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SOME ESTIMATES FOR EIGENFUNCTION EXPANSIONS
AND SPECTRAL FUNCTIONS CORRESPONDING
TO ELLIPTIC DIFFERENTIAL OPERATORS

NILS NILSSON
1. Introduction.

Let S be an open connected subset of R” (n=2) and let C'=C(S) be
the space of all infinitely differentiable functions in S and Cy=Cy(S)
the subspace of C' whose elements have compact supports. In C we use
the topology of uniform convergence of all derivatives on compact sub-
sets of §. Further let .#,»=%,7(S) be the space of all functions in §
having derivatives of order & which are locally in L? (p=1) equipped
with its natural topology.

Put H=L*S) ® H,, where H, is an arbitrary Hilbert space, for ex-
ample L3S, —8), S; being an open set containing S, so that H =L*8,).
If T is a topological space of functions in S, we shall say that e.g. a
sequence {f;} in H converges in 7', if its projection {Pf;} on L%(S) belongs
to T' and converges in 7'.

Let a be a partial differential operator in the variales x;, ... ,x, (co-
ordinates ind R") and with coefficients in C. Acting on C, it becomes
a linear operator from H to H. We assume that it has at least
one self-adjoint extension

A =fAdE(/1).

Then, if f is in H, (E()—E(—p))f converges to f in H as 4,u — +oo.
In particular, we have convergence in L*S), but with suitable conditions
one can say more. Let us assume that a is elliptic and that f is in the
domain of 4! with ¢ a positive integer. Then we shall show that if ¢ is
larger than a certain number, depending on % and p, then we have con-
vergence in .%,P, and we shall give an estimate for the convergence
(theorem 1). The proof uses a well-known interior estimate for elliptic
differential operators and an inequality of the Soboleff-Ehrling type.
If we take S bounded and with a regular boundary, let H = L3 S) and
consider a self-adjoint extension 4 which is regular in a certain sense,
we also get the result globally (theorem 2).
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Let us now choose the sign of a so that its characteristic form becomes
positive definite in S. Then the convergence in u is faster than the
convergence in A. In fact, if fe H, then E(—u)f tends exponentially
to zero in C as 4 - + oo (theorem 3). In order to show this, we first prove
an estimate for a local fundamental solution of (¢ —A4) when 1 is large
and negative. Then we obtain theorem 3 using a well-known integral
representation for the “almost eigenelements’ of 4, involving the con-
structed fundamental solution of (¢ —4). We also show that

EO)f(@) = [ f@)dy  (for fe Lx(S))
5
is given by a spectral function e, in C(8 x S), converging exponentially
to zero in C(S x S) as A - — oo (theorem 4).

At last we prove an asymptotic estimate for the spectral function
when A — + oo (theorem 5). The proof uses the corresponding estimate
for a semi-bounded operator, which has been obtained by Bergendal [1].
It may be noted that Levitan, e.g. in [5], has earlier considered spectral
functions of not necessarily semi-bounded operators corresponding to
elliptic operators of the second order. He has also proved asymptotic
relations for them.

2. Notations. The self-adjoint operator A.

Let R™ be the n-dimensional Cartesian space with elements x=
(@ ...,2,). We put |z|=(2,2+...+=,2)}. The closure of a subset N of
R~ will be denoted N. If u=(uy,...,u,), where the u,; are non-negative
integers, D* will denote the derivation symbol D ...D, #» with D, =
(27i)10)oxy, (k=1,...,n). We put |u|=p;+...+u,. For a measurable
subset N of R* we shall write

1/p

0Ny = ([ 3 109w dx) .
A lul=r

Here r is an integer 20, 1 £p < + o0, and ¢ an arbitrary function having

weak derivatives of order r such that the right hand side is finite. We

also define
9, N, 100 = (ess)sup > |Dg(x)] .

2eN |p|=r

The Banach space of all (equivalence classes of) complex-valued func-
tions g with |g,Nl, , < + oo is as usual denoted LP(N), and for p=2 it
is a Hilbert space with the scalar product

(f,9) = f f(z) §@) dx .
N
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ZP(N) will be the space of all functions which are in LP(M) for every
compact subset M of N. In #?(N) we shall use the topology generated
by the semi-norms |g, M|, ,. By C(N) we denote the set of those func-
tions which have all their derivatives of any order continuous on N.
Co(N) will be the set of all functions in C(N) whose supports are compact
subsets of V.

