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ON THE ASYMPTOTIC DISTRIBUTION
OF LINEAR COMBINATIONS
OF INTERCHANGEABLE RANDOM VARIABLES

GUNNAR BLOM

1. Summary. Following Chernoff & Teicher [4], we call a sequence of
random variables interchangeable if any finite subsequence has a joint
distribution function which is symmetric with respect to its arguments.

After proving a lemma in Section 2, we shall demonstrate in Section 3
that, under certain conditions, a linear combination of interchangeable
random variables is asymptotically normally distributed. Applications
will be made in Section 4 to linear combinations of intervals obtained by
random division of the unit interval. Blom [3] has shown that such
combinations play an important réle in the theory of order statistics.
In Section 5 it is demonstrated that some previously known results con-
cerning permutation variables may be obtained as special cases of the
theory developed in this paper. In the last section, a central limit
theorem due to Chernoff & Teicher [4] is generalized so as to apply to
linear combinations of interchangeable variables.

2. A lemma. The following lemma will be used in the sequel. A special
case is contained in a paper by Noether [9].

LemmA. Let vy, ..., v, be given positive integers with the sum r, and let
{cin}, 6=1,2,...,k,; k, > oo when n — o), be a double sequence of
numbers such that for some x>0

. 0 for o=1,
(1) Zcinq =31 for o=2,
=1 o(n-1)  for o =3,4,...,r.
Further, set
SS';)...vm =2 ¢ lcjz .. cjmm )
where the sum contains all different terms which can be formed by taking
subsequences jy, . . ., j, from the sequence 1, . .., k, (the second subscript, n,

of the c’s is omitted). Then
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= 0(1) Jorm>ir,
(2) Si?...vm ~ 1/(%T)' fOT'V1=...=’Vm=2,
= o(n*m-i1)  otherwise .

Before proving the lemma, we note that the number of terms in
s, depends on the choice of the exponents v, For example, if the
v,’s are all different, the number of terms is

kp(kp—1) ... (k,—m+1),

and if they are all equal, the number is (Z‘)

In order to prove the lemma, rewrite s’ , as a sum of a finite number

m
of products of the power sums
kn

SQ =20ing'

1=1

Since 35'3--% is symmetric with respect to the quantities c;,, this is
always possible. We then obtain

(3) sffrlb)...vm =2d/11...1#S11812"'S).#’
where several of the 1,’s may be equal. In each term in this sum
(4) M+d+...+4, =1

is a partition of » which can be obtained from the partition
M+t Y, =T
by forming partial sums of the »,’s in a suitable way. Evidently,
(5) u=m.
Note that, since §,=0 by assumption, each 4,2 2.
The term in (3) for which 4;=...=4,=2 is of special importance.
For brevity we call it the S,-term. As follows from the above descrip-

tion of the terms in (3), the S,-term appears only when 7 is even and the
v;’s are either 1 or 2. Thus, in this special case

m=3%r for »=...=9,=2,

(6)

m > }r  otherwise .

The coefficient d, , of the S,-term can easily be determined. For the
present proof it is sufficient to observe that

(7) dy o,=1/m! for »n=...=v,=2.



ON THE ASYMPTOTIC DISTRIBUTION ... 323

This follows e.g. from the fact that 1/d, , is the coefficient of
89 o=2c;%c;2...¢; % in the expansion of (¢;®+ ... +¢; 2)™, which co-
efficient is obviously m!.
There are two main situations depending upon whether r is odd or even.
(a) r is odd. In each term in (3), one at least of the indices 4,, ..., A

w
must be greater than 2. Hence by (1) any such term is o(nf), where
B =au—to(d+...+4,)

is negative or at most zero. Moreover, by (4) and (5)

B = alm—3r),

and thus

(8) O {0(1) form > 4r,
Y1...9m O(na(m"%')) fOI' m .S_ %,r .

(b) r is even. We have to distinguish between two subcases:

(i) The S,-term does not appear in (3). Then (8) holds.

(ii) The S,-term appears in (3). By (6) we have either m >}r or
y=...=v,=2. By the argument leading up to (8) we infer that all
terms in (3) except the S,-term are o(1). Hence, since S,=1 by assump-
tion, we find

S o~ o e

which by (7) becomes 1/m!=1/(3r)! when »;=...=v,=2. Summing up
all these results, we obtain (2), and the lemma is proved.

It might be noted that we have proved a little more than the lemma
states. In fact, when r is odd, O(1) in the first line of (2) may be replaced
by o(1).

We also note that, if o is replaced by O in the last line of (1), then o
should be replaced by O also in the last line of (2). This modification of
the lemma will be used in Section 5.

