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INFINITE WEIGHTED GRAPHS WITH
BOUNDED RESISTANCE METRIC
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(To the memory of Ola Bratteli)

Abstract
We consider infinite weighted graphs G, i.e., sets of vertices V , and edges E assumed countably
infinite. An assignment of weights is a positive symmetric function c on E (the edge-set), conduct-
ance. From this, one naturally defines a reversible Markov process, and a corresponding Laplace
operator acting on functions on V , voltage distributions. The harmonic functions are of special
importance. We establish explicit boundary representations for the harmonic functions on G of
finite energy.

We compute a resistance metric d from a given conductance function. (The resistance distance
d(x, y) between two vertices x and y is the voltage drop from x to y, which is induced by the
given assignment of resistors when 1 amp is inserted at the vertex x, and then extracted again at
y.)

We study the class of models where this resistance metric is bounded. We show that then the
finite-energy functions form an algebra of 1/2-Lipschitz-continuous and bounded functions on
V , relative to the metric d. We further show that, in this case, the metric completion M of (V , d)

is automatically compact, and that the vertex-set V is open in M . We obtain a Poisson boundary-
representation for the harmonic functions of finite energy, and an interpolation formula for every
function on V of finite energy. We further compare M to other compactifications; e.g., to certain
path-space models.

1. Introduction

Discrete analysis on infinite graphs (i.e., networks of resistors, (V , E, c), V for
vertices, E for edges, and c for conductance function (see section 2)) is a sub-
ject where the applications and the examples (see the second half of the paper)
are at least as important as the pure theorems. While the discrete setting is sig-
nificant in its own right, it also makes intriguing connections to more classical
results in continuous potential theory; see e.g., sections 7.1 and 7.2 below.
For example, our present discrete graph Laplacians often serve as numerical
approximations, e.g., finite differences, for classical (continuous) Laplacians.
In section 7, we stress similarities and differences: for example when realized
as densely defined operators in suitable L2 spaces, the classical Laplacians are
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unbounded. By contrast, the (discrete) graph Laplacians may be bounded or
not. This question, and a host of spectral theoretic properties, is decided by the
properties of the conductance function c going into the definition of a particular
graph Laplacian; see sections 5 and 6. We shall also make direct comparisons
of the potential theoretic properties in the two contexts, discrete vs. continu-
ous. Especially we offer new results for the associated Green’s functions. The
Green’s function for the graph Laplacian is introduced first in Lemma 2.8 and
Corollary 9.5, below; and it is then revisited at several instances inside the pa-
per. In the classical case, a Green’s function may be realized as a fundamental
solution to a suitable Dirichlet problem. By contrast to the discrete case, if a
graph Laplacian is realized in matrix form as an ∞×∞ matrix, with rows
and columns indexed by the vertex set V , the corresponding Green’s function
is a matrix-inverse. With the use of our analysis in energy Hilbert space (sec-
tion 2.1), we show that we get an explicit formula for this Green’s function,
and our results on resistance metrics, and path-space analysis (section 8) are a
part of this.

We consider a certain class of infinite weighted graphs G. They are specified
by prescribed sets of vertices V , and edges E; assumed countably infinite. An
assignment of weights, is a positive symmetric function c of E (the edge-set).
In electrical network models, the function c represents conductance, and its
reciprocal resistance. So fixing a conductance function is then equivalent to
an assignment of resistors on the edges of G. From this, one naturally defines
a reversible Markov process, and a corresponding Laplace operator (called
graph Laplacian) acting on functions on V , the vertex-set. Functions on V

typically represent voltage distributions, and the harmonic functions are of
special importance. For list of explicit details required on (V , E, c), we refer
to the details in section 2.

We will be especially interested in boundary representations for harmonic
functions of finite energy. From a given conductance function, we compute
a resistance metric d (see Theorem 3.4). Intuitively, the resistance distance
d(x, y) between two vertices x and y is the voltage drop from x to y, which
is induced by the given assignment of resistors when 1 amp is inserted at
the vertex x, and then extracted again at y (see Figure 3.1). We study the
realistic class of models when this resistance metric is assumed bounded. In
this case the finite-energy functions form an algebra of continuous and bounded
functions on V , relative to the metric d. We further show that, in this case, the
metric completion M of (V , d) is automatically compact. The vertex-set V is
open in M , and we obtain a Poisson boundary-representation for the harmonic
functions of finite energy. A number of additional properties are established
for M . In particular, we compare M to other compactifications in the literature;
e.g., to path-space models.
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There is a recent increased interest in analysis on large (infinite) networks,
motivated by a host of applications; see e.g., [26], [27], [5], [29], [1]. We shall
be citing standard facts from the general theory. In addition, we use facts from
analysis, Hilbert space geometry, potential theory, boundaries, and Markov
measures; see e.g., [35], [12], [34], [22], [16], [30], [8].

2. Basic setting

Let G = (V , E, c) be a weighted graph, where c = conductance function
(see Definition 2.1), V = vertex-set (countably infinite), and the edges E ⊂
V × V \ {diagonal} such that:

(G1) (x, y) ∈ E ⇐⇒ (y, x) ∈ E; x, y ∈ V ;

(G2) 0 < #{y ∈ V | (x, y) ∈ E} <∞, for all x ∈ V ;

(G3) The function c is strictly positive on E, and zero on its complement
(V × V ) \ E;

(G4) Connectedness: ∃ o ∈ V s.t. for all y ∈ V ∃ x0, x1, . . . , xn ∈ V with
x0 = o, xn = y, (xi−1, xi) ∈ E, ∀i = 1, . . . , n.

Notational convention

Pairs (x, y) with comma may refer to an edge linking two neighbor vertices.
On occasion, we shall use the letter e to denote an edge. This choice is handy in
cases when it is not important to identify the corresponding neighbor vertices
of an edge. We further stress that our edges are not directed; and that neighbor
vertices are distinct. These definitions are motivated in part by standard con-
ventions from electrical network models. See Definition 2.1 and Remark 2.2
below.

When an arbitrary pair of two vertices w and z occurs, we shall use the
notation wz; typically as a subscript notation. Because of our connectedness
assumption (G4), any pair of vertices w and z may be “connected” with a finite
set of edges, one starting at w, and the last edge ending at z. But we stress
that, in general, there are many possible choices of finite edges accomplishing
the linking from w to z (see Figure 2.1). In electric network models, current
is traveling along paths between pairs of vertices. Following the accepted
conventions in the subject, we shall often denote a function on the set of edges
with a subscript, without the comma and parenthesis.

Definition 2.1. A function c: V ×V → R+ ∪ {0} is called a conductance
function if

(1) c(e) > 0, ∀e ∈ E; and

(2) given x ∈ V , cxy = cyx , for all (x, y) ∈ E.
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Also

(3) if x ∈ V , we set

c(x) :=
∑
y∼x

cxy, where x ∼ y
Def⇐⇒ (x, y) ∈ E. (2.1)

(We shall assume that (G2) holds, i.e., #{y ∈ V | y ∼ x} <∞, for all x ∈ V .)

Examples of networks (V , E), vertices vs. edges

1. Lattices. Fix d ∈ N, and set Vd := Zd . Then every x = (x1, . . . , xd) ∈ Zd ,
xi ∈ Z, has 2d neighbors, i.e., N(x) consists of the following points y ∈ Zd :

y ∈ N(x) iff (Def.) ∃ i s.t. yi ∈ {xi ± 1}, and yj = xj , when j �= i.

Hence the corresponding set of edges Ed ⊂ Vd × Vd \ (diagonal) is the set of
unordered pairs (x, y) ∈ Vd × Vd s.t. ∃ i with |yi − xi | = 1, and yj = xj , for
j �= i.

2. Binary trees. The set of vertices V is as follows:
If d > 0, then each x = (x1, x2, . . . , xd) ∈ {0, 1}d has three neighbors:

N(x) = {
(x1, x2, . . . , xd, y) | y ∈ {0, 1}} ∪ {(x1, x2, . . . , xd−1)}.

We denote the base-point of the binary tree to be ∅ (the empty word), and
N(∅) = the set of two vertices, 0 and 1. Note that the binary tree is one of the
simplest Bratteli diagrams; see section 7.3.

Remark 2.2. After a reduction to the case of connected networks (V , E, c),
we may assume that, for every vertex x ∈ V , there is a finite number of edges,
connecting to what are called neighbors of x (see (G4)). So when x is fixed,
its set of neighbors N(x) is indexed by edges e = (x, y), for y in N(x). First
we consider c(·, ·) to be a symmetric function on V × V , but it is supported
on the set E of all edges, so c(x, y) = 0 if (x, y) /∈ E, see (G3). We may
therefore also consider c as a positive function on E. Note that the total set
E of all edges is the union of the sets N(x), as x ranges over V . Pairs of sets
N(x) and N(x ′) in general overlap of course.