We shall deal with a differential operator a of order m,

a = a(®,D) = 3 a,(x)D",
|u|=m
defined in an open connected subset S of B* (n=2). The coefficients
a,(x) are assumed to be in C(S). By p,(x,D) we denote the principal

part of a:
Pz, D) :[]Z a,(x)D" .
ul=m
The characteristic form of a is
pa(x,f) =| lz au(x)&u ’
ul=m
where &*=§" ... £ We then say that a(x,D) is elliptic in S, if
Doz, &) %0 for all real £40 and all x € 8. Throughout the paper we shall
assume that this is the case. Further let us suppose that a(zx,D) is
formally self-adjoint in 8, that is

> ax)D" = > D'a,(x).

lul=m |ul=m
It is then easily seen that p,(x, D) must be real and its order m even and
that p,(x,&) must be either positive or negative definite for all x € S.

As the Hilbert space in which we shall work we take the orthogonal
sum H of L*S) and H,, where H, is an arbitrary Hilbert space. The
scalar product in H is denoted (f,g) and the norm ||f||=(f,f)}. Speaking
of the properties in S of elements in H we shall always refer to their
orthogonal projections on L*S). Thus, fe C(S) will mean that the
projection of f on L2(8) is in C(S). However, saying that fe Cy(S), we
shall also require that f has zero projection on H,.

Now, defining @ on Cy(S), we get a linear operator a, from H to H.
Since a was supposed to be formally self-adjoint, it follows from Green’s
formula that a, is symmetric, that is, (a,p,y)=(¢,ayy) for all ¢ and vy
in Cy(8). We are going to consider the case where a, has a self-adjoint
extension A =A*, the star denoting the adjoint in H. If f is in the
domain D(A4) of 4, we have in particular (f,a,p)=(Af,¢) for all ¢ in
C,o(8). This implies that Af agrees with af in S, where a is taken in the
weak (distributional) sense. Similarly it follows that A!f agrees with
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af in 8, if t is a positive integer and f e D(4?). Since 4 is self-adjoint,
it has a spectral resolution K(4) which is a projection-valued function
defined for —oo<A< + oo, satisfying A =(*2AdE(1) (Nagy [6, p. 50]).

3. The convergence of the eigenfunction expansion.

Lrmwma 1. (see e.g. Nirenberg [8, p. 519]) Let 2 be an open subset of S,
M a compact subset of 2 and t an arbitrary positive integer. Then

[, M|,y o0 = K(lahu, Qg o+ u,82]p,2)

for all functions w for which the right hand side is defined with o taken in
the weak sense. K is a number independent of u but may depend on 2, M ,t
and the coefficients of a.

LemmA 2. Let F be a sphere in B™, let 2<p = + oo, let s and r be non-
negative integers and put 1= (np+ 2ps—2n)[2p (in particular, l=(n+ 2s)/2
when p= + ). Then for all functions v for which the right hand side below
18 finite we have the inequality

IU!FIS,p = C(hl—r|v>Flr,2+h’llv,F[O,z)

provided r =1 or r>1 according as p< + oo or p= +oo. The factor h is an
arbitrary positive number, and C is independent of v and h when h is large
but may depend on F, r, s, and p.

Proor. By inequalities of Soboleff [11] and Ehrling [2, p. 270-273]
there is a constant K such that for all v for which the right hand side is
defined we have

(1) |’I),.F é K(lv’F!r,z'l'lv’FIO,z) ’

[S.P

where r, s and p satisfy the condition of the lemma. Let us for 221 con-
sider the spheres AF with radius AR, where R is the radius of F. We
cover hF with domains F,®,...,F, ®, for which the inequality (1)
(with F replaced by the domain in question) holds with the same con-
stant, independent of 2. This can be done in such a way that

np
U F® = hF

t=1

and that no point of AF is covered by more than L of the domains F®,
where L is an integer, independent of 2. Then

Th

[0, hF|, 52 £ 3 |0, F 0], 2.

1=1
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This follows from the elementary inequality

Cap)? = Zad® (pz22 a;,20).
Thus by (1) (for the domains F,®)
(2) [v,hFs , < 2K2D (v, F®|, )2+ v, F ®)], ;2
S 2K2L(|v,hF|, 2+ |v,hF |y 5?) ,
where 2K2L is evidently independent of h. If we suppose that the

origin is the centre of all our spheres and take a function v defined in F,
then the function v,(x)=wv(x/h) is defined in AF, and

g, hF g, = ke =3y, F|g
|vh’h’F|r,2 = h"/z—’[v,F],’g ’
(g, hE g0 = B2 |0, Flg 5 .
(For p= + o we put 0 for n/p.) Introducing this in (2), we find
[, F|g,p = K (W70, F|, o+ kv, Fly,,) ,
where K’ is independent of v and A, which proves the lemma.