Finally, it might be added that the third part of condition (1) is often
unnecessarily restrictive. In fact, the proof is still valid if this condition
is fulfilled only for those ¢ among the integers 3, 4, ..., r which corre-
spond to S,’s appearing in (3). Evidently, no detailed description of
which ¢’s should be included in the condition can be given, since the
answer depends upon the choice of exponents v, ..., v,, in &

oyt

3. Main theorem. Let

Typs oo vs Tppn mn=12,...;k, > )

21*
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be a double sequence of random variables. For any fixed n the variables
z;, are assumed to be interchangeable. Further, let

h

s v s P

be a double sequence of real numbers. Denote the means

1 [f ~
Eghm by &k, ®=12...).
In what follows the index = in ;,, k;, and k, will sometimes be dropped,
but it should always be borne in mind that these quantities may depend
upon n.

Several fundamental properties of interchangeable random variables
have been derived by Andersen [1][2] and Chernoff & Teicher [4]. An
important consequence of the definition is that, for any given =, the
variables z; have the same marginal distribution. We shall suppose that
their common mean u and variance u, exist and are finite for any n
(note that u and u, may be functions of #», which may or may not remain
bounded when #» tends to infinity).

More generally, we shall assume that, for any n=1, 2, ..., the mixed
central moment

oy...om = Bl —p) (@, —p) .o (25, —u)™]

exists for any positive integers »,, ..., 7, and any m<k, Any such
moment has the same value irrespective of which m variables are con-
sidered among zy, . .., Z,.

We shall investigate the asymptotic behaviour of a linear combina-
tion of the z;’s with the A,’s as coefficients. The discussion will be limited
to the following two situations. Either the sum of the coefficients is
zero for any 7, or the sum of the variables is non-random for any = (or
both).

Let as usual E( ) and var( ) denote the mean and variance, respec-
tively, of the random variable within parentheses.

We shall prove the following theorem.

TuEOREM 1. Let
kn
Tn = 2 hinxin

i=1
be a linear combination of interchangeable random wvariables with finite
moments of all orders (and a variance which remains bounded away from
zero when n — o). Suppose that, for any n=1, 2, ..., either
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kn
(A 1) Zk@n =0
=1
or
kn
(A2) 2 Tin = Cn s
=1

where the C,, are given non-random quantities. If a quantity x =0 can be
Sfound such that

kn —
2 (hzn - hn)r
=1

(B) = — 5 = o(n*t-tn)y  for r=3,4,...,
|3 tha ]
im1
and if, for any given positive integers vy, ..., v, with sum r=2,
= o(1) for m>1ir
(®)] /ill—é:—m ~ 1 Jor v=...=v,=2
He = O(n*4r-m)  otherwise,
then

Tno = [Tn - E(Tn)]/[va‘r (Tn)]}
18 asymptotically normally distributed with mean 0 and variance 1.

Before proving the theorem, we note that condition (C) implies inter
alia that the correlation coefficient u,,/u, of any two variables tends to
zero when » tends to infinity.

We may without loss of generality assume that condition (A 1) always
holds, and hence that 7,°=T,/[var(T,)]}. For if condition (A 2) holds
good, T, — E(T,) remains unchanged if %, is replaced by &, —h.

We shall begin the proof by determining the variance of 7',. We have

var(T,) = B(T2) = py 3 hi2+u“112 hih;
%)
= pp 3 b+ pn [( X he)*— 3 b7
= (pa—pu) 2 .

But, as said above, u;;/u, -~ 0 when % — oo, and hence
var(Ty) ~ pp 3 R .
Accordingly, the rth moment of 7',° around its mean satisfies

E[Z ki(xi_.u)]r .

9) E(T % ~ quir(z hiz)gr
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The numerator can be written

[thﬂﬂ

(10) =1
-2 2 Rt kg B, — ) . (@, —p)m],

where X' denotes summation over all distinct unordered sets of positive
integers vy, ..., v, with sum r, and 2’ contains all different terms which
can be formed by taking subsequences j;, ...,j, from 1,2, ..., k,.

Since the variables are interchangeable, the factor E[] does not
depend upon the particular variables chosen, and hence can be placed
before the second summation sign. Using (9), we obtain

rl Hyy
0 ~ . ym
(11) By ~ 3 P B,

D N TN
VYi...¥m (2 kiz)ér

We now apply the lemma in Section 2 with

¢; = h)( Y hf)*.

It follows from conditions (A 1) and (B) of the theorem that condition (1)
of the lemma is fulfilled. Furthermore, s is specialized to H,
and we infer from the lemma that

vovm ?

where

< 'm 1ee.¥m?

