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A NEW VERSION OF SOME CONSIDERATIONS
OF A. THUE

TH. SKOLEM

Among the articles of the late Norwegian mathematician A. Thue
there are a few which treat some rational approximations to rth roots of
rationals. In particular he wrote [1] and [2], which are rather trouble-
some to read. In this paper I give a modified exposition which is much
shorter. My method is a little different from Thue’s.

I first find polynomials f,(x) and g,(x) of degree n with rational co-
efficients such that the function f,(x)—(1+2)¥"g,(z) has £=0 as a zero
of multiplicity 2»+ 1. The coefficients of f, and g, turn out to be very
similar to those of the polynomials with which Thue was working. One
might therefore think that a transition from one treatment to the other
ought to be possible, but I don’t know how to carry that out.

I prove again Thue’s theorem for the rth roots. As is well known,
stronger theorems have been proved by Siegel, Roth and others, but the
proofs are rather long and complicated. The purpose of this paper is
only to give a shorter proof of Thue’s theorem in the case of rth roots.

1.
I shall prove the existence of polynomials f,(z), g,(x) of degree n with
rational coefficients such that

Fal@) = (L4 2)7 g () = €1 @244 0 (224

Such polynomials exist for n=0 namely fy(x)=go(x)=1. I shall show
how to find f, ., and g,,,,, provided that f, and g, are known.
We get

Ci,n Co,n
- i/r = _b" on42 s 2n+3
{ru@re = (gu@ 14apinde = un gomia Pen gansay
so that
(2n+ 2)S fo(@)dx — (2n+2) S go(@)(1+2)rde —
- x(fn(x)_(l +x)1/rgn(x)) = €, n+1x2n+3+ e s
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Hence we may put

@n+2) { fua@)de - wf,@) = fun@)
and
(2n+2)S Gu(@) (L+ @)V de — a(1+2)rg,(@) = (1+a)V7g, () .

Putting
gn(x) = an,n(l +x)n+an—1,n(1 +x)n—1+ o +a0,‘n

we obtain the following expression for g,, ,,(x):

r
(I+2)"* 4+ @, ,—— (1 +2)™ +...

gn+1(x) = (2n +2)(an,n m+1

r(n+1)+1

+

r+la°’”(1+x)> - an,n(l+x)n+1_a’n——l,n(l+x)n'— o _a'o,n(1+x) +

+ @y, (1 +z)"+ ... +al’n(1+x)+a0’n .

Thus we obtain the following equations

r(n+1)—1
Qpi1,n+1 = m n,m
r(n+2)—1
Ay n+1 = ‘“’m—“n—l,n + Qpns

r(n+3)—1

Ay =——— 0y + a -1
n—-1,n+1 r(n—1)+l n-2,n n-1,n 2

.................................

B, n+1 = Qo n -

The last equation yields a, ,=1 for all x, since @, ,=1. Putting

h, = (r=1)2r—=1) ... (nr-1), k, = (r+1)2r+1)... (mr+1),
hog =1, ky=1,
I assert that quite generally we have

= (e
o m) hyk,_n
Indeed this is seen at once by induction with regard to n to be true for

m=0 and m=n. We may also use induction on n to prove it generally
because it is correct for «=0. We have
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rin+m+1)—1
Cp—m+1,n+1 = man—m,n + Cpomi1,n
so that assuming the correctness of the formula for n and m=0,1, ... n
we obtain
a = (r(n+m+1) 1)(”) o + (rm 1)( " ) i
nomrL m hmkn—m+1 m—1 hmkn—m+1

h, “(mtz_l) {(r(n+m+ 1)7—n1)(n—m+ 1)

= +rm— 1] .
hmkn—-m+1

Now the reader will easily verify that identically

(rn+m+1)=1)(n—m+1)+m(rm—1) = r(n+1)2—n—1 =h—;:ﬂ(n+l)

so that we get

Ap—m+1,n+1 =

h’n ( n )hn+1n+l_ hn+1 (’n+1)
m bl

hmkn—m+1 -1 hn m hmkn—m+1 m

that is, the formula is valid for 41 and m=0, 1, ..., n. However, as
already noticed it is also valid for m=n+1. Therefore the formula is
generally correct.

