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ON UNIQUENESS THEOREMS FOR DIFFERENTIAL
EQUATIONS WITH CONSTANT COEFFICIENTS

BENNY BRODDA

1. Introduction.

An interesting uniqueness theorem for solutions of non hyperbolic
equations with constant coefficients has recently been given by F. John
[6]. The main aim of this paper is to prove that part of his result remains
valid in the hyperbolic case also. It then gives precise information con-
cerning the support of a solution of the Cauchy problem when the data
have compact support.

Questions concerning unique continuation of solutions of a differential
equation Pu=f in a variety V may be put in the following form: What
are the conditions on a closed subset F' of V in order that there exists
a solution u of the equation Pu=0 having F as its support? We prove
here that the theorem of John [5] and Holmgren’s uniqueness theorem
(see John [4]) together with our result give a rather complete answer to
this question when ¥V =R? and P has constant coefficients.

2. Preliminaries.
The symbol P(D) will represent a differential operator
PDD) = 3 a,D%,
laj=m
where « is a multi-index, that is, & = (x;, %, . . ., &,), the «; are non nega-
tive integers, |x|=3X«;, and
ol
D = o o oan’
oar™ 9x2® . .. dam™"

The coefficients a, of P are assumed to be (complex) constants. The
principal part of P(D) is the homogeneous part P,,(D) of order m, that is,

P(D) = P, (D) + terms of lower order .
If {=(¢y,8, .. -,C,) € C then P() denotes the polynomial
Py = 2 al*,

lalsm
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where (*={,"1(,"...(,*». We call the operator irreducible (reducible)
if P({) is irreducible (reducible).

A vector £ € R is called characteristic if it satisfies the equation
P, (§)=0. A hypersurface in R is called characteristic (non character-
istic) if its normal vector is everywhere (nowhere) characteristic.

According to Garding [1] the operator P(D) is called hyperbolic with
respect to the plane (x,&)=0, £ € R*, if P, (£)<+0 and if there is a con-
stant a such that P(t£+¢n)+0 when |Ret|>a and # € BR». The operator
is called weakly hyperbolic with respect to the plane (x,£)=0 if the
principal part of P(D) is hyperbolic with respect to that plane, or,
equivalently, if the equation P, (t&+7)=0 has only real roots for every
n e Rr. If P is hyperbolic with respect to a plane it is also weakly
hyperbolic with respect to that plane. The converse is not always true
(Géarding [1, Lemma 2.5 and page 19] or A. Lax [6]).

Following Schwartz [7] we denote by D(£2) the class of infinitely dif-
ferentiable functions which have compact support in the open set
QcRr. We denote by D'(2) the class of distributions in Q (that is,
the class of linear forms u: D(Q2) — C which are continuous for the pseudo-
topology of D().— A sequence g, — 0 in D(Q) if the supports of all ¢,
are contained in a fixed compact subset K of £ and if for every « the
sequence (D%p,) — 0 uniformly in K —.). The support of a distribution
u € D'(Q) is the set of points x € 2 such that to every neighbourhood
0= of x there is a ¢ € D(0) with u(p)==0.

If w e D'(Q2), then D*u denotes the distribution defined by the equa-

tion (Du)(@) = (- VD), peD@).

By a solution » in 2 of the equation P(D)u=0 we thus mean a distribu-
tion u € D'(2) such that u(P(—D)p)=0 for all ¢ € D(Q2).

In Section 3 we shall need an algebraic result which we state here
without proof.

Lemma 1. Let P({) be an irreducible polynomial such that P(sN + &) is
not independent of s for indeterminate s and & Then the polynomial

P(sN +1t&+n)

s an irreducible polynomial of s and ¢ except when & and n belong to an
algebraic set. Hence there is an algebraic set A + R™ such that when &¢ A
the polynomial is irreducible except when n belongs to an algebraic set
B4 C" depending on &.

