the coefficients of P(x, D) are Lipschitz con-
tinuous, that (3.1) is valid and that the equation (3.2) has simple zeros.
Then we have when ueCy*(U,) and |x| Sm

(3.5) (14 02g)m-lel-t 7m—lal S ID w2 ¥ dg < C& |P(x, D)ul? 2™ dx
provided that ©6 > M and 6 < 6y, where M and o, are constants.

Proor. We shall use essentially the same partition of the unity as in
[2], section 4. Thus take a function @€, such that

(3.6) Y O@—g) =1
g

where ¢ runs through all lattice points, and the support of @ is contained
in the cube max [27] <1. We then have u= 2u, if we set

(3.7) uy (@) = Ozt —gl, a(10)t g2, ..., 2(v0)! —¢) u(x) .

(The definition is chosen so that rg, is nearly linear in the support of u,.)
By z, we denote the point
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x, = (gl/r*, g%[(td), ..., g’/(ré)‘}) ,

and we write N,=gradp(x,).

Now take x=x,, N=N, in (3.3), multiply by |4,(&+47N,)®> and inte-
grate. Since o(£+ix) is the Fourier transform of v(x)e(® ! if veCy”,
Parseval’s formula gives

(3.8) ﬂ D™ |2 2 Vo) gy
< Clg {P(,, D)uy|2+ 72| N, PO (x,, Dyu, |2 <= N0) dar

where we have used the abbreviation

|Dmu2 = 37 |Dul.
al m

Similarly, (3.4) gives
(3.9) g | D™, |2 25 N0 d < Czs 3 {PY(x,, Dyu,|? 2% N0} 4z .
- v 1

We multiply these two inequalities by e (#@2—<%» ) From Taylor's
formula we get

p(x,) + (x—x, grade(x,)) = p(r) — (21 —x,1)% — (52(901——::: 7)

In the support of u, we have |¢!—x,! < 1/7} and |27 —2,7| < 1/(7d)}, j> L.
Hence

0= (t—a1) + 0 (@f—xf)? < vt
(3.8) and (3.9) may thus be rewritten in the form

(3.8") \ D™ 2 €2 oy < 0162"8 (|P(x,, DY, + 72| N,|2| PO (x,, Dyu, 2} €2 da,
(39') S [Dm—l’blzglfZ ee""’ dx < 02621:‘ %’ IP(j)(xgy D)ug[2 eQwﬁ dx .

Next note that
P®(x,, D)u, = P®(x, D)u, + (P™(x,, D)— P (x, D))u,

where the coefficients of P@(z,, D) — P®(z, D) are O(1/(76)}) when x is in
the support of u,. (We assume for example 6 <1 so that 74 <7.) Thus
(3.8) gives if we also note that |N,| <36 when u,==0, in view of the de-
finition of Uy,
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S [D™u,|* €% das
cy S {|P(x, D)u,* + (67)~|D™u,|® + 6%v%|PMD(x, D)uy|* + év|Dm1u,|?} e dx .
In the same way we get from (3.9)" that

{ Dt emaw < 0y { 3 |POa, Dy 2+ (ar)—I;Dm—lugP} ¢ da .
1

’

When 2C,’ <dt we get, writing C,’"' =2C,
(3.10) S[Dm"luglze'z“’" dx < 02"\' 2 |POu e d

and using this result we obtain when 2C,’ < d7 also

(3.11) S|D'"u,,|2 29 Jo < Cl"S=]Pugi2+6212|P(l)ug|2+61’ 1Pl et da

Here we have started to write P@® instead of P)(x, D) which should not
cause any ambiguities since P(x, D) is the only differential operator
studied from now on.