In more detail: for every x, the conductance c(x, y) is positive only on
edges e = (x, y) where y is one of the neighbors, so y in N(x). The symmetry
of c allows us to identify (x, y) and (y, x) for any pair of neighbors; the two
represent the same edge, say e. In many computations, we also use c(x) :=
the sum over c(x, y) for y in the finite set of neighbors N(x); we write y ∼ x

(see (3) in Definition 2.1). For some formulas it is useful for us to write c(x, y)

for all points in V × V , but then it is understood that c is supported on the set
E, so the union of neighbors. The finiteness assumption on N(x) is realistic
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y

Figure 2.1. V = Z2 and neighbors: given distant pairs x and y in V , we sketch some
examples of paths in E(x, y). Note that when distant vertices x and y are picked, then each
element in the set E(x, y) (= paths from x to y) is made up of a finite set of edges (elements in
E), linked together and forming a path from x to y. But the set E(x, y) is generally infinite.

in electric network applications (see (G2)). It could be relaxed of course, but
then we would have to assume instead that c(x) := the sum over c(x, y) for y

in the set N(x) of neighbors be convergent; see (2.1). Here we stick with finite
neighbors.

Since c(·, ·) represents conductance = 1/resistance, the symmetry condi-
tion is realistic for computation of the resistance distance; see section 3 below.
The resistance distance (see Theorem 3.4) refers to a pair of distant vertices,
i.e., points x and y from V that are not neighbors; and computation of the
resistance distance will then involve path-space analysis (see section 8); in
this case when distant vertices x and y are fixed, the set E(x, y) consists of
all finite paths from x to y (see Figure 3.1). Fix distant vertices x and y. A
finite path connecting them is made up of a finite set of edges, so elements in
E(x, y), and of course each e in an element of E(x, y) will link neighbors.
The connectedness assumption states that for every pair of points from V , the
set E(x, y) := {all finite paths from x to y} is non-empty (see Figure 2.1).

Now pick a path from the set E(x, y): the first edge e in such a path will
start at x, and the last e in it will end in y. Since for distant pairs of vertices x

and y, the set E(x, y) can be quite complicated, path space analysis is one of
the useful tools (see Figure 2.1).
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2.1. The energy Hilbert space

Let G = (V , E, c) be a connected graph as above. Set

HE := {
u: V → C | ‖u‖HE

<∞ }
,

where

〈u, v〉HE
:= 1

2

∑
(x,y)∈E

cxy

(
u(x)− u(y)

)(
v(x)− v(y)

)
, (2.2)

‖u‖2
HE

:= 1

2

∑
(x,y)∈E

cxy |u(x)− u(y)|2. (2.3)

Then HE , modulo constants, is a Hilbert space of functions on V [26]. (HE

is known to be bigger than the HE-norm completion of the finitely supported
functions on V . For electrical networks, the expression in (2.3) represents
energy; see e.g. [26]. The non-constant harmonic functions on V are not in the
HE-completion of the finitely supported functions.)

Definition 2.3. Fix a weighted graph (connected), set the graph Laplacian
� = �c, where

(�u)(x) =
∑
y∼x

cxy(u(x)− u(y)) = c(x)u(x)−
∑
y∼x

cxyu(y),

is defined for all functions u on V . It passes to the quotient modulo the constant
functions.

Lemma 2.4 ([26]). (i) For every pair of vertices x, y ∈ V , there is a
vxy ∈ HE , unique up to an additive constant, such that

f (x)− f (y) = 〈vxy, f 〉HE
, ∀f ∈ HE. (2.4)

(ii) The vector vxy in (2.4) satisfies

�vxy = δx − δy, (2.5)

where (�f )(u) :=∑
y∼u cuy(f (u)− f (y)).

Remark 2.5. The solution to (2.5) is not unique: if vxy satisfies (2.5), and
if h ∈ HE satisfies �h = 0 (harmonic), then vxy + h also satisfies (2.5); but
generally not (2.4).

Let V ′ := V \ {o}, and set

vx := vxo, ∀x ∈ V ′. (2.6)
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Corollary 2.6. For all x, y ∈ V , there is a unique real-valued dipole
vector vxy ∈ HE such that

〈vxy, u〉HE
= u(x)− u(y), ∀u ∈ HE. (2.7)

Moreover, vxy − vzy = vxz, ∀x, y, z ∈ V .

Definition 2.7. Let (V , E, c) and � be as outlined, and let HE be the
corresponding energy Hilbert space; see (2.3). Let �2 = �2(V ) denote the
usual �2-space.

We shall need the subspace D2 ⊂ �2 (dense in the �2-norm):

D2 := span{ δx | x ∈ V }.
If {vx | x ∈ V ′} denotes a system of dipoles (see (2.6)), we set DE ⊂ HE

(dense in HE-norm):

DE := span{ vx | x ∈ V ′ }. (2.8)

In both cases “span” means all finite linear combinations.
We show in section 8 that �2(V ) contains no non-constant harmonic func-

tions; but HE generally does.

Lemma 2.8. The following hold:

(1) 〈�u, v〉�2 = 〈u, �v〉�2 , ∀u, v ∈ D2;

(2) 〈�u, v〉HE
= 〈u, �v〉HE

, ∀u, v ∈ DE;

(3) 〈u, �u〉�2 ≥ 0, ∀u ∈ D2; and

(4) 〈u, �u〉HE
≥ 0, ∀u ∈ DE .

As a densely defined operator in �2(V ), � is essentially selfadjoint; but, as an
operator with dense domain in HE , � is generally not essentially selfadjoint.

Moreover, we have δx ∈ HE , x ∈ V , where δx denotes Dirac’s function;
and

(5) 〈δx, u〉HE
= (�u)(x), ∀x ∈ V , ∀u ∈ HE;

(6) �vxy = δx − δy , ∀x, y ∈ V , where vxy ∈ HE; in particular, �vx =
δx − δo, x ∈ V ′ = V \ {o};

(7) δx(·) = c(x)vx(·)−∑
y∼x cxyvy(·), ∀x ∈ V ′;

(8)

�(δx)(y) = �(δy)(x)

= 〈δx, δy〉HE
=

⎧⎪⎪⎨
⎪⎪⎩

c(x) =
∑
t∼x

cxt , if y = x,

−cxy, if (x, y) ∈ E,

0, if (x, y) /∈ E.

(2.9)
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Proof. See [26], [27], [24]. For the selfadjointness of the graph Laplacian
in �2(V ), see Theorem 2.9 below.

Theorem 2.9 ([24], [26], [27], [36], [28]). Let G = (E, V, c) be a weighted
graph as specified above, so with a given conductance function c defined on
the set of edges E of G, and let � be the corresponding Laplace operator.
Then, as an operator in �2(V ) with domain consisting of finitely supported
functions, � is essentially selfadjoint.

Proof. Below we give a new proof of this essential selfadjointness. One
advantage with the proof below is its use of different properties of the operator
� than in earlier approaches. We also believe that the idea used here has wider
use—that it is applicable to other operators in analysis and potential theory,
both discrete and continuous.

Note the following are equivalent:

(i) f ∈ �2(V ) is a �-defect vector;

(ii) 〈ϕ +�ϕ, f 〉�2 = 0, ∀ϕ ∈ span{δx};
(iii) (1+ c(x))f (x)−∑

y∼x cxyf (y) = 0, ∀x ∈ V ;

(iv) (1 + c(x))f (x) − c(x)(Pf )(x) = 0, ∀x ∈ V , where pxy = cxy/c(x),
and (Pf )(x) =∑

y∼x pxyf (y);

(v) (Pf )(x) = (
1+ 1

c(x)

)
f (x), ∀x ∈ V .

With the splitting f = Re{f } + i Im{f }, it is enough to consider the case
when f is real valued.

Since f ∈ �2(V ), it has a maximum, i.e., ∃ x0 ∈ V s.t. f (·) ≤ f (x0) in V .
Assume f (x0) > 0 (otherwise replace f by−f ). Now, if f is a defect vector,
we have(

1+ c(x0)
−1

)
f (x0)

(by (v))= (Pf )(x0) ≤ f (x0) �⇒ c(x0)
−1f (x0) ≤ 0,

which contradicts the assumption that f (x0) > 0.

Theorem 2.10. Let (V , E, c, �, HE) be as above, and fix a base-point
o ∈ V . Set V ′ := V \ {o}. Fix a dipole vx := vxo, x ∈ V ′. Set

(�−1)xy := 〈vx, vy〉HE
, (x, y) ∈ V ′ × V ′.

Then � is not essentially selfadjoint on DE := span{vx | x ∈ V ′} if and only
if there is a non-zero function f ∈ HE such that

h(x) := f (x)+
∑
y∈V ′

(�−1)xyf (y) (2.10)

is harmonic.
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Proof. By general operator theory (see [14]), the essential selfadjointness
assertion holds if and only if the following implication holds:[

f ∈ HE, and 〈ϕ +�ϕ, f 〉HE
= 0, ∀ϕ ∈ DE

] �⇒ [
f = 0

]
. (2.11)

Taking ϕ = vx , and modulo an additive constant, we see that a possible solution
f ∈ HE to (2.11) will satisfy

(Pf )(x) = (
1+ c(x)−1

)
f (x), ∀x ∈ V ′, (2.12)

where (Pf )(x) =∑
y∼x pxyf (y), pxy = cxy/c(x).

An iteration of (2.12) yields

(Pn+1f )(x) = f (x)+
n∑

k=0

Pk(f/c)(x). (2.13)

But we have pointwise convergence on the right-hand side in (2.13), and
(1 − P)−1 = (�/c)−1, so (1 − P)−1(f/c)(x) = �−1(diag(c))(f/c)(x) =
(�−1f )(x) =∑

y(�
−1)xyf (y). Hence the left-hand side in (2.13) must con-

verge pointwise; but it is clear that h = limn Pnf is harmonic.
Finally, it is clear that every solution f ∈ HE to (2.10) will satisfy (2.11);

which in turn is the equation which decides non-essential selfadjointness, by
general theory.