Writing

— ’ ’ _1 !’
gn(x) = Oy, "+ Ay g ("1t a
we have /
Ap,n = Qp,p >
’ n
Ay 1,n = Qp,n 1 + 1,0
’ n n—1
a’n—z,n a’n,n 2 +a’n—1,n 2 +an—2,n ’
!’
Ay, pn = an,n+a’n—-1,n+an—2,'n ] +a0,n .
If we write

fn(x) = bn,nxn'l'bn—l,nxn-l'i' oo +bO,n ’
the identity
fra@ = @n+2) (@) de - of,@)

yields all b, ,=1 and for m=0,1, ...,n—1 the equations
n+m+2
bn-—m,n+1 = n+,n;—bn—m-l,n ’
whence ntmy,
bn—m,n = om 0,m *

Clearly by, ,,=ag, -
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Further it may be suitable to mention here that
A(@) = fr1(®)gn(@) — fo(®)gp41(2)

2
= (an,n"a’n+1,n+1)x2n+1 =

- 2n+1 |
r(n+1)+1

@y,
Indeed the elimination of (1+z)Y* between the expressions for
Ful@) = (142)V70,(@) and fy43(@) — (1+@)17g, .1(x) yields that A(z) must
equal a series beginning with a term cz?*+!, On the other hand A(z) is
a polynomial of degree 2n+ 1. It is important that A(x)40 when x4 0.

Now let d, be the least positive integer such that all d,a,, ,,
m=0,1, ...,n, are integers. Then all d,a,, , and all d,b, , wil be
integers as well. In order to estimate d,, we may proceed as Thue does
in [1, pp. 21-24]. Putting

(r+1)(2r+1) ... (nr+1) a

1-2...n b’

(2,0) =1,

it turns out that a-a,, , is an integer for m=0, 1, ..., n. This can be
shown in the following way. We have

G o = (n)(r(n—m+1)—1) coe (=) (r+1)(2r41) ... (1)

m/) (r+1)(2r+1)... (rm+1) 1-2...n
_(rle=m+1)=1) ... (rn=1) (r(m+ D+1) ... (m+ l)b _AB 5
B 1-2...m ) 1-2... (n—m) Tx g
where
A (rln—m+1)=1)... (rm—1) B (rm+1)+1) ... (rm+1)
x 1-2...m B 1-2... (n—m) ’

and every prime divisor of xf8 divides r. Further we may write

1-2:3...n =00,
1-2-3...m=aD,
1-2:3... (n—m) = pE,

where C, D, E are integers, and we know that

(n _ bC
m) " «DBE
is an integer. Also

a=(r+1)2r+1) ... (m+1)/C

so that C and r must be coprime. Hence «f must divide b, so that
@y, »0 i8 an integer. Therefore d, <a.
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Further, it can be shown that a <((r+1)2")", I denoting the number of
different primes dividing 7. Indeed the exponent for the power of a
prime p dividing n! is at most n/(p—1), so that we get

b < I pm@-v,
P

the product extended over the mentioned ! primes. Since pl/®-V <2,
we have

b < 2,
Further
1)(2 1) ... 1 1
D+ - D) ety (r+—) < (r+1y
1:2...n n
so that

a < ((r+1)2)".
In the particular case [=1 it is seen that we may also write

a < ((r+1)rt/r=byn
In the sequel I write
d, < x"

with »=(r+1)2! and »=(r+1)rV/¢-D, respectively, if r is a prime.
Putting
dofn(®) = Fo(@),  dgn(®) = Gp(®),

F, and G, have integer coefficients and
Fn(x) - (1 +x)1/an(x) = dn(cl, nx2n+1+02, nx2n+2+ . ') .
The reader will easily verify that

v
C

= ——C
v, N1 2n+v+2 v+1,n

and that

v

which is absolute < 1 while for every « the successive ¢, , have alternating
signs and are all absolute <1. Therefore we have the following rude
estimate for 0<z <1

lcl,n+62,nx+ . [ = ma'x(lcl,n+cs.nx2+ . ']’ x|02.n+c4.nx2+ o I) ’

whence because of
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1
1, nt+Cs 22+ ... < 1+2%+... = ——,
’ ’ 1—22
1
[Co ptCyn®+ ... < 14+22+... = ,
’ ¢ 1—2a2
in any case
1
e, nt+Co,n®+ .. ] < 2
Hence z2n+1
Fn(x)—(l+x)1/ran(x) < dni_-xz
2.

Let the positive integers a, b, ¢, u, v satisfy the equation

au’—bv" = ¢

or o ur 1
bor bor
assuming ¢ < bv". Putting
c
Y= b
we have 0<x <1 and for every n
a\Vry
Fo)=(3) 5 0ale) = dya™ ey nt oyt ..).

Multiplying by (bv")"v we obtain

1/r
Bp(bp, €™+ by, nCm 1 (bO7) + ... + bo, n (bV7)") 0 — (%) dn(a;’nc” +

, 1 , c2ntly c
+ an—l,ncn* (b’vr)"l" o +a0’n(bv")n)u = an (cl’"+cz'”E;—r + ... ) .