Now let us return to the self-adjoint extension 4 of a, with the
spectral resolution E(A). We have the following theorem.

TuEOREM 1. Suppose that 2 p < + oo and let t and s be non-negative
integers such that mtzl=(np+2ps—2n)/2p, if p< +oo, and mi>1l=
(n+28)[2, if p=+oo. Then for any function f in D(AY), (E(A)—E(—p))f
is in C(8) for A and u finite, and if |x| =s and A,u — + oo, D(E(A) — E(—u))f
converges to D*f in FP(S). For the convergence we have the following
estimates

(3) |E(—w)f, Kls,, = o)™ =AY,
(4) \f =B, Kls,p = o)A =t AF],

where K is an arbitrary compact subset of S and where the functions o(1)
can be majorized by a constant independent of f (for A and u large).

Proor. If 12 and u are finite, then (E(A)—E(—p))f € D(4%)=
N2, D(A4%). From the fact that a’ is elliptic and of order m: and has its
coefficients in C(S) it follows by the lemmas 1 and 2, taking p= + oo
and s as large as we like, that (E(2) — E(—u))f € C(S). Let us consider
E(—pu)f. Since f e D(A?) we have

[AE(—w)fll = o(1)[|4'f]]
as u — +oo. But
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IE(—)fll = p|A'B(-p)f]  (u>0).
Thus by lemma 1
|B(—u)f: Flo,a = o(L)u~||AS]| ,
|E(— ) F 2 = o(1)I|AF]]

if I is a sphere whose closure is contained in §. Thus by lemma 2

|E(—=)f s Fls,p = g(p) (B4 B AT
where g(u) > 0 as u — +oco. Choosing k=™ we find

]E('—/‘)f’Fls,p = O(l)ﬂl/m—t”Aff” .

By the Heine-Borel theorem this estimate follows also for an arbitrary
compact subset of S. All the functions o(1) entering in the proof can
evidently be majorized by a constant independent of f, and so this holds
true also for the o(1) in (3) and (4). For (f—E(4)f) the proof is exactly
the same, and since

f = (ED=-E(-p)f = (f-BA)f) + B(-pf,

it follows that D*(E(A) — E(—p))f converges to D*f in £ for |x|=s.
This completes the proof of the theorem.

Now let us further assume that S is bounded and has an infinitely
differentiable boundary and that the coefficients of a(x,D) are in C(S).
We take H,={0}, so that H=L>*S). Then let us call the selfadjoint

extension 4 of a, regular, if there are numbers C, independent of f such

that
1fsSlmg, e < CUIAYN+IfI)  (fe D4, t=1,2,...).

For instance, if we restrict the maximal operator a,* to those functions
which have zero Dirichlet data at the boundary of S, we get such a
regular self-adjoint extension of @,. More generally, the self-adjoint
extension 4 of a, is regular, if we get it by restriction of the maximal
operator to those functions w, for which bju=0 (s=1,...,3m), where
{b;} is a “normal” set of differential operators with infinitely differen-
tiable coefficients on the boundary of S such that {b;} “covers” a(x,D)
(Schechter [9, p. 564]). We have

THEOREM 2. Let A be a regular self-adjoint extension of ay. Then for
A theorem 1 holds globally, i.e. we have convergence in L?(8) and (3) and (4)
hold with K replaced by S.

Proor. Evidently S can be covered—so that no point of its comple-
ment is covered—with a finite number of regions for which the in-
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equality of lemma 2 holds. For instance, we can take domains which
can be mapped one to one on the sphere F' by sufficiently differentiable
mappings. But then lemma 2 holds also for § and we can make the proof
as for theorem 1.

4. An estimate for a certain fundamental solution.

Now we are going to prove an estimate for a local fundamental solu-
tion of (a(x,D)—2) where A is large and negative and where the sign of
a(x,D) is chosen so that its characteristic form is positive definite. The
estimate is to be used in the next section. We start by quoting the
following lemma.

Lemma 3 (Garding [3, p. 241]). Let p(&)=p(&,, . ..,&,) be a polynomial
of degree m whose coefficients are majorized by a number c;, and suppose
that for some positive number c,

1P(E)] 2 ca(L+[E[™) .