Remark 2.11. We introduce the Markov measure μ(Markov) on the space �

of all G = (V , E)-paths, and the Markov-walk process πn(ω) := ωn, ∀ω ∈ �,
n ∈ N0, where ω = (ω0, ω1, ω2, . . .), ωj ∈ V , (ωj , ωj+1) ∈ E, ∀j ∈ N0. Then
the matrix product Pk in (2.13) is Prob({πm+k = y | πm = x}) = (Pk)xy . We
shall return to this Markov process in section 8 below.

3. From conductance to current flow

Let G = (V , E, c) be an infinite weighted graph (connected, see (G4) before
Definition 2.1). As before, V = vertex set, E = edges, and c: E → R+ is
a fixed conductance function, so that c = (cxy), (x, y) ∈ E. Let HE be the
corresponding energy Hilbert space (see (2.2)–(2.3)).

Set the current flow I(xy) := ∂w, where

Ixy = (∂w)(x, y) = cxy(w(x)− w(y)), ∀(x, y) ∈ E, w ∈ HE, (3.1)

and set

Dissp =
{
∂w

∣∣∣ w ∈ HE, ‖∂w‖2
Diss := 1

2

∑
I 2
xy/cxy <∞

}
as a weighted �2-space on E, where 1/cxy = resistance.
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l1 amp in 1 amp out(u,v)

x0

y

u v

0

Figure 3.1. The convex set Wx0y0 . On edges (u, v) ∈ E from x0 to y0 in V , the
current is Iuv = cuv(f (u)− f (v)), and f denotes a voltage-distribution.

As an illustration, Figure 3.1 shows a vertex set Wx0y0 , where current flows
from vertex x0 to vertex y0; with a given conductance function c.

Lemma 3.1. The operator ∂: HE → Dissp is isometric; but generally not
onto Dissp.

Proof. One checks that

‖w‖2
HE
= 1

2

∑
cxy |w(x)− w(y)|2 (energy)

= 1

2

∑
I 2
xy/cxy (dissipation)

where Ixy = (∂w)xy = cxy(w(x) − w(y)), 1/cxy = resistance on the edge
(x, y), and where the summations are over the prescribed set E of edges;
see (3.1) and the lemma follows.

Definition 3.2. Set dres(x0, y0) = distance x0 → y0 = voltage drop from
x0 to y0 when current I satisfies I = 1 at x0 “in” and current I = −1 at y0

“out.”

Theorem 3.3. There is a unique current flow such that

dres(x0, y0) = inf
{‖I‖2

Diss : I |{x0,y0} = 1 amp in, and 1 out
}

(3.2)

Proof. Recall that by Lemma 2.6, ∃!vxy s.t.

〈vxy, f 〉HE
= f (x)− f (y), ∀(x, y) ∈ V × V, ∀f ∈ HE. (3.3)

Set I = ∂vxy , then

dres(x0, y0) = inf ‖I‖2
Diss = ‖∂vx0y0‖2

Diss

= ‖vx0y0‖2
HE

(= resistance distance);
(3.4)

i.e., the infimum in (3.2) is obtained at the flow I = ∂vx0y0 , see (3.3)–(3.4).
For a proof, see [26], [27].
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x y
r1

r2

r3

Figure 3.2. Example of resistor configuration in a network:
configuration of three resistors, having values r1, r2, r3 Ohm.

The infimum in (3.2) and (3.4) is justified with the following Hilbert space
geometry applied to the energy Hilbert space HE : the infimum in (3.2) is
attained when I0 = ∂vx0y0 . We use that I0 is the vector in the convex set Wx0y0

of minimum norm. Since ∂ from Lemma 3.1 is isometric, we see that Wx0y0 is
both closed and convex. From Hilbert space geometry, see e.g. [32], we know
that Wx0y0 contains a vector of smallest norm. From the definition of Wx0y0

(see e.g., Figure 3.1), we conclude that the minimum must be I0 = ∂vx0y0 ; see
also [27].

Below, we offer five different, but equivalent, formulas for the resistance
metric dres(x, y):

Theorem 3.4 ([27]). Let V, E, c, �, and dres be as above; let x, y ∈ V ,
and let Wxy denote the set of all paths between a pair of vertices designated
vertices, x and y (see Figure 3.1). Then

dres(x, y) = ‖vxy‖2
HE
= min

{‖I‖2
Diss : I ∈ Wxy

}
= ‖w‖2

HE
when �w = δx − δy

= 1/ min
{‖w‖2

HE
: w ∈ HE, |w(x)− w(y)| = 1

}
= sup

{|w(x)− w(y)|2 : w ∈ HE, ‖w‖HE
≤ 1

}
.

Example 3.5 (see Figure 3.2). dres(x, y) = r1 +
(
r−1

2 + r−1
3

)−1
.

4. The metric boundary

Definition 4.1. By M we mean the set of equivalence classes of sequences
(xi) ⊂ V of vertices such that limi,j→∞ d(xi, xj ) = 0 (Cauchy) under the
relation (xi) ∼ (yi) iff (Def.) limi→∞ d(xi, yi) = 0. Here, d(x, y) = dres(x, y)

is the resistance metric in equation (3.2).

The vertex-set V is identified with a subset of M via the mapping γ : V →
M , V � x �−→ γ (x) = class(x, x, x, . . .). Hence b ∈ M \V (the boundary of
V ) iff b = (yi) ∈ M satisfies the following: ∀x ∈ V , ∃ ε ∈ R+, ∃ (yik ) ⊂ (yi),
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s.t. d(x, yik ) ≥ ε, ∀k ∈ N. Note that the assertion states that d(γ (x), b) > 0,
∀x ∈ V .

We now show that if d := dres is bounded, then every function f ∈ HE ex-
tends by closure toM: ifb ∈ M , and {xi} ⊂ V , are such that limi→∞ d(xi, b) =
0, we set f̃ (b) = limi→∞ f (xi). It is then immediate that

∣∣f̃ (b)− f̃ (b′)
∣∣2 ≤

d(b, b′)‖f ‖2
HE

. We set H̃E = {f̃ | f ∈ HE}.
Theorem 4.2. If the resistance metric d = dres is bounded on V × V , then

HE ⊂ �∞(V ), and H̃E ⊆ C(M); (4.1)

i.e., every energy function w on V is bounded, and HE is an algebra under
pointwise product.

Proof. The containment in (4.1) follows from the estimate (5.1).
We proceed to show that HE is an algebra when (V , d) is assumed bounded.

Let u, w ∈ HE , then (uw)(x) := u(x)w(x), ∀x ∈ V , satisfies

‖uw‖2
HE
≤ (‖u‖2

∞ + ‖w‖2
∞)(‖u‖2

HE
+ ‖w‖2

HE
). (4.2)

Since u, w ∈ �∞(V ), it follows that uw ∈ HE , i.e., ‖uw‖HE
<∞. The proof

of (4.2) is as follows:∑
E

cxy |(uw)(x)− (uw)(y)|2

=
∑
E

cxy |u(x)(w(x)− w(y))+ w(y)(u(x)− u(y))|2

(Schwarz)≤
∑
E

cxy(|u(x)|2 + |w(y)|2)(|u(x)− u(y)|2 + |w(x)− w(y)|2)

≤ (‖u‖2
∞ + ‖w‖2

∞)

(∑
E

cxy |u(x)− u(y)|2 +
∑
E

cxy |w(x)− w(y)|2
)

,

which is the desired estimate.

Corollary 4.3. Let V, E, c, d = dres be as above, i.e., assume that d is
bounded, and that M is compact. Then when the constant function 1 on M is
adjoined H̃E is a dense subalgebra, dense in the uniform norm on C(M).

Proof. We already proved that H̃E is an algebra of continuous functions on
M (the metric completion of (V , dres)), so we only need to show that it is dense
in the ‖·‖∞-norm on M . Since M is compact, ‖f̃ ‖∞ = max{|f̃ (b)| : b ∈ M}.

It is clear that H̃E is closed under complex conjugation; so, by the Stone-
Weierstrass theorem, we only need to prove that it separates points. We will
prove that if b �= b′ in M then there is a vertex x ∈ V such that ṽx(b) �= ṽx(b

′).
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Since M is the metric completion of (V , d), it is enough to show that H̃E

separates points in V . Assume the contrary: that there are vertices y, z ∈
V , y �= z such that vx(y) = vx(z) holds for all x ∈ V ; in other words,
〈vx, vy − vz〉HE

= 0 holds for all x ∈ V . But span{vx | x ∈ V } is dense in
HE ; and so vy − vz = 0, contradicting d(y, z) = ‖vy − vz‖2

HE
> 0.

5. Discrete resistance metric-metric completions

Set d := dres the resistance metric, see (3.4). Let (M, d̃) be the metric comple-
tion of (V , d), i.e., V consists of a metric space M with the metric dres(x, y) =
‖vxy‖2

HE
, where vxy is the dipole vector in (2.7). Now assume that d = dres is

bounded.
Below we discuss compactness of the metric boundary. There are two main

points. (i) We identify a setting where compactness does hold. (ii) In this
setting, we prepare the ground for an application of theArzelà-Ascoli Theorem.
Caution, point (i) is subtle, as we illustrate in Example 5.6.