A similar lemma is used by John [5]. In Hoérmander [3] further
references are to be found.
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3. A uniqueness theorem.
The purpose of this section is to prove the following result.

THEOREM 1. Let P(D) be an irreducible differential operator with con-
stant coefficients and u € D'(2) a solution of the equation

(3.1) PD)yu =0
in the open set Q2 < R"™ defined by

(3.2) a < {x,N)<b,
where a <b and

(3.3) P, (N)=0.

If the support of u ts contained in the intersection of a compact set with the
set (3.2), it then follows that w=0 wn Q.

Proor. We split the proof into two parts, I and II. In I we consider
the case when » € C™(Q2) and the derivatives of order <m are bounded
so that we have a classical solution. In II, finally, we use regularization
to prove the theorem for u € D'(Q).

I. We first consider the case when P(sN +¢£) is independent of s for
indeterminate s and & In that case P(D) may be considered as an
operator only in the variables of the orthogonal space of N. Hence, if
is a solution of P(D)u=0 in R" then the restriction u, of » to the plane
(x,N)=t is a solution of P(D)u=0 in that plane. If, in particular, u
satisfies the conditions of the theorem then u, is a solution of P(D)u =0
with compact support when a<t<b. The only solution with that
property is u,=0. This follows, for instance, from Holmgren’s uniqueness
theorem, John [4].

We now assume that P(sN +&) is not independent of s for indeter-
minate s and £&. We also assume that the derivatives up to the order m
of u are bounded. We have to show that

(3.4) ven = [ wwetas,,

(@, N)=t¢
where dS, denotes the element of area in the plane {x,N)=¢, vanishes
for (e C™ and t € (@,b). We observe that V is a solution of the ordinary
differential equation

(3.5) P(DN +8)V(L,t) = 0

in the interval a <t <b. (D, denotes differentiation with respect to £.)
In order to make a more detailed study of V we perform the following
construction. We define an operator R({,t,D,) by the euqation
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(3.6) (Dy—7)R(, 7, D) = P(DN +{)—P(zN+() .
We set
(3.7) W, t,t) = R, 7,D) V(1)

We have obviously
(Dy—r)W(,1,t) = —PEN+L) V().

If in particular = and { are chosen such that

(3.8) P(tN+¢) =0

we have

(3'9) (Dt—‘-r) W(gy T’t) =0.
That is, for all ¢t € (a,b)

(3.10) W(E,7,t) = e O W(L,7,8),

where £, is fixed (but arbitrary) in the interval (a,b). From (3.4) and
(3.7) it follows that we can find a constant C such that

W, 7,8)] < C(L+]|L]+]|7])mteMIBetl
where M is a constant such that u(x)=0 when |x|>M; x € Q. Thus
(3.11) [W(E,7,t)| < O(1+]CI+|Tl)m—le—(t—to)Rer+M]ReC]

when ¢ and 7 satisfy (3.8).
We now study the restriction of W to two dimensional planes in
¢, t-space. For fixed & € B* and 5 € O™ we set

(3.12) w(z,1) = W(EE+n,7,0);

w(z,7) is a polynomial in v with coefficients which are entire analytic
functions of z. We shall prove that w(z,7) vanishes whenever z and ©
satisfy the equation

(3.13) P(zN+2z6+n) =0,

where £ and 7 are the same vectors as in (3.12). To do so we shall study
w(z,7) as an analytic function on the Riemann surface S defined by
(3.13).

In view of (3.11) we have

(3.14) lw(z(-r),r)\ < O(1+|2] + | 7]yt ¢-toReT+ MiE| [Rez|

for some constant C, (z,7) € S.