Then the inverse Fourier transform of 1/p(&) (in the sense of Schwartz
[10, Chapter VII]) is an infinitely differentiable function P(x) in the region
|| &= 0 satisfying

/ [D*P(z)| = Cepy(x)(1+[2[N)1,
where e, (x) =1, if m— x| —n >0, and e, (x)= || e if m — |x| —n £ 0.
Here Nz0 and 0<e<1 are arbitrary, and the number C depends on
Cqs Co, ||, N and ¢ but is otherwise independent of the polynomial p.

If b(D) is a differential operator with constant coefficients such that
b(&)=*0 for & real, then, according to Schwartz [10, II, p. 142], it has a
unique temperate fundamental solution with pole zero, namely the
inverse Fourier transform of 1/b(¢). If b(D) is elliptic, we see from
lemma 3 that this fundamental solution is infinitely differentiable out-
side the pole. The following lemma gives an estimate for a fundamental
solution in the case of constant coefficients.

LeMMA 4. Let a(D) be an elliptic operator of order m with constant
coefficients such that its characteristic form 1is positive definite. Let g,(x)
be the temperate fundamental solution (with pole zero) of (a(D)—).) for 4
large and negative. Then there are three positive numbers b, C and — 2,
such that

|Dog,(x)] < CJ21=me(x) exp(—blAlal) (A < 4.

Here & is the number entering in e, (x), if €, (x)=1; otherwise ¢ is an
arbitrary positive number <1. For «, m and ¢ fixed, C,b and A, can be
chosen as continuous functions of the coefficients of a(D) (a(D) all the time
being an operator permitted in the lemma).

Math. Scand. 9 — 8
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Proor. Let h;(x) be the temperate fundamental solution with pole
zero of
Hy(D) = (1AI""a(]A]/mD) + 1);
hence h,(z) is the inverse Fourier transform of 1/H,(£). Then
(5) 9a(@) = |A|v=mim (|31 m)

which is easily proved by a homothety transformation. Since the char-
acteristic form of a(D) was supposed to be positive definite, the poly-
nomial H (& +2,&,,...,&,) will for A sufficiently large have no zero for
any real £ or complex z with |Im ()| < ¢, hwere ¢ is some positive number
independent of & and 4. For |Im(z)| <c¢, considering 1/H,(&; +2,&,, .. .,&,)
as a function of z, whose range consists of temperate distributions on R”,
we easily find that it is an analytic function of z (this means that for
every ¢ in the Schwartz class of rapidly decreasing, infinitely differen-
tiable functions the value of the distribution at ¢ is an ordinary ana-
Iytic function of z). Hence for |Im(z)| <c¢ the inverse Fourier transform
of 1/H,(& +2,&,,...,&,) is an analytic, distribution-valued function
of z. If z is real, it is equal to exp(— 2mizx,) h,(x). Considering
exp (— 2mizx,) h,(x) for general complex z as a (not necessarily temperate)
distribution-valued function of z, we find that it is an entire analytic
function. And since it agrees with the inverse Fourier transform of
1/H,(§,+2,&,, . ..,&,) for z real, the two functions agree also for all 2z
with |Im (2)| <¢, by the uniqueness theorem for analytic functions. If 0’
is some fixed number, 0<b'<c, and A is large and negative, then
H, (& +1b',&,, . . .,¢&,) satisfies the requirements on the polynomial of
lemma 3 so that the constants ¢, and c, there can be taken independent
of 2. Thus by lemma 3

lD"‘(exp(2nb'wl) hl(x))l s Ceylo),

where (' is independent of # and 4 and « an arbitrary derivation index.
From this it follows that

|Dhy(x)| < K exp(— 2nb'x;) max (e,(x),1),

where K is independent of # and 1. Such an estimate also holds with
—c<b' <0 and with z; replaced by any of the other variables. Hence
we can conclude that

|Dohy(2)] < C exp(—ble)) e(@) (4 < some k) ,

where C and b are positive and independent of x and 4. Then it only
remains to use (5), since it follows from the proof that C, b and 4, can
be taken as continuous functions of the coefficients of the operator a(D).
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Now, with the help of lemma 4, we shall prove an estimate for a cer-
tain local fundamental solution of (a(x,D)—21), where a(x,D) is our
original differential operator. Its sign is chosen so that p,(x, &) is positive
definite.

