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A NOTE ON COMPLETION AND COMPACTIFICATION

E. M. ALFSEN and J. E. FENSTAD

The aim of this paper is to present a unified treatment of completion
and compactification of completely regular spaces. We shall point out
how such extensions of the spaces may be performed by means of the
uniformly regular filters introduced in Section 1. In Section 2 we shall
classify the various completions and compactifications of a given com-
pletely regular space. The investigation is based on purely set-theoretic
methods. Auxiliary spaces, such as spaces of continuous, real valued
functions, will not be applied. The main results are summed up in
Theorem 3.

1. Uniformly regular filters.

A filter # on a uniform space S, will be termed uniformly regular, or
briefly regular, if it has a base consisting of the sets V(F), V being an
entourage, and F € %. With the notation of [1], & is regular if and
only if
(1.1) Fe&# = (3G e F)GEF].

We shall say that two uniform structures, %,, %,, on. the same set S are
p-equivalent if they possess the same uniform neighbourhoods of sets,
i.e. if

(1.2) AC€B (%) < AE€B (%,).

Clearly, p-equivalent structures possess the same regular filters.

From the Theorems 1.2 of [1], we know that each p-equivalence class
2 contains a coarsest structure, #s (in [1] denoted %,), which is also
the unique totally bounded structure of the class. Moreover, there is a
1—1 correspondence between p-equivalence classes of uniform structures
and proximity structures (cf. [1]). Hence any result concerning
p-equivalence classes, and in particular any result concerning regular
filters, will admit an alternative formulation in terms of proximity

concepts.
The notion of “a regular filter’” has occurred in the literature in vari-
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ous contexts and with different names. Thus, P. Samuel defines the
envelope of a filter, #, on a uniform space to be the filter with base V(F),
V being an entourage, and F € &% [6, p.121]. In our terminology
this is the finest regular filter coarser than &#. Yu. M. Smirnov’s theory
on the compactification of proximity spaces is based essentially on the
theory of maximal, regular filters, by Smirnov termed ‘““maximal centered
J-systems” or ‘“‘ends” [7, p. 552].

The notion of a maximal, regular filter seems to be an advantageous
substitute for ultrafilters in various contexts. In particular it should be
noticed that it is possible to define non-trivial maximal, regular filters
of importance for applications, without use of the axiom of choice
(cf. § 2).

We shall need some elementary properties of regular filters on a uni-
form space S. For a fixed set 4, the collection of sets B such that 4 € B
is a regular filter which we denote % ,. If 4={x}, we briefly write &,
and we notice that &%, is the neighbourhood-filter of z, and that &, is
maximal as a regular filter. Every regular filter may be extended by
Zorn’s lemma to a maximal, regular filter. The set F, of condensation
points of a regular filter, &, is

Fo=NF,
Fe&F
and generally &, is finer than &. A regular filter, &, is convergent
with the limit x if and only if # =% ,. If the given uniform structure
is separating, a maximal regular filter & has at most one condensation
point , and in this case # =% .

ProposiTION 1. A separated uniform space, S, is compact if and only if
every maximal regular filter is convergent, or equivalently if and only if
every maximal regular filter is of the form F ., where x € 8.

Proor. If § is compact, every maximal regular filter, &, has a con-
densation point z, and then & =% ,. Conversely, if # is some ultra-
filter on S, then the envelope &' of & is a maximal regular filter. Now,
convergence of &' implies the convergence of %, and hence compact-
ness.

The next proposition is an analogue of a well-known property of
ultrafilters exposed by H. Cartan [3] [2, p. 38]. The actual version of
this proposition is essentially equivalent to the third property (property
“B”) of “ends” in Yu. M. Smirnov’s work [7, p. 652].

ProrosITION 2. A regular filter F is maximal if and only if for every
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A € F and every p-covering {A;}cic, of A (cf. [1]), at least one of
the sets A; belongs to F.

Proor. 1) Let & be a maximal regular filter, 4 € & and {4;},.;<,
a p-covering of 4. If n=1, the set 4,> 4 will belong to #. Then we
assume the proposition valid for n—1. We define 4, =U?"14,. Now,
{4,, A,} is a p-covering of A, and the inductive proof will be accom-
plished if we can prove that either 4, € F or 4, € Z.

We assume the converse, i.e. 4, ¢ & and 4, ¢ #. Then the sets

Fnl4, F e #,

generate a filter whose envelope we call ¢. The filter ¥ is evidently
finer than %, and by the maximality, ¥=%. By the definition of
envelope, we have

(1.3) Ge¥% < @(AF e F[Fnl4,€q.
As {4,,4,} is a p-covering of 4, there exist sets B’, B such that
A<BuB, BE€A4, BEA,.

Now, A € &, and
AnlA4,<An(B<BC4,.

Hence by (1.3), 4, € =%, contrary to the hypothesis.

2) Suppose & to be a regular filter with the property stated in the
proposition, and assume & non-maximal. Let ¢ be some maximal
regular filter finer than &, and G € ¥, G ¢ F. Then there exists a
set H € G such that H € . Hence {G,(} H} is a p-covering of S. Since
G ¢ &, we must have ( H € &, and hence [ H € 4. But this is
impossible, since H € % as well.