Writing
Pn = dp0(by o€ +byy e bVT)+...),

@n = dyu(a, ,C"+a,_y (o) +...),

p,, and g, are integers such that

a\Vr d,c*+ly 1
Prn—4n (Z) (b?)r)""H : 1 —c2 (bvr)—2 -
Writing
bvr =t and xnc? = 1*,
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we assume in the sequel ¢ so great in comparison with ¢ that a«<1.
Having seen that d, < x™ we obtain

a\Vr
Prn—qn <-I;> = 5”t(°‘_1)" s
where
1
|6nl <d= bvr:‘l"—cz*“.
(bv)?

Since we shall use this for large v we may further assume é<1. An
estimate of g, is

qn < udn4nt"<l+<1+;)+ e +<1+§)n) = udn4nﬁ; ((1"'%)“1—1)
and

n+1 n+1\¢C cr
() (" )i

[T
/N
—
—
+
~1 0
S—""

3
T

-
|
o
~——
]

A

1 1
2"+1<1+——+...+ )

xC x"c™
1
(1 h x"“c”_“) xC
= on+l____ on+l ,
1 1 xe—1
*C
since ¢/t < 1/(xc). Therefore
+1,
q, < ux™4nir 2 '{c,
" we—1
that is,
qn < wt(l'f‘ﬂ)’"
when 5
HCU
=W and 8x =1¢.
#C —

Let o=(1+p)/(1—«)+8, $>0. Then I assert that if

alr e
(1) x—y(z) = le] < 1,

we have
1 148 1 204/
y < (2w)821—a 8 &
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For let us assume that
1+8

y® > Q21— {201+8)

Then taking the logarithms on both sides one obtains

1
slogy — log2w — 2(1+p) logt > 1+’310g2
banlls 4
which can be written
1+6
elogy — log2w — 2(1+p)logt > -—log2y,
Ll 4

which again yields
o logy —log 2w 2> log2y
(1+pB) logt (1—«) logt”

Then an integer n exists such that

o logy —log 2w log 2y
B ST , <
(1+pB) logt (1—«) logt
or
Y wi1+p (n+1)
(2) Ko <% —y—e—— <4%.

Since Prn+1— Pr+19n is +0, either PrY —4n® OT Pp 1Y — Ina¥® is +0
and thus absolutely =1. On the other hand, we get by elimination of
(a/b)!'r between the equations

a\1l/r 8, a\vr Opn+1
pn - q’n (5) = t(l—o‘)n a'nd pn+l - Qn'i-l (z) = t(l-a)(n+1) ’
and
a\lr ¢
=1(3) =7
the equations
6"3/ _E_q_n 6n+1 Eqn+1

pny — gy = t(l—tx)n - and pn+1y_qn % = t(l—a)(n+l)— ’

y° y°

respectively. But it follows from (2) that 19,9 — 2,2 and |p, 1Y — ¢, 1]
are both <1, which is a contradiction.

3.

Now let us assume that an infinity of positive integers u, v exist such
that

a\lr €
(3) v—u(z) = lef <1, m>1.
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Then we get successively with lim{,=0 and lim#,=0

U —> 0 V>0
a (2 r-b/r ¢ er [a\m-Vir
Y oy’ - = r— — — —
vt = ru (b) um”1(1+C“) g (b) (I+7,),
whence ¢ = au"—bo" = —eram-Dirpr+l-miryr-m(] 4y )

To every sufficiently large solution u,v of au”—bv"=c there exist, as
shown in section 2, for every positive integer n positive integers p,, and
g, such that

a 1/r 1
Prn—qn (Z) < El—T)‘n’
where
l 2
lx:ogxc’ t = bvr.
logt

It is obvious that by choosing a pair u, v with v sufficiently large we may
get the number g =log8x/logt arbitrarily small. As to « we have

. < logx+ 2 (logr +((m—1)[r) loga+((r + 1 —m)[r) logb +log (1 +17,)) +2(r —m) logv
logb +r logv

so that 2(r —m)

r

x < +,

where ¢ becomes as small as we please by choosing v sufficiently large.

Thus, according to a result in § 2, by choosing v large enough we can find
an upper bound for the y in (1) for any o> 1/(1 —«’) with &’ > 2(r —m)/r,
that means, when ¢ > r/(2m —r). Now let m be > }r+ 1. Then r/(2m —r) <
m — 1 so that after supposition there are infinitely many solutions u, v of

a 1/r 1
-

ym-1 ’
On the other hand, we have only a finite number of solutions z, y of
a 1/r
+=u(3)

r/[(2m—r) <o <m-—1.

1
<
y

with p chosen such that

This is a contradiction and we have proved Thue’s theorem: There is
only a finite number of integral solutions u, v of the inequality

a\lr 1
v—u (—) <

b

—_ 0.
et
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