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ON DIRECT DECOMPOSITION
OF TORSION FREE ABELIAN GROUPS

BJARNI JONSSON

Introduction. It is known (cf. [3]) that there exist torsion free Abelian
groups of finite rank which do not have the unique factorization prop-
erty. The principal purpose of this note is to establish for this class of
groups a weaker form of this property. Roughly speaking, the modifica-
tion consists in replacing the relation of isomorphism by an equivalence
relation which holds between two groups if and only if each of them is
isomorphic to a subgroup of the other. Of course this will have to be
accompanied by a corresponding change in the notion of an indecompos-
able group. It also gives rise to a congruence relation over the lattice L
of all subgroups of a torsion free Abelian group 4 of finite rank, two
members of L being indentified if and only if their sum and their inter-
section are equivalent. In fact, this turns out to be precisely the con-
gruence relation which we obtain by collapsing all finite dimensional
quotients in L. Our problem therefore reduces to showing that in the
resulting quotient lattice any two representations of an element as a
sum of linearly independent directly irreducible elements are equivalent.

Since this lattice need not be finite dimensional, we cannot apply
Ore’s theorem [2, Theorem 1, p. 262]. However, our lattice does possess
an isotone integer-valued valuation induced by the ranks of the subgroups
of A. The only significant property of the dimension function that is
missing is the property of being positive, since an element may have the
same value as some of its proper parts. Instead we have here two weaker
properties: the zero element is the only element whose value is zero, and
no element is projective to a proper part of itself. As we shall show in
the next section, Birkhoff’s proof of Ore’s theorem [1, p. 94] can be
modified to apply to all lattices having these properties.

Our principal result, Theorem 2.6, was announced in [4], but the
original proof, which has never been published, was quite different from

Received August 10, 1959.
This note was prepared for publication while the authors research was being supported
in part by a grant from the National Science Foundation, U. 8. A.



362 BJARNI JONSSON

the one given here. So far as we know, the generalized form of Ore’s
theorem, our Theorem 1.4, is new.

1. A generalization of Ore’s theorem. We shall use + and - for the
lattice operations of binary addition and multiplication, and X and I/
for the corresponding operations on finite sequences. In a lattice with a
zero element 0, we write a +b for a+b in case ab=0, and

2a=20a

<<n <<n
in case the elements a; are independent. If b<a, we write a/b for the
quotient, or sublattice, consiting of all elements between ¢ and b. We
write a/b tr c/d if the quotients a/b and c/d are transposes of each
other. The relations of perspectivity and of projectivity, between quo-
tients or between elements, will be denoted, respectively, by ~ and
by ~.

DErFiNiTION 1.1. In a lattice M with a zero element 0, an element w is
said to be directly irreducible provided w+0 and, for all a,b € M, the
condition w=a+b implies that either a=0 or b=0.

DErFINITION 1.2, In a lottice M with a zero element 0, an element w is
said to have the double exchange property provided for all a, b, ¢y, ¢, .. .,

¢, € M with a directly irreducible, the condition

u=a-|'-b=20j

jsn

implies that there exist g<n and elements x,y € M such that

cg=2+y and w=z+b=a+y+ Y c;.
g+j<n
If every element of M is a sum of finitely many independent, directly
irreducible elements, then it is clear that in order to prove that an
element » has the double exchange property it suffices to consider the
case in which the elements c; in 1.2 are directly irreducible, and to show
that in this case there exists ¢<<n such that

u=cq+b=a+20,-.
g+j<n

DErinITION 1.3. By a rank function over a lattice M with a zero element
0 we mean an integer valued function R on M such that, for all a,b € M,
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R(a+b)+ R(ab) = R(a)+R(D),
a<b implies that R(a) < R(b) ,
R@) =0 ifandonlyif a=0.

In a finite dimensional modular lattice the dimension function is clearly
a rank function. Given a torsion free Abelian group, the usual notion of
rank defines a rank function over the lattice of all subgroups of finite
rank. Finally, given a rank function over a lattice M, and a congruence
relation over M with the property that congruent elements always have
the same rank, we obtain a rank function over the quotient lattice by
assigning to each equivalence class X the common rank of all the mem-
bers of X. These last two observations will be utilized in the next sec-
tion.

THEOREM 1.4. If M is a modular lattice with a zero element 0, if there
exists a rank function R over M, and if no element of M is projective to a
proper part of itself (that is, a<b~a implies a=>), then every element of
M has the double exchange property.

Proor. Suppose w € M, and assume that ay ay, ...,a, b b,
..., b, are directly irreducible elements of M such that

u 2'2(11: =2b] .
<m J<n

For p<m and g<n let

We wish to show that
(1) w = b,+d, = ay+b, forsome g<n.