We now assume that & in (3.12) is chosen such that P(tN +z&+7) is
of degree m in z. This means that P,,(£)4+0. From the condition (3.3)
it then follows (see [3, p. 258] for further references) that it is possible to
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find a branch z=z(t) of the solution of (3.13) having a Puiseux series
expansion

(3.15) 2(1) = §bj~,;—7‘/q
=1

for some ¢ with 1 <¢q<m, convergent for |z|V/4= M,. Here 7-7/7 is to be
interpreted as (t—1/2)Y. We denote by S, the part of S where |7|= M2
and z is defined by (3.15).

From (3.15) we have that [2(7)|=0(]7]) when v - o, (2,7) € 8;. Using
this in (3.14) we get

(3.16) Iw(z(t),r)l < 01+ |z])" e ¢t Rer+olh

for some constant C, |7|= M2 and ¢ € (a,b). In the inequality (3.16) the
left hand side is independent of ¢ and thus we may freely choose ¢ in the
right hand side of (3.16) when estimating w. Taking =1, we get

(3.17) lw(z(7),7)| < Cel

for some constants C and c,(z,7) € §;. Taking ¢ with {,<t<b we get
(3.18) o(z(7),7)| S O (1+ gyt ozt ol

when 7 belongs to an angular domain

(3.19) —inx £ argTt £ i (mod2n) .

Similarly, if a<t<t, in (3.16) we get

(3.20) lw(z T)‘ C(1+ |z])" et lzlr23 + o(lzD)

when 7 belongs to an angular domain

(3.21) $n < argT £ 3% (mod2n) .

From (3.17) and the Phragmén-Lindel6f theorem it now follows imme-
diately that w is bounded on the whole of S;. Since w(z(7), 7) is a bounded
analytic function in §; we have

(3.22) w(z(7),7) = f:lc,-r"/‘l .
j=

Assume that c;, is the first coefficient in (3.22) which is different from
zero. Then w(z(t),7) is asymptotically equal to c; v ~Jol4 when 7 - co.

From (3.18), however, it follows that
lw(z(r),7)| £ CeT when 7> o0

in the domain (3.19). Thus we have a contradiction and we conclude
that all ¢; in (3.22) vanish, that is, w(z(t),7)=0 in S,.
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Till now the only restriction on & and # in (3.12) is that £¢ D=
{¢: P,(&)*0}. We now further assume that

(3.23) E¢AuUD
and also that
(3.24) n¢ B,

where 4 and B are the algebraic sets mentioned in Lemma 1. Then
P(tN +2&+7) is irreducible and the Riemann surface S defined by
(3.13) is hence connected. That means that we can continue w analyti-
cally from §; to the whole of S. As w=0 on §; we have that w=0on S.
That is, taking (3.10) into account, W(z&+#,7,t)=0 for all ¢e (a,b)
when z and 7 satisfy (3.13).

Before proceeding we have to put still more restrictions on # in the
definition (3.12) of w. Let P(tN +7’) be of degree k in 7 for indeterminate
7" and let @(n’) be the coefficient of 7*. In addition to (3.24) we now
demand that % is chosen such that

(3.25) Q) + 0.

Then it is clear that P(tN +2z&+1n) will be of degree k in 7 for all but
finitely many z.

In view of the irreducibility of P(tN +2z&+7) we have that for every

z except for finitely many z=z;, i1=1,2,...,n, the equation (3.13) has
exactly k different roots v=1,(2), {=1,2,...,k. Thus we can decompose
(P(TN +2z&+mn))~* into partial fractions
1 _ G

P(tN+zE+y) “1—7
That is,

C,P(tN
(3.26) 1 = z l (T +25+7])

T—T1
Cy(P(TN +2£ +3) — P(t,N +2&+1))

=Z T"‘Tl

= > O\ R(zE+1,7;,7) .
If we substitute D, for 7 in (3.26) and multiply from the right by
V(z&+n,t) we get

V(zE+n,t) = > O W(zE+n,7,t) = 0.

It is clear that we can approximate every vector { € C* with vectors of
the form z&+% where & and # are chosen such that (3.23), (3.24) and
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(3.25) are fulfilled and z+2,,¢=1,2,...,n, Thus it follows that V(Z,t)=0
for arbitrary { € C* and t € (a,b).