In view of Cauchy’s inequality we have

(3.12) (DFu2 < 2 37| Dku |2
g
since D,u=2"Du, and at most 2’ of the supports of the functions u,

can meet at any point. Further, if we write g* for the set of indices > 1
in B and put 69 = DB/|f|! we get

— 2 *
POy, = ‘,92 Platy 7l8l2 §l8%12 @O

Denoting by C an upper bound for 2* X' |62, the summation being
performed for |§| <m, we obtain

el §la®l 37| Py |2 < C D | Plathiy2 glal+lpl gla®l+e%]
g B
Integrating and using Theorem 1 with #,2= 27, t,2= ... =12=214, we get
(3.13) 7lal gle*) ZS |P@y 2 208 doy < C" (B2 + A, d,_y)
9
where we have used the notation

(3.14) 4, = (\ | DRu? 9 dx)’

and
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(3.15) B = (\ \Pu? 20 dx)* .

L2

Adding the inequalities (3.10) or (3.11), using (3.12) and (3.13), we now
get

(3'16) ‘4111—12 § 03(76)-1 (B2+Am*4m—l)
(317) Amz é C4(l +627) (Bz+‘471z‘4m~1) .

It now only remains to use the inequality between geometric and arith-
metic means twice. First, (3.17) gives

or Am = 4(1+62 )—B2 + 41112/2 + C 2(1+62 m 1 /2

(3.18) 4,2 <

e S 204(14+621)B% + C2(1+0%1)%4,,4%.
Similarly (3.16) gives
Apoi® = Cg(10)7 (B2 + A4,22(1+6%1) + (1+6%0)4,,,2/2)
or combined with (3.18)
(3.19) 4,21 — 2-1C,(1+C2)(1/16+0)) < C4(1+C,)(zd)1B2.
Now choose d, and M so that
Cs(1+C2 M1+, < 1

and so that all previous requirements on é and t are met when d < d, and
10> M. Then we get for such ¢ and 7

(3.20) A,% = 0B,

Using this estimate in (3.18) we obtain

(3.21) 4,2 = Ce(1+6%7)B2.

Now we have

(3.22)  7(14+6%7) \ [v]2e®™® da < S |ID|* e dx,  ve Cy™(U,).

In fact, if we write ve™ =uw, this is equivalent to
(14 627) Slwlz iz < 5 |ow/ea? — 2¢(at — O)wi? da: .
Partial integration gives

\' |owfoat — 2v(at — O)uw|? da

= \.faw/axlﬁdx + 412\.(:51 0)2lw|?dx + 71\ lwi2dx = (6%°t2+ 2t)§|w|2dx
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since |2(z!—¢) >0 in U,. From (3.22) we get if |x|<m
(+8se P\ D e do < 4,,,

which combined with (3.21) completes the proof of Theorem 2.
From Theorem 2 one gets a result on unique continuation by standard

arguments. For the sake of convenience we only consider rather smooth
functions.

THEOREM 3. Let P(x, D) satisfy the hypotheses of Theorem 2 and let
ueC™ be a solution of the differential inequality (1.1) which vanishes in
the intersection of a neighbourhood of 0 and the set (1.2). Then u vanishes
n a full neighbourhood of 0.

Proor. Choose ¢ so small that (3.5) holds and U, belongs to the neigh-
bourhood given in the theorem. Take a function yeC,”(U,) so that y=1
in a neighbourhood U’ of 0 and set v=yu. Then we have in U’

|Po| = [Puj = K Y [Du| = K X' |Dyl.

ol <m laj<m
Since 21> 22+ ... + 2" in the support of v, we have there
Pp
Po(x) S 2V —dal+ 62,

and since 2! <4 in U, we have g;(x) < @4(0) in the support of v except
when x=0. If xe (U’ and is in the support of Pv we thus have

Ps() = @o(0) —x,

for some »>0. Now we apply (3.5) to v; that this inequality is valid for
all function in C™ follows immediately by approximation. This gives

2 g |Dw|? ¥ dx < C g [Po|® €2 dx

[al<m @

IIA

C't Yy \ [Dw|?e*dx + Cv7t g |Pvj® e ™ dx ,
laf<m g, o

or restricting the integration in the left hand side to U’