Definition 5.1. We say that a system (V , E, c, dres) is type A if whenever
limj vxj

exists in C(V, d) then (xj ) is a Cauchy sequence in (V , d).

Theorem 5.2. If dres is bounded on V ×V , and if the system (V , E, c, dres)

is of type A, then (M, d̃) is a compact metric space.

Proof. Fix a base-point o ∈ V , and set vx = vx,o, x ∈ V \ {o}, then
vxy = vx − vy , see Lemma 2.6. By Schwarz, applied to the energy Hilbert
space (HE, 〈·, ·〉HE

), we get the following Lipschitz-estimate:

|f (x)− f (y)|2 ≤ d(x, y)‖f ‖2
H , ∀f ∈ HE, x, y ∈ V. (5.1)

Consequences:

(1) Every f ∈ HE extends to a uniformly continuous function f̃ on M;
extension by metric limits.

(2) If xi ∈ V , and d(xi, xj )→ 0, for i, j →∞, then f (xi) has a limit in C
(or R). Set x̃ ∈ M , x̃ = limi xi . If (xi), (yi) ⊂ V are Cauchy sequences,
set d̃ (̃x, ỹ) = limi→∞ d(xi, xj ), i.e., the extended metric; then by (5.1),
we get ∣∣f̃ (̃x)− f̃ (ỹ)

∣∣2 ≤ d̃ (̃x, ỹ)‖f ‖2
HE

. (5.2)

The assertion in the theorem follows from the considerations below.

Lemma 5.3. An application of Arzelà-Ascoli shows that{
f̃ ⊂ C(M)

∣∣ f ∈ HE, ‖f ‖HE
≤ 1

}
(5.3)
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is relatively compact in C(M), in the Montel topology of uniform convergence
on compact sets.

Proof. We refer to [31, Thm 11.28], combined with the results from sec-
tion 4 above, especially Theorem 4.2. But if d is bounded on V × V , then
‖vxi
‖HE
≤ A · Kd , where A is a fixed global constant, since d(xi, xj ) =

‖vxi
− vxj
‖2

HE
.

Hence by (5.3) with Kd in place of 1, we get that:

Corollary 5.4. Assume type A (see Definition 5.1). Then for every se-
quence x1, x2, x3, . . . in V , the is a subsequence (xik ) such that

(i) limk→∞ xik = b ∈ M; and

(ii) for flim ∈ C(M) the limit of the subsequence {̃vxi
} ⊂ C(M), we have

lim
k→∞ ṽxik

(b) = flim(b).

Proof. To see that b ∈ M , note that

d(xik , xi� ) = ‖vxik
− vxi�

‖2
HE
= |̃viki� (xik )− ṽik i� (xi� )| k,�→∞−−−−→ 0;

since by (5.2), the functions ṽik i� (·) are uniformly bounded, and equicontinuous
on M . As we assume the system (V , E, c, dres) is of type A, it follows that
every sequence x1, x2, . . . in V has a convergence subsequence with limit in M .
By the definition of M , the same is true for M , and so M is compact: Every
sequence b1, b2, · · · ⊂ M contains a convergent subsequence.

Remark 5.5. The following example from [18] shows that our assumed
condition “type A” in Theorem 5.2 and Corollary 5.4 cannot be omitted. There
are bounded resistance metrics (non-type A) for which the corresponding com-
pletions are non-compact. We learned from D. Lenz that the boundedness of
the resistance metric does not imply the completion (M, d̃) is compact [18].
Indeed, the type A assumption for the system (V , E, c, dres) is required. (See
Definition 5.1.)

Example 5.6 (Example 8.6 in [18]). Figure 5.1a is a tree-like graph with
many ends all of which have bounded distance to the root (making the resistance
metric bounded) but at the same time being too far apart from each other to
be covered by finitely many balls of an fixed but arbitrarily small size. Thus,
the weighted graph in this case is bounded with respect to dres metric and the
completion is not compact with respect to the resistance metric.

The graph basically consists of a copy of the natural numbers with the
property that each natural number has a ray emanating from it and this ray
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(a) An infinitely long comb as an infinite
array of teeth, each tooth infinitely long.

(b) The conductance function c(xy).

5

Figure 5.1. A doublely infinite planar graph, V =⋃∞
n=0 Xn, Xn = {xnk : k = 0, 1, 2, . . .}

and its conductance function.

being again the natural numbers. There are weights (Figure 5.1b) on the graph
making each of these copies of the natural numbers of bounded diameter in
the resistance metric. This makes the resistance metric on this graph bounded.
On the other hand, a point far out in one of the emanating rays has a uniform
distance to any point far out in any other emanating ray. This makes the example
non-totally bounded. Hence, the example has the mentioned properties.

Lemma 5.7. Let G = (V , E, c) be the weighted graph in Example 5.6. Fix
a base-point o ∈ V , and set DE = span

{
vx

∣∣ x ∈ V \ {o}} (see (2.8)). Then
�|DE

, as a densely defined Hermitian operator in the energy Hilbert space HE ,
is not essentially selfadjoint. Moreover, the deficiency indices are (∞,∞).

Proof. Let c be the conductance function as specified in Figuress 5.1a–
5.1b. Suppose f is a defect vector for �. Since � is positive, it suffices to
consider �f = −f . Note that �f = −f ⇐⇒ c(I − P)f = −f ⇐⇒
Pf = (1+ c−1)f . We proceed to show that f is in HE , i.e., ‖f ‖HE

<∞.
Let V = {xn,k} be the vertex-set as specified in Figure 5.1a. Then, we have

c(xn,k) = 2k + 2k+1 (5.4)

pxn,k,xn,k−1 =
2k

2k + 2k+1
= 1

3
(5.5)

pxn,k,xn,k+1 =
2k+1

2k + 2k+1
= 2

3
(5.6)

and so
(Pf )(xn,k) = 1

3
f (xn,k−1)+ 2

3
f (xn,k+1),
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and

(1+ c−1)f (xn,k) =
(

1+ 1

2k · 3
)

f (xn,k); see (5.4)–(5.6).

Thus, the defect vector f satisfies �f = −f ⇐⇒
1

3
f (xn,k−1)+ 2

3
f (xn,k+1) =

(
1+ 1

2k · 3
)

f (xn,k).

Set �k := �n,k = f (xn,k); then we get the following recursive equation:

1

3
�k−1 + 2

3
�k+1 =

(
1+ 1

2k · 3
)

�k;

i.e.,

�k+1 = 3

2

[(
1+ 1

2k · 3
)

�k − 1

3
�k−1

]
=

(
3

2
+ 1

2k+1

)
�k − 1

2
�k−1.

Or, using matrix notation, we have(
�k+1

�k

)
=

( 3
2 + 1

2k+1 − 1
2

1 0

) (
�k

�k−1

)
. (5.7)

The asymptotic estimate of the sequence (�k) can be derived from the ei-
genvalues of the coefficient matrix in (5.7). Note the eigenvalues are given
by

x± =
3
2 − 1

2k+1 ±
√(

3
2 − 1

2k+1

)2 − 2

2
∼

3
2 ± 1

2

2
, asymptotically.

Conclusion. The root x− = 1/2 shows that �k ∼ 1/2k so f (xn,k) ∼ 1/2k

asymptotically. Consequently,

‖f ‖2
HE
∼

∑
k

2k

(
1

2k
− 1

2k+1

)2

+
∑

n

2n

(
1

2n
− 1

2n+1

)2

∼
∑

k

1

2k
+

∑
n

1

2n
<∞.

Therefore, the corresponding defect vector f is in HE , and so �
∣∣
HE

is not
essentially selfadjoint.
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5.1. The Gelfand space

Set the Gelfand space GE to be the set of β: HE → C (or R) such that

β(uw) = β(u)β(w), ∀u, w ∈ HE; (5.8)

i.e., multiplicative functionals. (See [32].)

Definition 5.8. Let M := metric completion of (V , dres). Set

(xi) ∼ (yi)
Def⇐⇒ dres(xi, yi)→ 0

for all Cauchy sequences (xi), (yi) ⊂ V .

Theorem 5.9. M ⊂ GE , see (5.8). (The metric completion is contained in
the Gelfand space.)

Proof. Note that every w ∈ HE extends by closure to M , by w̃(̃x) =
limi→∞w(xi), where dres(xi, xj )→ 0. To see this, use the estimate |w(x) −
w(y)|2 ≤ d(x, y)‖w‖2

HE
, ∀w ∈ HE ; see (5.1).

Now, set βx̃(w) = w̃(̃x), and note that (5.8) is then immediate. (In fact, M

is a compact metric space if dres is bounded.)

Remark 5.10. It was proved in [18] that the Gelfand space is the Royden
compactification; see [18] for details.

Theorem 5.11. Assume that dres is type A and bounded on V × V (thus
(M, d̃res) is compact by Theorem 5.2), and that ω = (xi)i∈Z ∈ �. Then
there exists a subsequence {xi1 , xi2 , . . .} ⊂ ω, and an x̃ ∈ M such that

d̃res(xik , x̃)
k→∞−−−→ 0.