II. Let now u e D'(Q2) satisfy the conditions of Theorem 1. Take
@ € D(R™) such that

(3.27) f(pd:t: -1,

(3.28) px) =0 when |z > 1.
We set

(3.29) px) = e p(xfe)

with >0 such that a +2¢|N|<b—2¢|N|. We further set

(3.30)  ux) = u(p(x—y)),
x e R, ={xeR": a+2N|<{x,Ny<b—2¢|N|.}.

In view of the definition of u, the support of u, in 2, is contained in the
intersection of a compact set with £, Furthermore u, is infinitely
differentiable and the derivatives of u, in 2, are bounded and hence,
from part I, we have u,=0 in 2. Letting ¢—0 we get that
w=limu,=0 in Q. The proof is complete.

4. The support of a solution of a differential equation in two variables.

In the whole of this section we denote by P(D) a differential operator
in two variables and by £ an open convex set in R2. If w is a distri-
bution in 2 we denote by cosuppu the complement relative to 2 of the
support of u; it is clearly an open set.

An operator in three or more variables may be hyperbolic with respect
to some hyperplanes and non hyperbolic with respect to others; an
example is the wave equation. In the case of two dimensions, however,
an operator P(D) which is hyperbolic (weakly hyperbolic) with respect
to one non characteristic line is hyperbolic (weakly hyperbolic) with
respect to all non characteristic lines.

In fact, the statement concerning the weakly hyperbolic case is ob-
vious since P,,(D) decomposes in real linear factors if P(D) is weakly
hyperbolic with respcet to one non characteristic line. The other state-
ment follows from the results of A. Lax [6]. Thus in two dimensions we
may speak about a hyperbolic, weakly hyperbolic or non weakly hyper-
bolic operator without referring to any special line.

We first examine the implications of Holmgren’s uniqueness theorem
(see John [4]) which for the case of two dimensions may be stated as
follows: Let a solution % of P(D)u=0 vanish in a neighbourhood of a
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non characteristic line segment L. Then u vanishes in the parallelogram
A which has L as a diagonal and sides which are parallel to the first
characteristic lines we get when we rotate L in the positive or the nega-
tive direction. We call 4 the characteristic parallelogram belonging to L.

If it happens that there is just one characteristic direction of P(D)
we interprete the characteristic parallelogram belonging to a non charac-
teristic line segment L as the parallel strip formed by the two charac-
teristic lines which pass through the end points of L.

In the following we denote the line segment between two points z
and y in R? simply by xy.

LemmA 2. Let uw e C™(£2) be a solution of P(D)u=0 in 2 and let the
closed line segments ;. <cosuppu, 1=1,2,...,n. Then the line seg-
ment x,x, 4 < cosuppu.

Proor. It suffices to prove the lemma for n=2. For if it is true for
n=2 then we can successively conclude that the line segments z,z,,
4%y, - . -, %%, 4, belong to cosuppwu.

Thus we assume that xz,z, and x,x; < cosuppu. We first assume that
x,x5 is non characteristic. Let x,(f) be the points z;(t)=tx;+ (1 —t)z,,
i=1,3. We set M = {t: 0<t<]1, zy(t)a,(¢) < cosuppu}.

This set is not empty, for all sufficiently small ¢ belong to M.

Set t,=supt when t € M. We have to show that ¢{,=1. Assume the
converse, that is that f{;<1. Since u € C™ it follows that « must have
zero Cauchy data on the line segment L = x,(t,) z5(f,) which is non charac-
teristic. Hence w=0 in the characteristic parallelogram A belonging
to L. We can find neighbourhoods of x,(f,) and x,(t,) belonging to
cosuppu. The union of these neighbourhoods and 4 is a neighbourhood
of L and thus we can find ¢ >, with t € M.

