NOTE ON THE PARITY OF THE PARTITION FUNCTION

O. KOLBERG

Let p(n) denote the partition function, with p(0) = 1. Many congruence properties of p(n) have been found for the moduli 5, 7, 11 and 13. For the moduli 2 and 3 however, very little is known. In this note we wish to point out a simple result modulo 2, and related results for the moduli 10 and 14.

Theorem 1. p(n) takes both even and odd values infinitely often.

PROOF. We have (Euler)

(1)
$$p(n) - p(n-1) - p(n-2) + p(n-5) + \ldots = 0$$
,

where the general term is given by

$$(-1)^k p(n-\frac{1}{2}k(3k\pm 1))$$
.

Now, suppose that $p(n) \equiv 0 \pmod{2}$ for all $n \ge a$. With $n = \frac{1}{2}a(3a-1)$, formula (1) yields

$$p(\frac{1}{2}a(3a-1)) - p(\frac{1}{2}a(3a-1)-1) - \ldots \pm p(2a-1) \mp p(0) = 0$$
,

a contradiction (mod 2). Hence p(n) takes odd values infinitely often.

On the other hand, suppose that $p(n) \equiv 1 \pmod{2}$ for all $n \geq b$. We then obtain a contradiction by taking $n = \frac{1}{2}b(3b+1)$ in (1), since the left-hand side contains an odd number of odd terms.

If we apply the same method to an arbitrary modulus, we obtain only the following result: For q > 1, r arbitrary, there are infinitely many n that make $p(n) \equiv r \pmod{q}$.

By means of the Ramanujan identities however, we can prove the following theorem:

THEOREM 2. Each of the congruences $p(n) \equiv 0 \pmod{10}$, $p(n) \equiv 5 \pmod{10}$, $p(n) \equiv 0 \pmod{14}$, and $p(n) \equiv 7 \pmod{14}$ has infinitely many solutions.

PROOF. We have $p(5n+4) \equiv 0 \pmod{5}$ and $p(7n+5) \equiv 0 \pmod{7}$; there-

Received June 17, 1959.

378 O. KOLBERG

fore it is sufficient to prove that p(5n+4) and p(7n+5) take both even and odd values infinitely often. Let

$$\varphi(x) = \prod_{n=1}^{\infty} (1-x^n).$$

The first Ramanujan identity is:

$$\sum_{n=0}^{\infty} p(5n+4)x^n = 5\varphi(x)^{-6}\varphi(x^5)^5.$$

We have

$$\varphi(x)^6 \equiv \varphi(x^2)^3 \equiv \sum_{n=0}^{\infty} x^{n(n+1)} \pmod{2},$$

by Jacobi's identity

$$\varphi(x)^3 = \sum_{n=0}^{\infty} (-1)^n (2n+1) x^{\frac{1}{2}n(n+1)}.$$

Hence, with

$$\varphi(x^5)^5 = \sum_{n=0}^{\infty} A(n) x^n$$

we obtain

$$p(5n+4) + p(5n-6) + p(5n-26) + \ldots \equiv A(n) \pmod{2}$$

where the general term is p(5n-5k(k+1)+4). We proceed as in the proof of theorem 1, but we have to choose a value of n not divisible by 5, to ensure that A(n) = 0.

To prove the second part of theorem 2, we use the other Ramanujan identity, viz.

$$\sum_{n=0}^{\infty} p(7n+5)x^n = 7\varphi(x)^{-4}\varphi(x^7)^3 + 49x\varphi(x)^{-8}\varphi(x^7)^7.$$

It follows that

$$\varphi(x^8) \sum_{n=0}^{\infty} p(7n+5) x^n \equiv \sum_{n=0}^{\infty} B(n) x^n \pmod{2},$$

with

$$\varphi(x^4)\,\varphi(x^7)^3 + x\,\varphi(x^7)^7 = \sum_{n=0}^{\infty} B(n)x^n$$
.

By Euler's identity for $\varphi(x)$ we have

$$\varphi(x^4) = \sum_{n=-\infty}^{\infty} (-1)^n x^{2n(3n+1)}.$$

Hence

$$B(7n+2) = B(7n+3) = B(7n+5) = 0$$

and the proof is completed as before.