Proof (Application of Arzelà-Ascoli). Recall that vi := vxi ,o, where
|vi(z)|2 = |〈vi, vz〉|2 ≤ d(i, o)d(z, o) ≤ K; which implies that |vi(z) −
vi(z

′)|2 ≤ K d(z, z′). By Arzelà-Ascoli, ∃ a subsequence s.t. vik − vi� → 0 in

HE , as d(xik , xi� )
k,�→∞−−−−→ 0.

6. Poisson-representations

Let G = (V , E) be as above, and let c: E → R+ be a fixed conductance
function. Let d = dres be the corresponding resistance metric.

Our standard assumptions on G and c are as outlined in section 2 above.
We assume in addition that

(1) dres is bounded on V × V ,

(2) for all x ∈ V , there exists ε = εx such that

{y ∈ V | d(x, y) < εx} = {x}, the singleton. (6.1)
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We shall denote by M the metric completion of (V , dres), and identify V as a
subset of M in the usual way, where x ∈ V ←→ class(x, x, x, . . .) ∈ M (∞
repetition of vertex x).

Proposition 6.1. For n ∈ N, set w = (z1, . . . , zn) where zi ∈ V (vertices),
a finite word, and denote by (wx) the concatenation sequence (z1, z2, . . . , zn,

x, x, x, . . .); we set x = (x, x, x, . . .); then γ (x) = {x} ∪ {wx}, as w ranges
over all finite words.

Proof. If (yi)
∞
i=1 is a sequence of vertices such that limi→∞ d(yi, x) = 0,

then, since x is isolated by (2), see (6.1), there must be a n ∈ {0, 1, 2, . . .} such
that yi = x for all i ≥ n; and the desired conclusion follows.

Theorem 6.2. Let G = (V , E), c, dres satisfy the conditions above, includ-
ing (1)–(2) (so dres is bounded). Then

B := M \ V (6.2)

is closed in M; and for every x ∈ V , there is a Borel probability measure
μx on B, i.e., μx ∈ M1(B) such that, for all harmonic functions h on V with
‖h‖HE

<∞, we have

h(x) =
∫

B

h̃(b)dμx(b) (6.3)

where h̃ is the extension ∈ C(M) of h, obtained by metric completion, and
where the function on the right-hand side in (6.3) is h̃|B .

Proof. By Corollary 4.3, every f ∈ HE has a unique continuous extension
f̃ to M; and |f̃ (b)− f̃ (b′)|2 ≤ d(b, b′)‖f ‖2

HE
holds for ∀b, b′ ∈ M . By (2),

section 5, V identifies as an open subset in M , and so B = M \ V is closed;
and therefore compact. Recall M is compact by Theorem 5.2.

Recall from section 2, that a function h on V is harmonic if and only if
Ph = h, where

(Ph)(x) =
∑
y∼x

pxyh(y) (6.4)

and pxy := cxy/c(x), for ∀(x, y) ∈ E. Also recall, (�f )(x) = ∑
y∼x

cxy(f (x)−
f (y)).

Hence the harmonic functions h in HE(⊂ C(M)) satisfy

sup
x∈V
|h(x)| = ∥∥h̃|B

∥∥∞. (6.5)

This is an application of (6.4) and a simple maximum principle.
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Now set A ⊂ C(B) as follows: A = {
h̃|B : Ph = h, h ∈ HE

}
, where

“|B” denotes restriction; then, for every x ∈ V , the point-evaluation mapping:

A � h̃|B �−→ h(x) (6.6)

defines a positive linear functional. SinceP(1) = 1 where 1 is the constant one
function, it follows that 1 ∈ A , and that 1 �→ 1 in (6.6) (i.e., the functional
in (6.6) attains value 1 on the constant function “one”).

By the extension theorem of Banach and Krein, there is a positive linear
functional on all of C(B) which extends (6.6) from A . By Riesz’ theorem, it
is given by a unique probability measure μx ∈ M1(B). Restricting to A , and
using (6.5), we get the desired formula (6.3); i.e., μx is the Poisson-kernel,
and B is a Poisson-boundary, i.e., it reproduces the harmonic functions in HE .

7. Continuous vs. discrete: examples

Below we discuss examples which illustrate features of network models and
the associated different energy spaces that arise.

7.1. Continuous models

Example 7.1. Consider the standard Sobolev space,

H 1 = {
f :R→ C | measurable, f ∈ L2, f ′ ∈ L2

}
, (7.1)

with
‖f ‖2

H 1 = 1

2

(∫
R
|f |2 +

∫
R
|f ′|2

)
, (7.2)

where f ′ in (7.1) denotes the weak-derivative of f .

(i) Then H 1 is a reproducing kernel Hilbert space (RKHS) consisting of
bounded continuous functions. The corresponding reproducing kernel is
given by K(x, y) = e−|x−y|.

(ii) Moreover, H 1 is an algebra under pointwise product with ‖fg‖H 1 ≤
C‖f ‖H 1‖g‖H 1 , ∀f, g ∈ H 1, for some constant C > 0.

Proof. See, e.g., [23].

The resistance distance in this case is

d(x, y) = ‖Kx −Ky‖2
H 1 = 2

(
1− e−|x−y|), (7.3)

and
sup

x,y∈R
d(x, y) ≤ 2.

Hence the resistance metric d in (7.3) is bounded on R, and the completion
of R with respect to d is the one-point compactification of R, but for discrete
models:



24 P. JORGENSEN AND F. TIAN

7.2. Discrete models

Let G = (V , E, c) be a discrete weighted graph, with vertex-set V , edges E,
and a fixed conductance function c. Let d = dres be the resistance metric, and
we study the metric completion of G.

For functions on the Z-lattice Ld := Zd , d ≥ 1; see Figure 2.1. Set

‖f ‖2
HE
= 1

2

∑
x∼y

e−|x−y||f (x)− f (y)|2,

where x = (x1, x2, . . . , xd) ∈ Zd . (See also Example 1 after Definition 2.1,
i.e., the set of edges and the nearest neighbors, #N(x) = 2d, ∀x ∈ Zd .) Let
HE =

{
f on Zd | ‖f ‖HE

<∞}
.

Remark. In (7.5) and (7.6) below, we have two versions of the graph
Laplacian with different conductance functions; see Definition 2.3.

Lemma 7.2. For all x ∈ Zd , we have the following: ∃K = Kx <∞ s.t.

|f (x)− f (y)|2 ≤ Kx‖f ‖2
HE

(seeTheorem 3.4.) (7.4)

Proof. Note that ∃! i s.t. |xi−yi | = 1, so xj −yj = 0 for j �= i. The proof
of (7.4) is standard.

Set
(�f )(x) =

∑
y∼x

e−|x−y|(f (x)− f (y)), ∀f ∈ HE. (7.5)

Example 7.3. V = Z, E = nearest neighbor edges, i.e., for x ∈ Z, N(x) =
{x ± 1}. Set

(�f )(x) =
∑
y∼x

(f (x)− f (y)) = 2f (x)− f (x − 1)− f (x + 1). (7.6)

As an operator on �2(V ) (= �2(Z)), one checks that the spectrum of � is
continuous and equals the closed interval [0, 4]; so there is no gap in the bottom
of the spectrum. As a result, the inverse matrix �−1 = K is unbounded. The
two∞×∞ matrices, � and K , are listed in Figure 7.1.

In detail, we have:

K = (Kx,y), Kx,y = x ∧ y (= minimum), x, y ∈ Z,
is the∞×∞ matrix with Z as row and column indices. The matrix inversion
formulas (see (9.7)–(9.9)) are sketched in Figure 7.1.



INFINITE WEIGHTED GRAPHS WITH BOUNDED RESISTANCE METRIC 25

The matrix KThe matrix �

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . . 0 0 · · · · · · · · · 0

0 −1 2 −

− +

+

1 0
...

... 0 −1 2 −1
. . .

...
...

. . . −1 2 −1
. . .

...
...

. . . −1 2 −1 0 0
... 0 −1 2 −1

. . .
... · · · · · · · · · · · · . . .

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−4 −4 −4 −4 −4 −4 −4 −4 −4 −4 −4 · · ·
−4 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3 · · ·
−4 −3 −2 −2 −2 −2 −2 −2 −2 −2 −2 · · ·
−4 −3 −2 −1 −1 −1 −1 −1 −1 −1 −1 · · ·
−4 −3 −2 −1 0 0 0 0 0 0 0 · · ·
−4 −3 −2 −1 0 1 1 1 1 1 1 · · ·
−4 −3 −2 −1 0 1 2 2 2 2 2 · · ·
−4 −3 −2 −1 0 1 2 3 3 3 3 · · ·
−4 −3 −2 −1 0 1 2 3 4 4 4 · · ·
−4 −3 −2 −1 0 1 2 3 4 5 5 · · ·
−4 −3 −2 −1 0 1 2 3 4 5 6 · · ·
...

...
...

...
...

...
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(a) The ∞×∞ matrix � (see (7.6)).
The number “2” in the diagonal.

(b) The ∞×∞ Green’s function matrix K.
The integers Z down the diagonal.

Figure 7.1. Illustration of the∞×∞ matrices (7.7)–(7.10), V = Z, nearest neighbors, unit
conductance. Note that both matrices are positive definite (p.d.) So both the matrix-Laplacian �,
and its inverse K , are p.d.; see also Lemma 2.8, and Corollary 9.5.