Assume now that the line segment x,x, is characteristic. Then for all ¢
with |1—¢| sufficiently small but different from zero we have that
x,%4(t) is non characteristic. Hence x;x4(f) <cosuppu for |1—t¢| suffi-
ciently small and +0. As u e C™ it follows that x,x4(¢) < cosuppu when
t=1, too; and thus the lemma is proved.

THEOREM 2. If u € D'(Q) satisfies the equation P(D)u =0 in Q it follows
that each comnected component of cosuppu is a convex set whose boundary
in 2 18 a polygon with characteristic sides.

Proor. We may assume in the proof that » € C™(Q). In fact, if the
theorem is proved for that case then it follws for u € D'(£2) by the regu-
larization process used in part II of the proof of Theorem 1.
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I. To any points x; and z, in the same component O of cosuppu we
can find a polygon which connects x; and x, and which passes entirely
in 0. From Lemma 2 it follows that the line segment z;z,=0 and
thus O is convex.

II. Let again O be a component of cosuppu. We have to prove that
if x is a point on the boundary of O in £ then there is a characteristic
line of support of O at x. In view of the convexity of O there is a line of
support ! at x. If [ is not characteristic we consider the two adjacent
characteristic lines through x. If both intersect O we can find two points,
x;, and ,, in O on these lines such that the line segment x,z, is parallel
to [ and belongs to O. As O is open we can enlarge the line segment x,x,
a little such that it still belongs to O and such that the characteristic
parallelogram belonging to this new line segment will contain = as an
interior point. Thus x is not a boundary point of O and we have a contra-
diction. Hence there is a characteristic line of support of O at x.

We next study the improvements of Theorem 2 given by the result of
F. John [5] which for the case of two dimensions may be formulated as
follows: Assume that P(D) is irreducible and not weakly hyperbolic
and let u be a solution of P(D)u=0 in a neighbourhood of a non charac-
teristic line /. If [ intersects the support of % in a compact set, it then
follows that w=0 identically in the considered neighbourhood of /.

THEOREM 3. If in addition to the hypotheses in Theorem 2 we assume that
P(D) is irreducible and not weakly hyperbolic, then cosuppu 8 a convexr
set (or, equivalently, cosuppu can have at most one connected component).

Proor. We shall prove that if the points z; and x, € cosuppu then
the line segment 2,2, < cosuppu.

I. We first assume that the line segment x,%, is non characteristic.
We can find two open circular discs, O, and O,, with equal radii and
centres at x; and z, such that O,uO,<cosuppu. Let I’ and I'" be the
tangents in common (of O, and 0,) which are parallel to the line segment
x,%,. We define a solution «' of P(D)u'=0 in the parallel strip between
I" and I' by taking u'=wu between O, and O, and u' =0 elsewhere in the
strip. The theorem of John gives that «’ vanishes in the strip and hence
u=0 between O, and O,. Thus the line segment x,x, < cosuppu.

II. We now assume that the line segment x,x, is characteristic. Let
O, (for instance) be as above. We can find a point z € O, such that the
line segment x,x is non characteristic. (I) gives that the line segment
x,x < cosuppu, and since the line segment xx,<cosuppu we find that
x, and z, belong to the same component of cosuppu. Hence the line
segment x,z, < cosuppu and the theorem follows.
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In the next theorem we shall use so called null solutions to show that
Theorem 3 cannot be improved.

A null solution of the equation P(D)u=0 is a solution which vanishes
in a half plane {(x,£) <c. From Holmgren’s uniqueness theorem it follows
that (x,£)=0 is necessarily characteristic if u=0. According to Hor-
mander [2, p.216f] this is also a sufficient condition to assure the
existence of non trivial null solutions.

LemMA 3. Let P(D) be irreducible and let w== 0 be a solution of P(D)u=0
with support in the half plane (x,E)=c. Then cosuppu has a component
O which is exactly a half plane {(x,&)<b with b=c.