LemMA 5. For an arbitrary point x, € S and for large negative A there is
a neighbourhood o of x, and a fundamental solution g,(x,y) of (a(x,D)—2)
(we suppose that it is a fundamental solution with respect to y, with pole x)
defined and infinitely differentiable in w x w for x+y and such that
(6) lgs(x,9)| = Ky |lx—yl>™,
(7) [Dy*g,(x,y)| = Ky exp(—bA]t™)  (jlx—y| 2 7).
Here K, 6, K, and b are positive and independent of x, y and A, and « is

an arbitrary derivation index, while K, and b may depend on v which is
an arbitrary positive number.

Proor. We shall follow Garding [3, p. 244-245]. As in [3] we find by
the parametrix method the fundamental solution, infinitely differen-
tiable in w x w for =y, in the form

®) gy = 07wy + [u(e2) 0 Ey) dz,

where g¢,'(z,y) is the temperate fundamental solution with pole z of the
operator (a(z, D,)—2) and o is, for example, a sphere with centre z,,
& <8. Further u,(x,z) is a solution of the integral equation

(©) w(w.) = [uwy) Biy.2) dy = Baz)

w

where ﬂl(x,z)z(a(x,Dz)—a(z,Dz))gl’(:v,z). By lemma 4 we get for f,(,2)
the estimate

1Bix,2)] = ClAI=m e —z|'="" exp(—b|A[V ™z —2]) (A = 4),

where b>0 and where b, C and 4, can be chosen independent of z, z
and 4 for  and 2z in w. Then we can solve the integral equation (9) by
means of its Neumann series

Biw) + [Biwy) By dy + ..

since this can be majorized by

(0M|~e/mlx_z|1_e_n + (0Ml—e/m)zﬁx_yll—e-n|y_z|1-s—n dy + .. ) .
’ - exp(—blAVmz—2|),
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where the trivial inequality
exp (—blA[V"|x —z[) 2 exp(—b|A[V"x—y|) exp(—blA]V™y —z|)

has been used. Thus for A sufficiently large the Neumann series will
converge to a solution u,(x,z) of the integral equation (9), and we have
the estimate

(10)  |uy®,2)] = C"|A]=™|x—z[l=e~" exp(—bJA[V™x—2]) (A = &),

where €’ is independent of z, z and 4. From (8), (10) and lemma 4 we
now get

(11) lg:(@,9)| = Klz—y|>~" exp(-blAV™z—y]),

where K and ¢ are independent of z, ¥ and 42 and where d >0. Thus we
have proved (6). For y+x we have

(a(y,Dy))k g}.(xi?j) = Akgl(xhy) (k = 172’ ° ) s

and so by (11) and the lemmas 1 and 2 we also get (7) (in a sphere strictly
contained in w) which completes the proof.

5. The convergence of the negative part of the expansion.

Let us choose the sign of our operator a(x, D) so that p,(x,&) becomes
positive definite. As before we consider an arbitrary self-adjoint exten-
sion 4 of a4 in H, again H, being arbitrary. Then it can be shown that
the eigenelements or ‘“almost eigenelements’ corresponding to large
negative 1 are small in the interior of S. As a consequence of that we
get for the negative part of the expansion a faster convergence than that
asserted by theorem 1, where we did not use this fact. We have the
following theorem.

THEOREM 3. For an arbitrary fin H and A% + o we have E(A)f € C(S),
and corresponding to any derivative D* and every compact subset M of S
there are positive numbers b and C, independent of f and A such that

sup | D*E(A)f(x)] = C,exp(=bAM™) [Ifl (4 £0).

xeM

Proor. Let us introduce the spaces H(4,,4,) for 4; <, defined by
H(ll,lz) = (E(lz)"E(ll))H .

Hence, if the intervals (4,,4,) and (4,’,4,") have at most one point in
common, then H(4,,4,) is orthogonal to H(4,’,4,"). From lemma 1 and
lemma 2 it follows that all the elements in a space H(4;,4,) with 1, and
A, finite are in C(8) and that
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(12) su£|D“f(x)| sclfl (feHud),
X E

where « is an arbitrary derivation index and ¢ is independent of f but
may depend on «, 4;, 4,, M and the coefficients of a(x,D). Taking an
arbitrary point x; in § there is a neighbourhood w <8 of x, with a funda-
mental solution g,(x,y) of (a(z, D) — A) satisfying the estimates of lemma, 5.
Let ¢ be in Cy(w) and vanish outside a sphere F;, = with centre z, and
be equal to 1 in another sphere F,, concentric with F,. Then, if w is
e.g. m times continuously differentiable, we have the representation
formula (Géarding [4]; Nilsson [7, p. 4])

u(a) = [Bwy) uy) dy + [v(o) g0 (v, D)~ uw)dy  @eFy),

where Bj(,y)=(a(y,D,)—A)((1—p(¥))g(x,y)) vanishes when y is out-
side (F';—F,). According to the estimate (7) of lemma 5 we have
(14) |By@,y)| = Kexp(=b'[AY™) (xeFy A = A),

where K and b'>0 are independent of x, ¥ and 4 and where F, is a
sphere with centre x,, strictly contained in F,. By (13), (14) and the
estimate (6) of lemma 5 we get for a sufficiently regular function »