Example 7.4. For d = 1, consider Z+ (see Figure 7.2), and

p+ = e

1+ e
, p− = 1

1+ e
.

ex−1 ex

x − 1 xx + 1

Figure 7.2. Z+ conductance function c, cx,x+1 = ex , x ∈ Z+.

A function u on Z+ is harmonic if and only if Ix := ex(ux+1−ux) is constant;
and

‖u‖2
HE
=

∑
x

ex(ux+1 − ux)
2 = I 2

1

∑
x

e−x = I 2
1

e − 1
<∞.

Fix 0 < x < y, then vxy = vyo(t)− vxo(t), where

vyo(t) =

⎧⎪⎪⎨
⎪⎪⎩

∑
i≤y

e−i , if t ≤ y,

y∑
i=1

e−i , if t > y,
, vxy(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if 0 < t ≤ x,
t∑

i=x+1
e−i , if x < t ≤ y,

y∑
i=x+1

e−i , if y ≤ t , t ∈ Z+

and

dres(x, y) =
y∑

i=x+1

e−i = e−x − e−y

e − 1
;
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c+(n)

c−(n)

level1 level2 level3 leveln leveln+1

Figure 7.3. Binary tree with conductance.

and so dres is clearly bounded.
But in this case the metric compactification is just the one-point compacti-

fication:
dres(x,∞) = e−x

e − 1
; x ∈ Z+.

It follows, in these examples, that B = M \ V is a singleton; so M is the
one-point compactification.

Example 7.5. Let V = the binary tree, see Figure 7.3. If a vertex x in the
tree is at level n, set c(x,x+) = c+(n), c(x,x−) = c−(n). Then the arguments
from above show that if

∑∞
n=1

1
c±(n)

<∞, then B := M \V is a Cantor-space.

7.3. Bratteli diagrams

In our present paper, we considered networks as weighted graphs
G = (V , E, c), vertices, edges and a weight (conductance) function. A Brat-
teli diagram is a special case of this, but the weighting usually doesn’t refer to
a conductance, but rather some kind of counting. In detail, if G is a Bratteli
diagram, then its vertex set is stratified, by finite subsets Vn, called levels.
While V is infinite, the sets Vn are finite. Then the requirement on G to be a
Bratteli diagram is that the edges (lines in E) connect vertices from Vn to those
at different levels; the nearest neighbor vertices are from level n− 1, and level
n+ 1. See [9].

Related to our present results are more recent applications to symbolic
dynamics, see the papers in the bibliography, for example [21], and to measures
on infinite path spaces obtained from “infinite strings of edges” from the given
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Bratteli diagram. The papers [10] and [11] deal with the stationary case and
classification up to order isomorphism. The questions we consider here are
different as they do not restrict the focus to stationary diagrams; our present
results even apply to graphs G which are not Bratteli diagrams.

We should add that compactifications of Bratteli diagrams (including binary
trees) are studied in dynamics; see e.g., [1], [10], [12], [16], [21], [27], [28],
[29], [34].

Lemma 7.6. If � = C−E as an∞×∞matrix, where C = diag(c(x))x∈V
and E consists of the off-diagonal terms, i.e., symmetric, cxy > 0; then

� = (�xy) = C − E (7.7)

where �xy is as in (2.9)–(9.7), and we get the Green’s function K as follows:

K = 〈vx, vy〉HE
, (7.8)

the Green’s function of � satisfies∑
z

�xzKzy = δxy, (7.9)

and

�−1 = (C − E)−1 = (
I − C−1E

)−1
C−1

=
∞∑

n=0

(C−1E)nC−1 = GP C−1, (7.10)

where GP is the Green’s function of a Markov transition (see Figure 7.4). Note
that C−1 is diagonal.

An example is (see Figures 7.4–7.5)

c(n) = cn + cn+1, cn > 0. (7.11)

Lemma 7.7. If (V , E, c) is constructed from a Bratteli diagram with levels
V1, V2, . . ., then the Green’s function K for � satisfies

K = GP C−1,

where GP is the random-walk Green’s function associated with a ± Markov
random walk, see Figure 7.4.

For Bratteli diagrams, see e.g., [11], [10], [9], [19], [21]; and for random
walks, see e.g., [20].
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n−1 n n+10

p−(n)p−(1) p−(3) p+(n)p+(1) p+(3)

p+(n−1) p−(n+1)p−(2)1 p+(2)

1 2 3 4

Figure 7.4. Transition probabilities p±(n), n = 0, 1, 2, . . ..

V1 V2 V3 Vn−1 Vn Vn+1

x

y

z

p−yx(n) p+yz(n)

Figure 7.5. A Bratteli diagram, formula (7.11) with vertex-set V = {∅} ∪ V1 ∪ V2 ∪ · · ·
and transition between neighboring levels.

Proof of Lemma 7.7 (sketch). Let (p−(n)) and (p+(n)) be the transition
matrices:

(p−(n))xy : x ∈ Vn, y ∈ Vn−1, transition from vertex on Vn to Vn−1,

(p+(n))yz: y ∈ Vn, z ∈ Vn+1, transition from vertex on Vn to Vn+1,

see Figure 7.6, with row/column index picked from vertices in the respective
levels.

V1 V2 V3 V4 V5 Vn−1 Vn Vn+1

x

y

z

p−yx(n)

p+yz(n)

Figure 7.6

The product of C−1E in (7.10) is then(
C−1E

)m

xy
= Prob(transition from vertex x to vertex y in time m). (7.12)

Remark 7.8. Under the assumption in Theorem 5.11 and Theorem 6.2 one
may show that in fact B (see (6.2)) is Martin-boundary (see [33], [17]) for the
random walk on V defined by pxy := cxy/c(x), (x, y) ∈ E.
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Proof (sketch). Let GP be the random-walk Green’s function from (7.10)
and Lemma 7.7. Set

KMartin(x, y) := GP (x, y)/GP (o, y).

Then the argument from Theorem 5.11 shows that KMartin(x, ·) extends to B,
and that

h(x) =
∫

B

h̃(b)KMartin(x, b) dμ(Markov)(b)

holds for all h ∈ Harm = HE ∩ {h : �h = 0} = HE ∩ {h : Ph = h}.
Example 7.9. For the transition matrix C−1E = P , computed with the

system in Figure 7.3 of transition probabilities, we get the following:

pi,i = 0, pi,i+1 = p+(i) and pi,i−1 = p−(i), ∀i ∈ Z,
with the remaining matrix-entries zero. For the computation of the matrix
powers P m, m = 1, 2, . . ., we make the following simplification: p+(i) = p+,
and p−(i) = p−.

Below we include a sample of matrix-entries for this binomial model.
Even powers of the transition-matrix P :

P 2m
i,i+2k =

(
2m

m− k

)
pm+k
+ pm−k

− and P 2m
i,i−2k =

(
2m

m− k

)
pm−k
+ pm+k

− ,

where k = 0, 1, . . . , m.
Odd powers of the transition-matrix P :

P 2m+1
i,i+1+2k =

(
2m+ 1

m− k

)
pm+k+1
+ pm−k

−

and
P 2m+1

i,i−1−2k =
(

2m+ 1

m− k

)
pm−k
+ pm+k+1

− .

So for the∞×∞ matrix GP in (7.10) we get:

(GP )i,i+2k =
∞∑

m=0

(
2m

m− k

)
pm+k
+ pm−k

−

and

(GP )i,i+2k+1 =
∞∑

m=0

(
2m+ 1

m− k

)
pm+k+1
+ pm−k

− .
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As a result, (7.10) yields an explicit formula for Ki,j = 〈vi, vj 〉HE
; see (7.10)

and (7.8).

Theorem 7.10. The �-Green’s function K in (7.13) has an explicit (and
closed form) expression; for example, its diagonal entries are:

Ki,i = 1

c(i)
√

1− 4p+(1− p+)
when p+ �= 1

2
.

Proof. The infinite sums used in computation of (GP )i,j , and therefore of

Ki,j = (GP )i,j /c(j), (7.13)

can be computed with the use of generating functions for the associated bino-
mial coefficients. For example,

∞∑
n=0

λm

(
2m

m

)
= 1√

1− 4λ
, setting λ := p+p−;

and so we get
(GP )i,i = 1√

1− 4p+p−
; (7.14)

and therefore

Ki,i = 1

c(i)
√

1− 4p+(1− p+)
= 〈vi, vi〉HE

= dres(o, i), (7.15)

which is the desired conclusion.

Note that to get absolute convergence in these series the requirement on p+
is that p+ ∈ (0, 1/2)∪ (1/2, 1). (In this case, the resistance metric is bounded.
We have

∑
j 1/c(j) <∞.) The degenerate case is p+ = p− = 1/2. However

the latter degenerate case can easily be computed by hand. It is the case of
constant conductance function, ci,i+1 = 1.

For more details on this and related binomial models, see [2], [4], [7].

Remark 7.11 (On general Bratteli diagrams). While the formulas (7.12)–
(7.15) are derived subject to rather restricting assumptions, an inspection of
the arguments shows that the ideas work for general Bratteli-diagrams; but
then with modifications, as we now explain.

Given a Bratteli diagram with vertex-set V = {∅}∪(⋃∞
n=1 Vn

)
, and vertices

Vn corresponding to levels n = 1, 2, . . . (see Figure 7.6), we then have the
following transition matrices:{

p+(n)x,y, x ∈ Vn, y ∈ Vn+1 and
p−(n)x,z, x ∈ Vn, z ∈ Vn−1.