The introduction of regular filters enables us to obtain an interesting
connection between maximal filters and Cauchy filters. This connection
will be at the heart of the subsequent discussion. We first recall that
two Cauchy filters are said to be equivalent if their intersection is also a
Cauchy filter [2, p. 153].

THEOREM 1. A regular Cauchy filter on a uniform space is a maximal
regular filter, and every equivalence class of Cauchy filters contains exactly
one (maximal) regular filter, which is the common envelope of all the other
filters of the class, and hence it is the coarsest of them.

Proor. 1) Let # be a regular Cauchy filter on S, and let {4;},.;<,
be some p-covering of 8. Then the set V=U}_;(4;x 4,) is an enfourage
of the coarsest structure in the p-equivalence class of the original uniform

7*
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structure (cf. Th. 1 of [1]). Thus V is an entourage of the given uni-
form structure as well, and hence there must exist a set # € % such that
F x FcV. This means that for some 4, 1 <¢ <%, we have F< 4, and so
A, € #. Application of Proposition 2 proves &# to be maximal.

2) Let &# be a Cauchy filter, and let us prove that its envelope & is
Cauchy as well. Let V be an entourage and choose another entourage V,

3
such that Vo< V. Let ' € &#, FxF<V, Then we shall have

(1.4) V() x Vo(F) < Vo< 7,

which is the desired inclusion.

Clearly, # and &' are equivalent, and hence the equivalence class of
& contains at least one regular Cauchy filter, namely #'.

Now, assume # "' to be some regular Cauchy filter equivalent to %".
Then ¥=F'nF" is a Cauchy filter, but it is obviously also regular,
hence maximal regular, and in virtue of

Y<F and Yc<F",

we can conclude F =G = F

Our next theorem gives a necessary and sufficient condition for the
validity of the reverse implication.

q.e.d.

THEOREM 2. A necessary and sufficient condition that every maximal
regular filter on a uniform space S be a Cauchy filter, is that the uniform
structure 18 totally bounded.

Proor. 1) Assume every maximal regular filter to be Cauchy. With-
out lack of generality we may assume S to be a separated uniform space,
(since total boundedness is preserved by the standard passage to the
associated separated space [2, p. 137]). Let & be the embedding function
mapping § into its completion S. If F is some maximal regular filter on
S, then &Y&) is a maximal regular filter on S, and hence &-}(F) is
Cauchy. But then & is Cauchy as well, and so & has a limit in the
complete space 8. By Prop. 1 this means that the completion 8 of 8 is
compact, and by a well-known theorem, this implies that the uniform
structure on S must be totally bounded [2, p. 161].

2) If the uniform structure on § is totally bounded, then by [1] we
have the fundamental system of entourages

(1.5) V= L_,l1 (A,x A4,;),

where {4,},..<, is a p-covering of S.
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Now let & be a maximal regular filter. Then by Prop. 2, there exists
for each entourage V of the form (1.5) at least one ¢, 1=1,2,...,n, such
that 4, € &#. But as 4; is small of order V, that is 4;x 4,<V, this
proves % to be Cauchy, q.e.d.

2. Completion and compactification by maximal regular filters.

Theorem 1 of Section 1 informs us that the standard completion of a
separated uniform space (8, %) may be performed by means of regular
Cauchy filters. These filters will then be the points of the extended
space S. The embedding function & will assxgn to each point xe S its own
nelghbourhood filter &, or in symbols, &, =&(x). The umform struc-
ture % on 8 will possess a fundamental system of enfourages 7 defined
by .

(2.1) (F,9) €V <= ([@4deFng)[Ax4A V],

where V runs through the entourages of %, and #,% are regular Cauchy
filters [2, p. 152].

RemaRK. The completion by regular Cauchy filters may be performed
also for non-separated uniform spaces, but then the embedding function
& mapping z into &, is many-one, taking the same value for non-
separable points. Hence, this procedure is equivalent to the passage to
the associated separated space [2, p. 137], followed by the standard
completion process [2, p. 151].

Let %, and %, be two uniform structures on the same set S, and let
%, be coarser than %,. Then if & is a regular filter with respect to %,
it will also be regular with respect to %,. But on the other hand, if &
is a Cauchy filter with respect to %,, it will also be Cauchy with respect
to %,. Hence Sl and ;S'2 need not be (set-theoretically) comparable although
«, and %, are comparable.

If, however, the above structures %, and %, belong to the same
p-equivalence class, then they will possess the same regular filters, and
hence in this case Sl DSZ Moreover, the S2-restrlct10n of a %l-entourage
of the form (2.1) will be the corresponding %2-entoumge determined by
the same entourage V of the original structure %;, and hence of %,.
In other words, 011 is finer than the structure induced on 82 from 4.