Proor. Cosuppu has obviously a component O containing the half
plane {x,&)<c. But O is convex and hence all lines of support for O
are of the form (x,£)=d which proves the lemma.

THEOREM 4. Let O be an open convex polygon in R2 with characteristic
sides. Let P(D) be irreducible and mot weakly hyperbolic. Then there
exists a solution w of P(D)yu=0 in R? such that cosuppu=0.

Proor. Let the boundary of O be composed of parts of the r charac-
teristic lines I, 1=1,2,...,r (r=2m—2), and let F; be the closed half
plane bounded by !, and not containing O.

We can find a null solution », with support in ;. In view of Theorem 3
and lemma 3 we may assume that the support of u; is equal to F,.

Taking u=3u, we have P(D)u=0 and since cosuppu is a convex
polygon containing O but no boundary point of O, we get cosuppu =0.

ReEmARK. If in Theorem 4 we permit the operator to be weakly hyper-
bolic, then, in view of Lemma 3, the construction still yields a solution
of the equation P(D)u=0 such that one component of cosuppwu is the
given convex set O. However, this component will not always be the
only one.

In studying the remaining weakly hyperbolic case we use the theorem
proved in Section 3 instead of John’s theorem. The result so obtained
is of course weaker than Theorem 3.

THEOREM 5. If in addition to the hypotheses in Theorem 2 we assume
that the operator P(D) is trreducible, then it follows that no characteristic
line can intersect more than one component of cosuppu.

The proof is identical with part I of the proof of Theorem 3, except
that we now assume that the line segment considered there is charac-
teristic and use Theorem 1 instead of John’s theorem.
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From Theorem 5 we obtain the following conditions on the support
of a solution of the Cauchy problem when the data have compact sup-
port on a non characteristic line.

THEOREM 6. Let P(D) be irreducible and weakly hyperbolic, and let u
be a solution =0 of P(D)u=0 in R2. Let a non characteristic line | have
a compact intersection with the support of u. It then follows that cosuppu
has two unbounded components O, and O, whose infinite sides are charac-
teristics adjacent to . When extended to infinity in both directions these
lines intersect meither O; mor O,. All other components of cosuppu are
situated in the parallelogram formed by these lines (compare fig. 2 below).

Proor. Let x, and z, be
points in Insuppw such that
the complement relative to
1 of the line segment zx,
belongs to cosuppu. Let
%4252, be the characteristic
parallelogram belonging to
this segment and define S,
and S, as the shadowed
domains in fig. 1. Then
S;<suppu, i=1,2. For if
x €8, and & and &, are de-
fined as in the figure it
follows from Theorem 5 that
the segment & and &,
belong to cosuppwu, hence
Theorem 2 shows that the
whole line [ would belong to
cosuppw. But this contra-
dicts the assumption that

u = 0. Hence the components
0, and O, having z; and z,
respectively as boundary
points are convex poly-
gons with the infinite sides
parallel to the segments
x5 and x,x,. The rest of the theorem follows at once from Theorem 5.

Fig. 2 demonstrates the result of Theorem 6 (and Theorem 7, below).
The shadowed domain in the figure is the support of a solution % of
P(D)u=0 such that the line [ intersects suppu in a compact. The paral-

Math. Scand. 9 — 5
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lelogram formed by the infinite sides of the boundaries of O; and O,
(cf. Theorem 6) is the doubly crossed domain in the centre; compare
also Theorem 2.

Next we will show a converse of Theorem 6. Again we shall use null
solutions to construct suitable solutions of the equation P(D)u=0. To
be able to construct the desired solutions we shall rely on an existence
theorem concerning Cauchy’s problem and a lemma concerning null
solutions.