(7.16)
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V1 V2 Vn−1 Vn Vn+1

y Nx

zφ

Figure 7.7. N-ary tree; the vertices at level n are denoted Vn, n =
0, 1, . . ., V0 = {∅}, the empty word.

Therefore, in computing transition-probabilities, Prob(x −→ y in 2m itera-
tions), we specialize to x ∈ Vn, and y ∈ Vn+2m. Rather than the easy formulas( 2m

m+k

)
pm+k
+ pm−k

− from the proof in Example 7.9, we now instead get a sum of
products of non-commutative matrices:

Pw1Pw2 · · ·Pw2m

where w = (w1, w2, . . . , w2m) is a finite word in the two-letter alphabet {±},
i.e., wi ∈ {±}; but the estimates from before carry over; and we again arrive at
an expression for the Green’s function (GP )x,y , x, y ∈ V , analogous to (7.12)–
(7.15).

Example 7.12 (The N -ary tree). Fix N > 1. Let b ∈ R+, b > 1, be
fixed, and set c(n) := bn, x ∈ Vn, y ∈ Vn+1; then (see 7.16), we have (see
Figure 7.7): ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

p+(n)xy = b

1+Nb
,

p−(n)xz = 1

1+Nb
and

c(n)x = bn−1(1+Nb)

where x ∈ Vn, y ∈ Vn+1, z ∈ Vn−1.
Generalizing (7.14), we get (GP )x,x ′ = (Nb+1)(Nb−1)−1, for all x, x ′ ∈

Vn; and dres(∅, x) = [
(1+Nb)bn−1

]−1
; and dres(x, B) <∞.

One can show that, if #V1 < #V2 < · · · (strictly increasing), then dim{f :
�f = 0} = ∞.
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8. The path-space Markov measure vs. the Poisson-measure on B

Here, we consider a class of models (V , E, c):

(i) B = M \ V , where M is the metric completion;

(ii) path space � = {
ω = (ωi)

∣∣ ωi ∈ V, (ωi, ωi+1) ∈ E, ∀i ∈ N}
;

(iii) set πi(ω) = ωi ∈ V (vertex at time i), i = 0, 1, 2, . . ., and

�x =
{
ω ∈ �

∣∣ π0(ω) = x
};

(iv) set pxy = cxy/c(x), (x, y) ∈ E;

(v) μ(M)
x : Markov measure on �x , x ∈ V with transition

μ(M)
x (cylinder) = pxω1pω1ω2 . . . . (8.1)

In more detail, a cylinder set ⊂ � is specified by a finite word (xx1x2 . . . xn)

of vertices such that (x, x1), (x1, x2), . . . are edges (i.e., in E). Then set

Cxx1...xn
= {

ω ∈ �
∣∣ π0(ω) = x, πi(ω) = xi 1 ≤ i ≤ n

}
.

Formula (8.1) then reads as follows:

μ(M)
x (Cxx1x2...xn

) = pxx1px1x2 . . . pxn−1pxn

The following is known, see e.g., [13], [15]:

Lemma 8.1. There is a one-to-one correspondence between harmonic func-
tions h on V , on the one hand, and shift-invariant L1-functions F on �, on
the other. It is given as follows:

Let E denote the expectation computed with respect to the Markov-measure
on �. Then

h(x) = E(F | π0 = x), x ∈ V, (8.2)

is harmonic of finite energy iff there is a shift-invariant L1-function F on �

such that (8.2) holds. (In (8.2), the symbol E(· | π0 = x) refers to conditional
expectation.)

Proof. We use the formula (�h)(x) = c(x)
(
h(x) − (Ph)(x)

)
, x ∈ V .

Also see [15].

Definition 8.2. (V , E, c, dres) is of class A if

lim
k,�→∞ dres(πk(ω), π�(ω)) = 0 (8.3)

for all ω ∈ �, or in a subset of �.
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Remark 8.3. A large subset of Bratteli diagram will be of class A, i.e.,
that (8.3) holds; for example, if∑

n

r(n) <∞ (8.4)

where r(n) denotes the resistance Vn→ Vn+1 between vertices of level n and
level n+ 1. So (8.4)�⇒(8.3); but (8.3) holds much more generally.

Proposition 8.4. Assume (8.3). Then there is a well defined mapping:

�
�−→B, given by �→ (Cauchy− sequences)→ (Cauchy− sequences/∼),

ω �−→ �(ω) = class(π0(ω), π1(ω), π2(ω), . . .) (8.5)

where ∼ on Cauchy-sequences (̃x) ∼ (ỹ)
Def⇐⇒ limi→∞ dres(xi, yi) = 0.

Theorem 8.5. Let (V , E, c), with pxy = cxy/c(x) and Markov measure
μ(M)

x , and let �: �→ B be the mapping in (8.5) of Proposition 8.4. Then

{μ(M)
x ◦�−1}x∈V (8.6)

constitutes the Poisson-measure on B in Theorem 6.2; i.e., if S ∈ B(B), S ⊂ B

is a given Borel subset, then the measure in (8.6) is μ(M)
x (�−1(S)).

Proof (sketch). Set μx := μ(M)
x ◦�−1, we then need to prove that

h(x) =
∫

B

h̃ dμx (8.7)

holds for all harmonic function h ∈ HE , i.e., ‖h‖HE
< ∞, �h = 0 ( ⇐⇒

Ph = h), and where h̃ ∈ C(B) is the restriction to B of the extension from

V
h
−→M

h̃

−→B
h̃|B

With this, we can check directly that μx satisfies (8.7), and so μx must be the
Poisson-measure by uniqueness.

9. Boundary and interpolation

Theorem 9.1. Let V, E, c, �, dres, HE , and B be as above. We pick a base-
point o ∈ V , and dipoles vx = v(xo) such that vx(o) = 0, and we set

K(x, y) = 〈vx, vy〉HE
= vx(y) = vy(x), (9.1)
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the Green’s function for �. Finally, set Q := QHarm denote the projection of
HE onto the subspace Harm = {h ∈ HE | �h = 0}. For x ∈ V , let μx denote
the Poisson-measure.

Then we have the following interpolation/boundary formula:

f (x) =
∑

y∈V \{o}
K(x, y)(�f )(y)+

∫
B

˜(Qf )(b) dμx(b), (9.2)

valid for all f ∈ HE , and all x ∈ V .

Proof. From [3], [25], we have that the projection Q⊥ = IHE
−Q is given

by
(Q⊥f ) =

∑
y∈V

(�f )(y)vy =
∑
y∈V
|vy〉〈δy |︸ ︷︷ ︸

Dirac-notation

(f ); (9.3)

or equivalently,

(Q⊥f )(x) =
∑

y∈V \{o}
K(x, y)(�f )(y), ∀x ∈ V.

Since f = (Q⊥f )+(Qf ) with Qf ∈ Harm(⊂ HE), the desired formula (9.2)
follows from the Poisson-representation:

(Qf )(x) =
∫

B

˜(Qf )(b) dμx(b).

We have used the following:

Lemma 9.2. The operator A = Q⊥ in (9.3) indeed is a projection in HE , i.e.,
A2 = A = A∗ where the adjoint ∗ is computed with respect to the HE-inner
product.

Proof. We have A =∑
x |vx〉〈δx |, and so

A2 =
∑
x,y

(|vx〉〈δx |)(|vy〉〈δy |) =
∑
x,y

〈δx, vy〉HE
|vx〉〈δy |

=
∑
x,y

δxy |vx〉〈δy | =
∑

x

|vx〉〈δx | = A.

But we also have for f, g ∈ HE , that

〈f, Ag〉HE
=

∑
x

f (x)(�g)(x) =
∑

x

(�f )(x) g(x) = 〈Af, g〉HE
,

where we use Lemma 2.8(1), so A = A∗.
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From this, we get the operator-norm ‖A‖HE→HE
= 1. It is immediate

from (9.3) that Ah = 0 for all h ∈ Harm, and further that A is projection onto
HE � Harm. Recall HE � Harm is the HE-norm closure of {δx | x ∈ V }.

Remark 9.3. Note that the function K(·, ·) from (9.1)–(9.2) is a Green’s
function of the Laplacian �. Recall � from Lemma 2.8 has the following
∞×∞ matrix-representation; see (2.9) & (9.7).

One checks from Lemma 2.8, that Green’s inversion then holds:∑
z∈V ′

�xzK(z, y) = δx,y, ∀(x, y) ∈ V ′ × V ′, (9.4)

where K(·, ·) in (9.4) is the∞×∞matrix introduced in (9.1). So information
about the resistance metric results from an inversion of the matrix (�xy) in (2.9)
above.

Corollary 9.4. For every f ∈ HE with f (o) = 0, we have the following
representation:

‖f ‖2
HE
= 〈f, �f 〉�2 +

∫
BMarkov

∣∣Q̃f
∣∣2

dμ(Markov), (9.5)

where 〈f, �f 〉�2 = ∑
x∈V f (x)(�f )(x), and where μ(Markov) is the Markov

measure from Theorem 8.5.