Let (S,7) be a completely regular topological space, and let us use
the therm completion of (S,.7) in the meaning ‘“‘completion of S with
respect to some uniform structure % compatible with the topology 7,
It is natural to say that 8 completion (Sl,%l) of (8, T) is larger tha.n
another completion (Sz, 2), provided S’2 may be mapped uniformly
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continuously and 1 -1 into §1 in such a way that every point of S is in-
variant. Then we may conclude: Within each p-equivalence class of uniform
structures compatible with a given topology on S, coarser structures deter-
mine larger completions.

Particular attention should be devoted to the completion determined
by the coarsest uniform structure % of a given p-equivalence class 2 of
uniform structures compatible with a given (completely regular) topology
J on 8. As % is totally bounded, this completion is a compactification,
and every (dense) compactification may be obtained in this way (cf.
[1]). Thus there is a 1-1 correspondence between p-equivalence classes
and compactifications, and by Theorem 2 the extended space S of the
compactification determined by £, consists of all maximal regular filters
with respect to & (i.e. with respect to an arbitrary structure of the class £).

We shall say that a p-equivalence class £;, of uniform structures
compatible with .7, is finer (resp. coarser) than another class &,, provided
that %, is finer (resp. coarser) than #Z»,. We remember that a compacti-
fication (8,,77,) of (S,9") is said to be larger than another compactifi-
cation (8,,7 ,), provided that 8; may be mapped continuously (but not
necessarily 1—1) onfo S, in such a way that each point of § is invariant
[5, p. 1561]. It should be noticed that this definition is not a complete
analogue of the preceding definition of order for completions. In both
cases the larger extension has the higher set theoretic power, but the
topological requirement is of opposite nature in the two cases. (This
distinction is not as artificial as it may appear. Completeness is connected
with the convergence of Cauchy filters, and compactness with the con-
vergence of ultrafilters. Now, passage from one uniform structure to a
coarser structure compatible with the same topology may yield some
new non-convergent Cauchy filters. Hence the space has become ‘less
complete” than it originally was. On the other hand, passage from one
topology to a coarser topology may render convergent some ultrafilters
which were not originally convergent. Hence the space has become
“more compact’ than it originally was.)

Let &, and 2, be two p-equivalence classes of uniform structures
compatible with the same (completely regular) topology J on 8, and let
&, be finer than #,. We shall consider the mapping 7 of S; which
assigns to each point of 8, i.e. to each maximal regular filter &# with
respect to &, its envelope (%) with respect to (an arbitrary) uniform
structure of) the coarser class &,. In order to see that 5 maps S, onto S,,
we notice that each filter #’ € S, is also regular with respect to &,
and hence may be extended by Zorns lemma to a filter & € §,.
Then, clearly, n(%)> &', that is n(F)=%". To verify that 5 is continu-
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ous, let ¥V be an entourage of %5, and let V, be an entourage of %»,, and

3 ~
hence also of Zg,, such that Vo= V. Let #,9 € S, and (#,9) € V,
(cf. (2.1)). Then there exists a set 4 € Fn ¥ such that Ax A<V,
Hence

Vo(d) x Vo(4) < I?}o cV.
Vo(d) € n(F)nn(¥9),

But

and so (n(F), (%)) € V. This proves the (uniform) continuity of 7.
Thus, the P, compactification is larger than the P, compactification.

The conclusions of the preceding discussion may be summed up in
the following theorem :

THEOREM 3. There is a biunique and order preserving correspondence
between the p-equivalence classes of uniform structures compatible with the
topology on a completely regular space and the compactifications of the
space (i.e. finer classes determine larger compactifications). Within each
class, however, there is a biunique and order reversing correspondence
between the uniform structures and their completions. In particular, the
compactification determined by a given p-equivalence class is the completion
determined by the coarsest structure of the class.

We shall briefly indicate how the well-known theorems on maximal
and minimal compactifications (Stone-Cech, Alexandroff), may be ob-
tained by the methods outlined above. The former is the compactifica-
tion determined by the p-equivalence class of the finest uniform struc-
ture compatible with the given topology. (This finest structure is the
supremum of all structures compatible with the topology [2, p. 135].
The ‘‘universal mapping property’” may be obtained by application of
the extension theorem of uniformly continuous functions [5, p. 151]
[2, p. 151]). The minimal compactification may be performed for locally
compact spaces (and no others, cf. [6, p. 129] [7, p. 561]. It is the
compactification (and completion) determined by the totally bounded
uniform structure having a fundamental system of entourages of the
form

(2.2) U (U, xU,),

where {U,},_,., is an open covering of S, and all U; except one, are
relatively compact. Here we have exactly one maximal regular filter
which is not of the trivial form % ,, namely the filter of complements
of the relatively compact sets.
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By Theorem 3 there always exists a maximal completion among the
completions determined by the structures of a given p-equivalence
class, but will there always exist a minimal completion among those ?

This question is equivalent to the problem on the existence of a finest
uniform structure of a given p-equivalence class. This question is an-
swered affirmatively in the case where there exists a metric uniform
structure of the class. (Yu. M. Smirnov [7, p. 570].) But the general
problem is still unsolved, as far as we know.
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