= 0(1) for m>ir,
H i~ 1/(3n)! for »v=...=v,=2,
= o(n>tm-1n) otherwise.

Combining this result with condition (C), we obtain

Po.oom | g ~ 1/(3r)! forv,=...=v,=2,
ua?" et = o(1) otherwise.

Consequently, by (11) any odd moment of 7',° tends to zero as n — oo.
Further, when 7 is even,

ET,°) —~

r!
ey = (r=1)(r-3) ... 1.

Thus 7',° has in the limit the same moments as a standardized normal
variable. Since the normal distribution is uniquely determined by its
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moments, 7,° is asymptotically normally distributed (cf. Cramér [5,
p. 176]). This proves the theorem.

REMARK 1. The conclusion of the theorem remains true if the symbols o
and O appearing in condition (B) and in the last line of condition (C),
respectively, are interchanged.

When proving this statement, we use the modification of the lemma
mentioned in the last but one paragraph of Section 2. In all other respects
the proof is unchanged.

REMARK 2. The conclusion of the theorem remains true if, in the right
member of conditions (B) and (C), n is replaced by any function l,, of n such
that 1, — oo when n — o,

This is self-evident.

REMARK 3. Suppose that the marginal distribution of x;, tends to a
limiting distribution with finite central moments u,, of all orders and posi-
tive variance, and, furthermore, that any mixed central moment u, ., of
the variables x, tends to the product p, .y« + thpoor Lfs 0 addition,
condition (B) is satisfied for o =0, then the conclusion of the theorem holds
true.

The truth of this remark is seen as follows. When n — o we have by
assumption

Poy.ooom _ Prioo - v Pomoo
/‘2“ ‘u2oo§r

Since u,,,,=0(1) and p,,, =0, it follows that condition (C) is satisfied
for «=0.

REMARK 4. When Theorem 1 is used in the special case when «x=0,
a sufficient condition for the validity of condition (B) is that

kn _
21 lhin—hnls
[ ’,;1 ]3,2 =o(1).

(12)
2 (hm - hn)2

=1

The truth of this assertion is easily seen.

4. Application to ordered uniformly distributed variables. Divide the
unit interval (0, 1) into n+ 1 parts by taking n points at random in the
interval. Denote the lengths of the parts by 4,, ..., d,,;. Consider the
linear combination



328 GUNNAR BLOM

n+1l

Z, = n 3 by~ (n+1)7).

We shall prove the following result, which, in a slightly different form,
was used (but not conclusively proved) by Blom [3, pp. 96 and 175]:

If n+l1
2 (hm - Zn)r
=1

n+1 _
|3 =]
i=1

;r=0(l) Jor r=3,4,...,

then Z, is asymptotically normally distributed with mean 0 and variance
?:]i(hin—kn)z'
To prove this proposition, we observe first that the 4,’s are inter-
changeable and have a non-random sum. Their distribution has been
studied by Blom [loc. cit., p. 40ff.], among others. We have

E@) = (n+1)7%
var(d;) = n(n+1)-2(n+2)1;
cov(d;, 0;) = —(m+1)3(n+2)2 (€ *3.
Hence
E(Z,) = 0;
n+1 _ n+1 _
var(Z,) = n¥(n+1)7(n+2)7 3 (hip—hy)? ~ X' (hip—hy)?
=1 i-1
as stated.
We now apply Theorem 1, Remark 3, with z,,=nd,, k,=n+1 and
o« =0. Condition (B) with « =0 is fulfilled by assumption. Furthermore,
any variable ; has the frequency function n(1—4;)»-1. Hence, in the
limit, z;, tends to a random variable & with the frequency function e—*
and central moments u,.,, where e.g. u,,=1 (cf. Blom, loc. cit., p. 59).
More generally, any m intervals, for example d,, ..., d,,, have the joint
frequency function

nn—1)... (m—m+1)(1-6,—...=6,) ™.
Hence any mixed moment around zero is given by

E@6,76,2 ... 0, =nn-1) ... m—m+1).

m

13 S ,,.Saln o B = 8y — ... =8, )mmddy ... b

nly! .o ow,!

- (n+ 2 w)!
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It follows that \

B, ... 2,,™) = vl oo,
when n — oo. Since »;! is the »,th moment around zero of the exponential

variable z, this implies that we can write
Bz, ... x,,™ > E@) ... E(x™).

Finally, it follows from this relation that also the mixed central moment
Moy ... o, Of the variables z;, tends to a corresponding product y,
of the central moments of the limiting variable.