Let ¢t and t' be positive integers, and assuming this assertion to hold
whenever either R(u) <t or else R(u)=t and R(a,) <#', consider the case
in which R(u)=t and R(ay)="?'.

First consider the case in which

(2) ap+b, =u for ¢=0,1,...,7,

and observe that this implies that R(b,)<R(a,). If R(b,)< R(a,), then
it follows from the inductive hypothesis that there exists p<m such that
(3) u=b,+a, = a,+b,.

It follows that R(a,)=R(b,), and therefore p+0. Before completing the
proof for the subcase under consideration, we show that (3) also holds
in case R(b,)=R(a,) and b,a,+ 0. In fact, let
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a' = ay(b,+3a,), « =a+a,.
Then , o 3 3 N
U = ay(by, +a) + 8y = (ag+8y)(b, + ) = b, +ay ,
b, <u <b,+b, u =b,+ub,.
Furthermore

a'[0 = ay (b, +ag)/ay (b, +@y)a, tr (ao(bn“’ao)‘*"—lo)/ao
= (b, +@,)[a, tr b,/b,a,,
whence it follows that
R(a’) = R(b,) — R(b,,) < R(b,) = R(a,) ,
R(w') = R(a')+ R(@,) < R(a,)+ R(a,) = R(u).

By the inductive hypothesis, and in view of the fact that R(a’) < R(d,),
there exist a positive integer p such that

W = a +b,+8a, = a,+u'b, .
It follows that

ap+b, = w+b, > b,+b, =u, a,b, =a,u'b, =0,
so that u=a,, 4b,. Consequently R(a,)=R(b,). Furthermore
b,+a, = v +@, > a,+a, =u, u=2"b,+a,,

R(bn) = R(ap) = R(’M/)—-R(dp) s

and since

we must have u=bn-|'-ﬁp. Thus (3) is seen to hold in this case also.
We next show that (3) implies (1). The elements b, and @, are per-
spective, and the mapping

x - x*=a,(x+a,)
is an isomorphism of the quotient ,/0 onto the quotient @,/0. Con-

sequently .
(—ip = 2 b’i* .

<n

By the inductive hypothesis we have
ap = bq*'*.'aodp = ay+ 2 b*
g#i<n
for some g <n. Observe that
b, +@y = by+a, = b*, u=b,+a,.

Inasmuch as R(b,)< R(a,), this implies that u-_-bq-i-iio. Thus R(b,) =
R(a,), and since
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% = b,4+b, = ay+0b,,

we infer that u = a,+ b,- Thus (1) has been established under the assump-
tion that (2) holds, and that either R(b,)< R(a,), or else R(b,)=R(a,)
and b, @, =+ 0.

Still assuming that (2) holds, we now consider the remaining subcase
in which R(b,)= R(a,) and b,d,=0. Since

= b,+b, = ay+b, and R(b,) = R(a,),
we have u=a,+b,. Thus ay~b,. Furthermore,

(b + ) [0 = ag(by, +Ty)[ag(b, +Tp)y tr (“o(bn‘l’do) +C—lo)/‘—"o
= (bn'*'ao)/ao tr bn/bndo = bn/o ~ aO/O ’

whence it follows by hypothesis that (b, +a@,)=a, Consequently
ay<b, +ay, u=>b,+a, We therefore see that in this case (1) holds with
g=n.
We now drop the assumption that (2) holds. For g<= let
Cq = bq(a0+5q), 5, = N,

q e/ )
q+j<n

and let

v =20j.
jsn

It is then easy to check that
v= [T (@+b), T =25, JT (a+by).

Jjsn g+j<n
It follows that ay<v<a,+a,, hence

v = ay+0d,,

and that
ay+Cy = v for g=01,...,n.

Each of the elements c, is a sum of independent, directly irreducible

elements ¢, ,, r=0, 1, ..., k,. Letting

whenever ¢g<n and r<k, we have a,+¢,,=v. By the special case

already established we therefore have
v =g, V8, = Qg+ 5y,

for some g<n and r<k,. It follows that
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Cortlyg =0v+0y = u,
and since R(c, ,)< RE(c,)< R(a,), we must have
U = Oq, r ".' 60 .
Thus . _ S
Cor < by < g+ Ty, b, = ¢4, ,+0,a,,
and recalling that b, is directly irreducible we infer that b,a@,=0 and
b,=¢,, - Inasmuch as c, ,<c,<b,, it follows that b,=c,. Therefore
w=>b+a and v= bq-i'-v(70= Ao+3C, .
Finally, _ —
ay+b, =v+b, = u,
and we use the fact that R(a,)=R(b,) to conclude that
u = ay+b,.

We have therefore established (1) for the case in which R(u)=¢ and
R(ap)=1t". The theorem follows by induction.

In the next section we shall also need the following lemma.