Proof. First, by Theorem 9.1 we have f = Q⊥f +Qf as an orthogonal
splitting, relative to the HE-inner product. Hence

‖f ‖2
HE
= ‖Q⊥f ‖2

HE
+ ‖Qf ‖2

HE
. (9.6)

For the first term in (9.6), we have

‖Q⊥f ‖2
HE
= 〈

f, Q⊥f
〉
HE

=
∑

x

(�f )(x)〈f, vx〉HE
by (9.3)

=
∑

x

f (x) (�f )(x) = 〈f, �f 〉�2 .

For the second term in (9.6), we get, using Proposition 8.4 and Theorem 8.5,

‖Qf ‖2
HE
=

∫
BMarkov

∣∣Q̃f
∣∣2

dμ(Markov);

see also [6]. The desired conclusion (9.5) now follows.
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Corollary 9.5. The two∞×∞ matrices

�xy := 〈δx, δy〉HE
, (see (8)); (9.7)

and
Kxy := 〈vx, vy〉HE

are formal inverses; more precisely, for any x, y ∈ V , the following∞×∞
matrix-products, �K and K� are well defined; and∑

z∈V ′
�xzKzy = δx,y, (9.8)

and ∑
z∈V ′

Kxz�zy = δx,y (9.9)

both hold. However, the operator theoretic interpretation of the two, (9.8) vs.
(9.9), is different.

Proof. See Lemma 7.6 and the discussion above. (Explicit formulas are
illustrated in Example 7.3 and Figure 7.1.)

Acknowledgements. The authors thank Søren Eilers for a number of
very helpful suggestions, and the following colleagues for helpful and enlight-
ening discussions: Professors Daniel Alpay, Sergii Bezuglyi, Ilwoo Cho, Ka
Sing Lau, Daniel Lenz, Paul Muhly, Myung-Sin Song, Wayne Polyzou, Keri
Kornelson, and members in the Math Physics seminar at the University of
Iowa.

REFERENCES

1. Albeverio, S., and Kusuoka, S., Diffusion processes in thin tubes and their limits on graphs,
Ann. Probab. 40 (2012), no. 5, 2131–2167.

2. Alpay, D., and Jorgensen, P., Reproducing kernel Hilbert spaces generated by the binomial
coefficients, Illinois J. Math. 58 (2014), no. 2, 471–495.

3. Alpay, D., Jorgensen, P., Lewkowicz, I., and Marziano, I., Representation formulas for Hardy
space functions through the Cuntz relations and new interpolation problems, in “Multiscale
signal analysis and modeling”, Springer, New York, 2013, pp. 161–182.

4. Alpay, D., Jorgensen, P., Seager, R., and Volok, D., On discrete analytic functions: products,
rational functions and reproducing kernels, J. Appl. Math. Comput. 41 (2013), no. 1-2,
393–426.

5. Alpay, D., Jorgensen, P., and Volok, D., Relative reproducing kernel Hilbert spaces, Proc.
Amer. Math. Soc. 142 (2014), no. 11, 3889–3895.

6. Ancona, A., Théorie du potentiel sur les graphes et les variétés, in “École d’été de Probabilités
de Saint-Flour XVIII—1988”, Lecture Notes in Math., vol. 1427, Springer, Berlin, 1990,
pp. 1–112.



INFINITE WEIGHTED GRAPHS WITH BOUNDED RESISTANCE METRIC 37

7. Bayer, C., and Veliyev, B., Utility maximization in a binomial model with transaction costs:
a duality approach based on the shadow price process, Int. J. Theor. Appl. Finance 17
(2014), no. 4, 1450022, 27 pp.

8. Bezuglyi, S., Kwiatkowski, J., and Yassawi, R., Perfect orderings on finite rank Bratteli
diagrams, Canad. J. Math. 66 (2014), no. 1, 57–101.

9. Bratteli, O., Inductive limits of finite dimensional C∗-algebras, Trans. Amer. Math. Soc. 171
(1972), 195–234.

10. Bratteli, O., Jorgensen, P. E. T., Kim, K. H., and Roush, F., Non-stationarity of isomorphism
between AF algebras defined by stationary Bratteli diagrams, Ergodic Theory Dynam.
Systems 20 (2000), no. 6, 1639–1656.

11. Bratteli, O., Jorgensen, P. E. T., and Ostrovs’kyı̆, V., Representation theory and numerical
AF-invariants. The representations and centralizers of certain states on Od , Mem. Amer.
Math. Soc. 168 (2004), no. 797, xviii+178.

12. Chang, X., Xu, H., and Yau, S.-T., Spanning trees and random walks on weighted graphs,
Pacific J. Math. 273 (2015), no. 1, 241–255.

13. Doob, J. L., The structure of a Markov chain, in “Proceedings of the Sixth Berkeley Sym-
posium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif.,
1970/1971), Vol. III: Probability theory”, Univ. California Press, Berkeley, Calif., 1972,
pp. 131–141.

14. Dunford, N., and Schwartz, J. T., Linear operators. Part II. spectral theory. selfadjoint oper-
ators in hilbert space, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1988,
reprint of the 1963 original.

15. Dutkay, D. E., and Jorgensen, P. E. T., Martingales, endomorphisms, and covariant systems
of operators in Hilbert space, J. Operator Theory 58 (2007), no. 2, 269–310.

16. Dutkay, D. E., and Jorgensen, P. E. T., Affine fractals as boundaries and their harmonic
analysis, Proc. Amer. Math. Soc. 139 (2011), no. 9, 3291–3305.

17. Dutkay, D. E., Jorgensen, P. E. T., and Silvestrov, S., Decomposition of wavelet representations
and Martin boundaries, J. Funct. Anal. 262 (2012), no. 3, 1043–1061.

18. Georgakopoulos, A., Haeseler, S., Keller, M., Lenz, D., and Wojciechowski, R. K., Graphs
of finite measure, J. Math. Pures Appl. (9) 103 (2015), no. 5, 1093–1131.

19. Giordano, T., Putnam, I. F., and Skau, C. F., Full groups of Cantor minimal systems, Israel
J. Math. 111 (1999), 285–320.

20. Gorodezky, I., and Pak, I., Generalized loop-erased random walks and approximate reach-
ability, Random Structures Algorithms 44 (2014), no. 2, 201–223.

21. Herman, R. H., Putnam, I. F., and Skau, C. F., Ordered Bratteli diagrams, dimension groups
and topological dynamics, Internat. J. Math. 3 (1992), no. 6, 827–864.

22. Hersonsky, S., Boundary value problems on planar graphs and flat surfaces with integer cone
singularities, I: The Dirichlet problem, J. Reine Angew. Math. 670 (2012), 65–92.

23. Jorgensen, P. E. T., A uniqueness theorem for the Heisenberg-Weyl commutation relations
with nonselfadjoint position operator, Amer. J. Math. 103 (1981), no. 2, 273–287.

24. Jorgensen, P. E. T., Essential self-adjointness of the graph-Laplacian, J. Math. Phys. 49
(2008), no. 7, 073510, 33 pp.

25. Jorgensen, P. E. T., A sampling theory for infinite weighted graphs, Opuscula Math. 31 (2011),
no. 2, 209–236.

26. Jorgensen, P. E. T., and Pearse, E. P. J., A Hilbert space approach to effective resistance metric,
Complex Anal. Oper. Theory 4 (2010), no. 4, 975–1013.

27. Jorgensen, P. E. T., and Pearse, E. P. J., Resistance boundaries of infinite networks, in “Random
walks, boundaries and spectra”, Progr. Probab., vol. 64, Birkhäuser/Springer Basel AG,
Basel, 2011, pp. 111–142.

28. Keller, M., and Lenz, D., Dirichlet forms and stochastic completeness of graphs and sub-
graphs, J. Reine Angew. Math. 666 (2012), 189–223.



38 P. JORGENSEN AND F. TIAN

29. Kostrykin, V., Potthoff, J., and Schrader, R., Brownian motions on metric graphs, J. Math.
Phys. 53 (2012), no. 9, 095206, 36 pp.

30. Roblin, T., Comportement harmonique des densités conformes et frontière de Martin, Bull.
Soc. Math. France 139 (2011), no. 1, 97–128.

31. Rudin, W., Real and complex analysis, third ed., McGraw-Hill Book Co., New York, 1987.
32. Rudin, W., Functional analysis, second ed., International Series in Pure and Applied Math-

ematics, McGraw-Hill, Inc., New York, 1991.
33. Sawyer, S. A., Martin boundaries and random walks, in “Harmonic functions on trees and

buildings (New York, 1995)”, Contemp. Math., vol. 206, Amer. Math. Soc., Providence,
RI, 1997, pp. 17–44.

34. Skopenkov, M., The boundary value problem for discrete analytic functions, Adv. Math. 240
(2013), 61–87.

35. Tosiek, J. and Brzykcy, P., States in the Hilbert space formulation and in the phase space
formulation of quantum mechanics, Ann. Physics 332 (2013), 1–15.

36. Wojciechowski, R. K., Stochastic completeness of graphs, Ph.D. Theses, eprint
arxiv:0712.1570 [math.SP], 2007.

DEPARTMENT OF MATHEMATICS
THE UNIVERSITY OF IOWA
IOWA CITY
IA 52242-1419
U.S.A.
E-mail: palle-jorgensen@uiowa.edu

DEPARTMENT OF MATHEMATICS
HAMPTON UNIVERSITY
HAMPTON
VA 23668
U.S.A.
E-mail: feng.tian@hamptonu.edu