It is seen from all these considerations that we are entitled to apply
Remark 3 following Theorem 1, and the proposition is proved.

cov Moo

5. Application to permutation variables. Linear combinations of per-
mutation variables have been investigated by many authors, e.g. by
Hotelling & Pabst [8], Wald & Wolfowitz [10], Noether [9], and Hoeff-
ding [7]. A survey of the results obtained by these and other authors is
given by Fraser [6, p. 235ff.]. We shall show that Noether’s results may
be obtained as a special case of Theorem 1.

Let the variables z,, ..., z, be generated by the »! equally likely
permutations of the given numbers a,, ..., a,. The variables x; are
evidently interchangeable and have a non-random sum. Apply Theo-
rem 1 with k, == after interchanging the symbols o0 and O in condition
(B) and the third part of condition (C) (which is allowed by Remark 1
to the theorem).

Condition (B) then assumes the form

n

2 (hy—R)

(14) _:1——'? = O(n*4-3M) for r = 3,4, ...
| -]
=1
which is a generalization of the condition W used by Noether. Further,
the modified condition (C) holds for 0 <« =1 if and only if

s

(a;—a)
(15) L S = o(n@-20-1n)  for r =3,4,...

| -y *'

which is the corresponding generalization of the second condition intro-
duced by Noether. To prove the last statement, take m=1, »,=r, and
r=3, 4, ... in the third part of the modified condition (C). Since
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1 n
Mr = ;2(“’1'—6')':
i=1
we obtain )
" 2 (—a)
0 = o(n>Gr-0) for r =3,4,...,
[; 2> (“i—ﬁ)z}

which is identical with (15).

Conversely, we shall demonstrate that if (15) holds good, then condition
(C) is satisfied (with the modification referred to above). For this pur-
pose, set

(16) c e
Y (- ar
Evidently
nir ,
(17) I_lu _ .2 cjlu . ijum ~ m!nlﬁr—mssr:)m”m .

pot" (” )
m

Now apply the lemma in Section 2 with ¢; given by (16) and « replaced
by 1—oa. Since « <1, we know that 1—« is non-negative as required in
the lemma. Combining (2) with (17), we see that condition (C) is satis-
fied (with o replaced by O as described above).

Summing up, we have proved the following result, which is somewhat
more general than Noether’s theorem given in [9]:

If the coefficients h; and the numbers a, satisfy (14) and (15), respectively,
with 0S a2 1, then X7 h;x; is asymptotically normally distributed.

A still more general result was obtained by Hoeffding [7, Theorem 4].

6. A further theorem. We shall prove a theorem valid for interchange-
able random variables with a non-random sum, which is closely related
to a result due to Chernoff & Teicher [4]. This theorem may sometimes
be more convenient to apply than Theorem 1.

Without loss of generality it may be assumed that, forany n=1, 2, ...,

kn
(18) inn = 0; var(ry,) =1 G=1,..., kn) .
iz

By “z,=o0(n) in probability’”’ we mean that x,/n tends to zero in
probability.
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TaEOREM 2. Let

Tn =2 hinxi

be a linear combination of interchangeable variables which satisfy (18).
If, for some o« in the interval 0 <x <1,

kn -
(hin'— hn)r
=1

>

= 0(k,* ) for r=3,4,...,

ir

[ X —W]

and if the relations

kn
max |x;,| = o(k,}*) and — Y'x,2->1
1§’i§kn n i=1

hold in probability, then T, [[var(T,)]* is asymptotically normally distri-
buted with mean 0 and variance 1.

The theorem can be proved by a slight extension of the method used
in [4]. We shall give only a few hints of the proof. Without any essen-
tial loss of generality it may be assumed that k,=n.

First, replace the variables z,, ..., x, by fixzed numbers a,, ..., a,
which satisfy the relations

n 1 n
(19) Ja; =0, maxlal =on*), - 3a2->1.
i=1 =1

1sisn

Consider the random variable

n
Tnl = 2; ki Y

generated by the n! equally likely permutations of the numbers a,.
Now apply Noether’s theorem in the generalized form given in Section 5.
Condition (14) is satisfied by assumption. Condition (15) also holds,
since by (19) for r=3, 4, ...

-2
|2 a] < MaX g, la™® o(nA-"a-in) |

() = (T ai

Consequently, after suitable standardization, 7',’ is asymptotically
normally distributed with mean 0 and variance 1.

Secondly, it is proved exactly in the same way as in [4, pp. 122-123]
that 7', has the same limiting distribution as T',’. This proves Theorem 2.
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Undoubtedly, Theorem 2 can be given a more general formulation, for
instance by using Hoeffding’s result referred to at the end of Section 5.
However, it seems that the present result is general enough for several
purposes.

I am indebted to Professors G. Elfving and E. Sparre Andersen for
several helpful suggestions.
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