LemMma 1.5. Suppose = is a congruence relation over a modular lattice
M, and for a € M let a*=a|/=. For any a, b, ¢, d € M, if b*<a*,
d*<c*, and a*[b*~c*|d*, then there exist elements a’, V', ¢’, d' € M

such that
ab < b <a <a+b, cd<d <c <c+d,

b=b, a=a ¢ =c¢ d=d and o[t ~c[d.
Proor. We may assume that b<a and d<c. First suppose
a*[b* tr c*/d* .

Then either a=b+c¢ and d=bc, or else b=ad and c=a+d. In either
case the four elements

o =b+ac, b =b+ad, ¢ =d+ac, d =d+bc
have the required properties, in fact,
(b+ac)/(b+ad) tr (b+d+ac)/(b+d) tr (d+ac)/(d+bc) .

Assuming now that the conclusion holds whenever the sequence of
transposes connecting the two quotients consists of at most n terms,
consider the case of n+1 transposes. Then

a*b* as op*fdy* tr c*/d
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where the first two quotients can be connected by n transposes. Hence
there exist a', o', ¢,’, d;" € M such that

b<b <a <a, d<d'<e¢'<c,
b=b, a=a, d'=d;, ¢ =¢, and b ~ ¢'[d/.

Thus (¢,")*=c¢,* and (d,")*=d,*, so that
(e )¥/(d))* = er*[dy* tr c*[d*.
By the first part of the proof there exist ¢,”, d,”’, ¢’, d’ € M such that

dll < dln < 01” < cll, d < dr < CI < c,
d,"=dy, ¢ =¢', d=d, ¢=¢ and ¢"[/d," ~ cd.

In the projectivity between a’/b’ and ¢,’/d,’, the elements ¢,"" and d,"" of
the latter quotient correspond to elements a'’ and 4"’ in the former, and

all/bll ~ clllldlll A~ cI/dl .

Furthermore b<b'<b” <a'’<a’'<a, and since projectivities preserve all
congruence relations we have b=5"" and a=a".
The lemma now follows by induction.

2. Applications to torsion free Abelian groups. We now define the
equivalence relation mentioned in the introduction.

DEerFINITION 2.1. Two groups A and B are said to be almost isomorphic
— in symbols A ~° B — if and only if each of them is isomorphic to a sub-
group of the other.

DEFINITION 2.2. Suppose A and B are subgroups of a group G. We say
that

(1) 4 is almost contained in B — in symbols A <°B — if and only if
A~°AnB.

(i) A is almost equal to B — in symbols A=°B — if and only if A<°B
and B<°A.

DEFINITION 2.3. A group A is said to be strongly indecomposable if
and only if A consists of more than one elements, and the condition
A~°BxC always implies that either B or C consists of only one element.

Clearly the relation = ° is an equivalence relation over the class of all
groups. On the other hand it is easy to see that in general <° is not a
transitive relation over the class of all subgroups of a given group G,
and that consequently = ° need not be an equivalence relation.



368 BJARNI JONSSON

THEOREM 2.4. Suppose A and B are subgroups of finite rank of a torsion
free Abelian group G. If A <°B, then the following conditions are equiv-
alent:

(i) A~°B.

(ii) The quotient group B—(ANDB) is finite.
(iii) The lattice quotient B|(A nB) is finite dimensional.
(iv) nB< A for some non-zero integer n.

(v) A=°"B.

Proor. Clearly (ii) implies (iii). Assuming (iii), we consider arbitrary
subgroups C of B with AnB<(, and use induction on the dimension N
of C[(AnB) to show that nC<AnB for some non-zero integer .
Assuming this to hold for all lower dimensional cases, choose a subgroup
C’ of C which is covered by C in the lattice of all subgroups of G. By the
inductive hypothesis, n'C’< AnB for some non-zero integer n’. Also,
since there is no group properly between ¢’ and C, the quotient group
C — (' must be finite and its order must be a prime p. Hence pC<=(’,
so that pn’C < AnB. Induction completes the proof of (iv).

Assume (iv), and let f be a homomorphism of B onto an Abelian
group C such that the kernel of f is 4 nB. Then the order of each ele-
ment of C divides n, whence it follows that if C is infinite, then it con-
tains arbitrarily large finite subgroups C’. In particular we can choose
C’ so that its order exceeds n™ where m is the rank of B. Now (' is a

direct product of cyclic groups generated by elements ¢y, ¢y, ..., ¢,
such that, for each ¢ <%, the order n;,, of ¢,,; divides the order », of c,,
and n, > 1. It follows that k>m. For i=0,1, ..., k let b, be a counter
image of ¢;. Then the elements b, are linearly dependent,

rb, =0,

i<k

where at least some of the integers r; are not zero. We can choose the
integers 7; so that their greatest common divisor is 1. Now

21 =0,

i<k
whence it follows that », divides r; for each ¢<k. Consequently n,
divides all the integers r;, which is impossible because n, > 1. We there-
fore conclude that C must be finite. Thus (iv) implies (ii).