-C'lr) 3 \ D e dx < Ot s |Pv|* ¥ du .

lal<m ' e
If U < U’ is a neighbourhood of 0 where g () > @,(0) —%/2 we get when
>0 \
1-C"[7) \ wi2dxr £ Ctle™ § |Pv|? dx
g v’

and when 7 - o we get v=0 in ['"". This proves the theorem.
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The hypotheses in this theorem are weaker than those made by
Calderén [1] for elliptic operators. In fact, he requires that P(x, &) is
real and that a, have Holder continuous derivatives. Furthermore he
has to exclude the case v=3.

4. Elliptic operators with non singular characteristics. The assumption
in section 3 that the equation (3.2) has simple zeros shall now be replaced
by the weaker hypothesis

(4.1) i’ [PY(0, E+1TN)|2 + 0, for real (& 1) + (0,0).
1

This is enough to prove (3.4), but (3.3) will be modified so that in the
right hand side we have

D' |PO(x, £+itN)|>  instead of  |P®(x, £+iTN))?
1
only. We introduce U, as in section 3, now with ¢; replaced by y;, and
shall prove

THEOREM 4. Suppose that the coefficients of P(x, D) are Lipschitz con-
tinuous, and that (3.1), (4.1) are valid. Then we have when weCy*(U,) and
x| E=m
(4.2) (14 >7)yml—1 r"‘"""\‘ |D, u|? e dx < C’\' |P(x, D)u|? *™é dx ,
provided that ©6 > M and 8 < d,, where M and 8, are constants.

Proor. Very few changes are required in the proof of Theorem 2, so
we shall content ourselves with indicating them briefly. They mostly
depend on the fact that in y, the coefficient of 27° is 1 for all j, so we shall

deal with all the variables now as we dealt with 2! in the proof of Theorem
2. Thus (3.7) is replaced by

u,(x) = Ottt —gt, vt —g% ... )u(x)

and z, is modified similarly. With ¢, replaced by v,, (3.9) and (3.9)" will
hold without any other change, while in (3.8) and (3.8)" we must write
2/|P9y,|? instead of [P®u, |2 Similarly, (3.10) is not changed whereas
in (3.11) the factor 7 of the sum should be replaced by 6272 We also get
(3.18) if we now interpret |x*| as O for all x. Altogether we get (3.17)
unchanged and (3.16) with (7)1 replaced by z-1. Since ¢ <1 this implies
the old inequality (3.16) and hence (3.21). The proof is then completed
as before.
An exact repetition of the proof of Theorem 3 now gives
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THEOREM 5. Let P(x, D) satisfy the hypotheses of Theorem 4 and let
ueC™ be a solution of the differential inequality (1.1) which vanishes out-
side the intersection of a meighbourhood of 0 and the sphere yy(x) <% for
some 8 < d,, where d, is the constant in Theorem 4. Then u vanishes in a
Sfull neighbourhood of 0.

5. Some elliptic operators with double characteristics. We shall now
consider operators of the form

(5'1) P(xy §) = Pl(x3 E) Pz(xy 5) P

where P; is of order m; and satisfies the assumptions in Theorem 2.
We define U, as the intersection of the U associated with P;, j=1, 2, in

Theorem 2.

THEOREM 6. Suppose that the coefficients of Py are Lipschitz continuous,
that those of P, have Lipschitz continuous derivatives of order m,;—1 and
that P, and P, satisfy the assumptions of Theorem 2. Then we have, if
ueCy®(U,) and |x| £m=m,+m,, provided that 6 <, and 16> M

(5.2) (14 627)mlel=2 gm—lel s |D u|® ¥ dx < C’S |P(x, D)u|* e>™ dx .
Proor. In view of Theorem 2 we have