The existence theorem is the following (see remark at p. 392 in [5]):
Let P(D) be weakly hyperbolic and of degree m. Let Cauchy data be
given on a non characteristic line . Then Cauchy’s problem has an
infinitely differentiable solution in the whole of R? if the data given
are of class (1+06) where 0 <d<1/m.—A function ¢ is said to be of class
p if it is infinitely differentiable and if for every compact set K there
is a constant C such that |Dgp(x)| < Cl*+1(|x|!)8 for all x and z € K. It
is easy to see that the class g is closed under addition and multiplication.

Lemma 4. Let P(D) be trreducible and of degree m. For every charac-
teristic {x,&)=c there exists a non trivial solution of the equation P(D)u =0
with support in the half plane {(x,&)=c such that w is of class (1+9) for
some 6 with 0 <d<1/m.

The statement may be seen directly from the construction given by
Hormander [2]. Alternatively, let w==0 be an arbitrary null solution
vanishing in the half plane (x,£)<c+1 and let ¢ be of class (1+4)
with 0<d<1/m and satisfying the conditions (3.27) and (3.28). Define
@, as in (3.29.) and %, as in (3.30). Then u, is of class (1+4) if ¢>0
and the support of u, is contained in the half plane (z,&)=c if e<1/|§|.
Finally w, is a solution of P(D)u=0 and u,=%=0 if ¢ is sufficiently small.

THEOREM 7. Let O, and O, be two open unbounded polygons which ful-
Jill the conclusions of Theorem 6. Assume that the parallelogram mentioned
there has interior points. (This assumption is not necessary in the hyper-
bolic case.) Then there s a solution w of the weakly hyperbolic equation
P(D)u=0 for which the unbounded components of cosuppu are exactly O,
and O,.

Proor. In view of Lemma 4 and the remark following Theorem 4
we can find solutions u,;, 1=1,2, of the equation P(D)u=0 so that u, is
of class (1+4), 0 << 1/m, and O, is one component of cosuppu;. Assume
that the diagonal of the parallelogram formed by the infinite sides of O,
and O, is a part of the x!-axis and assume that the diagonal is defined by
a, 22 Za, Let 6, be a function of class (1+46) such that 6,(2x')=1 for
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' = (2a;+a,)/3 and 0,(x')=0 for '=(a,+2a,)/3, and set O,=1-86,.
The function
01(21) uy (@) + Oy(2") ug(x)

induces now Cauchy data of class (1+4) and with compact support on
the x1-axis. Let u be the solution of Cauchy’s problem for the equation
P(D)u=0 with these Cauchy data. Then u—wu, vanishes in a neigh-
bourhood of the xz!-axis for !> (2a,+a,)/3, hence u—u, vanishes in a
neighbourhood of 0,. It follows that O, is a component of cosuppu.
Similarly O, is shown to be a component of cosuppw. The proof is
complete.

We finally use Theorems 2, 5 and 7 to describe the unbounded com-
ponents of the complement of the support of solutions of weakly hyper-
bolic equations in some different cases.

Let P(D) be irreducible and weakly hyperbolic and let % be a solution
in R? of the equation P(D)u=0.

1. If there is only one characteristic of P (that is, P, (D)=aly,D)™,
y real) then there may be arbitrarily (even infinitely) many unbounded
components of cosuppu. These are all parallel strips with the direction
of the characteristic.

2. If there are two characteristics of P, then there are at most four
unbounded components of cosuppu. If there actually are four, then they
are half strips with the directions of the characteristics.

3. If there are three characteristes of P, then there are at most three
unbounded components of cosuppu. If there are three, then they are
half strips with the directions of the characteristics.

4, If there are four or more characteristics of P, then there are at most
two unbounded components of cosuppu (cf. Theorem 6).

5. If there are two or more characteristics of P and if cosuppu has an
unbounded component O for which the infinite sides are not adjacent
characteristics, then O is equal to cosuppu. In particular, if  is a null
solution, then the support of « is exactly a half plane with characteristic
boundary.
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