If (iv) holds, then the mapping # - nx is an isomorphism of B into

AnB, whence it follows that B=°4, and (v) holds. If (v) holds, then

A~°AnBx~°B,
and (i) is satisfied.
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Finally assume (i). Then Bx~°A4nB, and there exists an isomorphism
f of B into AnB. There exist finitely many elements by, b,, ..., b, _,
which form a rational basis for B. The elements f(b,), f(b,), . . ., f(by—y)
are then also rationally independent, and must therefore form a rational
basis for AnB. We can embed @ in a vector space over the field of
rational numbers, so that the multiplication of an element of B by a
rational number becomes meaningful. We have

f(by) =2 si,jbj
j<m

where s;;, ¢,j=0,1,...,m—1 are rational numbers. The matrix s
satisfies its characteristic equation, so that

(dets)I = 't sk+

k<m
where I is the identity matrix and ¢, ¢,, ..., ,,_; are rational numbers.
Since s is non-singular, there exist integers n=0, ¢,, q;, ..., ¢,,_; sSuch
that
nl = ) g+,
k<m

Consequently, for all x € B,
nx = q,f*(x) € AnB.

k<m

Thus (iv) holds, and the proof is complete.

THEOREM 2.5. If L is the lattice of all subgroups of finite rank of a
torsion free Abelian group @, then =° is a congruence relation over L,

and in the quotient lattice no element is projective to a proper part of itself.

Proor. Since AnB<°4 and AnB<°B, it follows from Theorem 2.4
that 4=°B if and only if the lattice quotients 4/(4nB) and B[(4nB)
are finite dimensional, and this in turn holds if and only if the dimension
of the quotient (4 +B)/(4NnB) is finite. Thus =° is precisely the con-
gruence relation over L which collapses all finite dimensional quotients.

For A € L let A* be the equivalence class modulo =° to which
A belongs. Observe that 0* consists of the null group 0 alone. From this
it follows by Lemma 1.5 that if 4,B € L are such that A*<B* and

A*~B*, then there exist A’,B’ € L such that
A'c A, B B, A" =°4A, B =°B, and 4'~B.

Then A’ ~B’, A ~°B. But the condition 4*< B* implies that A =°4nB.
Therefore

Math. Scand. 7. 24
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B~°AnB, B=°AnB, B*< A* A* = B*,
This proves the last part of the theorem.

TEEOREM 2.6. Suppose Ay, Ay, ..., Ay, By, By, ..., B, are strongly
indecomposable torsion free Abelian groups of finite rank, and

AyxAy;x...xA, ¥°ByxB;x...xB,.

Then m=mn and there exists a permutation ¢ of the imtegers 0,1, ..., m

such that A; ~° B,y for 1=0,1,...,m.

Proor. We may assume that the groups 4; and B; are subgroups of
a torsion free Abelian group @, and that the direct products involved in
the hypothesis are inner direct products, i.e., the operation x coincides
with the operation + in the latice of all subgroups of G. In fact, without
loss of generality we may assume that

(1) G=°34,="23B;.
e<m JI<n

Let L be the lattice of all subgroups of @, and for 4 € L let A*
be the equivalence class modulo =° to which A4 belongs. Since two
members of the same equivalence class always have the same rank, we
can define a rank function R over the quotient lattice M =L[=° by
letting R(C*) be the rank of C. Since, by Theorem 2.5, no member of
M is projective to a proper part of itself, it follows that M has the double
exchange property.

Next observe that in order for a subgroup C of G to be strongly in-
decomposable it is necessary and sufficient that C* be directly irreducible,
and that for any C, D € L, if C* and D* have a common complement,
then C~°D. In fact, if G*=C*%+E*=D*{ E*, then C+E=°D+E.
Hence there exists a non-zero integer n such that nC'< D+ E. Thus for
each ¢ € C, the element nc can be uniquely represented in the form
nc=d+e with d € D and e € E, and the mapping ¢ —d is an iso-
morphism of C into D. Similarly, D is isomorphic to a subgroup of C.

By (1) we have . )
G =214 =3 B*,
i<m j<n
and by repeated use of the double exchange property we obtain a
one-to-one mapping ¢ of the integers 0,1, ...,m into the integers
0,1, ..., n such that

G*=%’B¢(¢)*-FZA,-* for k=01,...,m.

k<i<m
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By taking k=m we infer that m =n, and that ¢ is a permutation of the
integers 0, 1, ..., m. Finally, by considering two successive values of
k, k=p and k=p+1, we see that 4,* and B,* have a common com-

plement, namely ) o
2 Byt + X Ax.

i<p p<i<m

Consequently 4,~°B,,.
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