X (1 g2ayme =t eI \|D Py, Dyuf? ¢ da

lo’|<my

< C\‘ 1Q(z, D)uj® > dax ,

where Q(x, D)= P,(z, D) Py(x, D). Now D, P,(x, D)u=P,(x, D)D u +
a linear combination with bounded coefficients of Dﬂu with

Bl I +my—1.
Since
—la] £ my+my—'f—1 =m—-18 -1,

we get with another constant ¢

2 (14 6% g)mlol=t gma—io’] S |Py(x, D)D,.uj* €% dx
o[ <my

sC |Q Dyu2e*dx + 3 (14 02)m1A=2 gm=lfI=1\ 1 D % 290 darf
P J B

|Bl=m—1

Using Theorem 2 again in the left hand side and moving terms from
right to left, we get with still another constant C
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7 (L4 62)mlel=2 g1 — Of7) Q D ui e dx < CS |Q(x, D)u|*e®™ dar .
la|=m .

When 7 > 2C we get (5.2) though with P(x, D) replaced by @(«, D). These
two operators differ by terms of order <m. Thus we get

S (1483 g)mled=2 gm-lal g |D,u|? e*7 dx

lal=m

<C H |P(x, D)yu|? e*™ dx + ' |D,u|® e*™ day .
¢ |a| <m

The coefficient in the left hand side in front of the term involving D, u

tends to 0 when v — oo if |x|<m—1, and if |x|=m—1 it tends to 1/5%

When 6 is so small that 6-2> 2C we can thus move terms from the right

hand side to the left hand side, obtaining for sufficiently large 7 the

inequality (5.2). The proof is complete.

The fact just noticed that the coefficients in the left hand side of (5.2)
can be made arbitrarily large, when |x|<m, by choosing é and 7-!
sufficiently small, makes it possible to repeat the proof of Theorem 4
again to prove a theorem on unique continuation.

THEOREM 7. Let P(x, D) satisfy the assumptions of Theorem 6. Then
the same conclusion as in Theorem 3 holds.

ReMARK. The regularity assumptions on the coefficients in P, may be
weakened. This may be done by considering more carefully what Tréves’
method gives when P is of the form (5.1) and then repeating the argu-
ments of the proof of Theorem 2. Alternatively, we may use what we
have proved for operators P; with coefficients which are linear functions
of x. Making a new suitable partition of the unity, replacing P; by an
operator with linear coefficients when we study a component in the
partition of u, we get a proof of Theorem 6 and thus of Theorem 7 when
the coefficients are only C'. However, we do not carry out the proof here.

If we start from Theorem 4 instead of Theorem 2 and repeat the proof
of Theorem 6 we evidently obtain the following result.

THEOREM 8. Suppose that the coefficients of P, are Lipschitz continuous.
that those of P, have Lipschitz continuous derivatives of order m;—1 and
that P, and P, satisfy the assumptions of Theorem 4. Then we have, if
ueCy (U, and |x| <m, provided that 6 < d, and 16> M,

(5.3) (1+87)ym1al-2 rm—l“lgwauﬁe?w dv < OS]P(x, Dyul® & dx .

The corresponding result on unique continuation is the following.
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THEOREM 9. Let P(x, D) satisfy the hypotheses of Theorem 8 and let
ueC™ be a solution of the differential inequality (1.1), which vanishes out-
side the intersection of a neighbourhood of 0 and the sphere yy(x) <42 for
some 0 < 8y, where 8, is the constant in Theorem 8. Then, if in addition K,
where K 1is the constant in (1.1), is sufficiently small, w vanishes in a full
neighbourhood of 0.

Note that whereas in Theorem 5 the choice of 6 was only influenced
by the coefficients in P(x, D), it has been necessary here to take into
account also the size of the constant K. This is due to the fact that in
order to get a coefficient for the derivatives of orderm — 1 in (5.3) which
is sufficiently large to take care of the constant K, it is necessary to
choose § small. Except for this point, however, the proof of Theorem 9
is again identical to the proof of Theorem 3, so we omit the details.
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