(15)  |u,Fglo,s = K’ (exp(—0"|AV™) |u, Fy—Fylo,s + [(@—2A)u,F1lo,5) ,

where K' is a constant. For an fin H(A—e¢,A) (¢>0) we have
(@—A)f, Filo,. = (A-A)fI = ellf]l -

Hence by (15) we get for all fin H(A—¢,4)

(16) Ifs Fglo,2 = K' (exp(—b'[A]Y™) +e)If]] -

For an arbitrary f in H(A—ke,A), where k is a positive integer, we have
f=fi+...+f; where f, € H(A—ie, A—(i—1)e) for i=1,...,k. For such
an element f we get by (16) and the Cauchy-Schwarz inequality

IIA

k k
If, F3lo, s < lefiaFalo,z KI(GXP(—b/W”m)‘l‘E) ;Hlel
K'(exp (—b'|A[Y™) + &)k} || f]| .

Let us choose ¢=exp(—b'|A]1™) and k as the largest integer less than
2 exp (b'|A|Y™). Then ke will tend to 2 when A tends to —oco. Hence for
fe H(A—1,2) and A sufficiently large we have

(17) IfsFalo,s = K" exp(—3b"IA1Y™) [If1],
where K’ is independent of f and A. But with f also Af,4%,... are in

IIA
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H(A—1,2), and for such an f we have ||A*f|| < (|1A]+ D)*||f]] (k=1,2,...).
Thus by (17) there exist positive numbers C,, b, and —2," independent
of f and 2 such that for fin H(A1—1,1)

1A%, Fy)lo,s = Crexp(=b A [IfIl (A = &)
From this we get, using lemma 1 and lemma 2, that for f in H(A—1,4)
(18) sup [Df(2)] = O, exp(—b|A1Y™) [If]],

xeky
where F, is a sphere with centre z,, strictly contained in ¥, « an arbi-
trary derivation index, and € is independent of f and 4. For a general f
in H we may write E(A)f=f,+fs+ ..., where A+ + cc and

fieHA-1,A—1+1) (1= 1,2,...),
and from (18) it follows that E(A)f is infinitely differentiable in F,
and that
sup DB @] < O, 3 exp(=biia—i+10m) 1]
2=1

xely

Thus we can easily conclude that

SUIIV)ID“E(l)f(x)I = K, exp(—bylA™) IfIl  (feH),

TELY

where K and b, are positive constants. By the Heine-Borel theorem
and (12) we then get the theorem.

ReMARK 1. It follows from our proof that the constants C, and b
can be taken independent of the particular choice of self-adjoint exten-
sion A and of the space H,.

REMARK 2. If S=R" and p, has, e.g., constant coefficients, then we
can take b as large as we want. In fact, it can be seen from the proofs
of the lemmas 4 and 5 that then we can take the neighbourhood « of
lemma 5 and the number b in (7) as large as we like (for v sufficiently
large). Hence, taking the radius of F, in the proof of theorem 3 suffi-
ciently large, we can make ' in (14) as large as we want, and the state-
ment easily follows.

6. The spectral function.

Consider the differential operator a(x,D) of theorem 3 with the self-
adjoint extension 4 of a, and the corresponding resolution of the iden-
tity E(A). For an arbitrary point x €S let us define the mapping
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T,(x) from H to the complex numbers by 7,®(x)f=D*E(A)f(x). By
theorem 3 we have
IT9@)f| < Culx) exp(=b@)AV™) Ifll  (feH, 2 £0),

where C (x) and b(x) denote the positive numbers which by theorem 3

correspond to the compact subset {x} of S. Thus there is an element
ez, ) in H such that

(19) T f = (f,e@®,) (xe8, feH),
where
(20) lle X, )| < C (@) exp(—b(a)|A[Mm) .

For all ¢ in H(4, + ) we have (p,e,"(x, -))=0, and so
el(a)(x: °) € H( - 00,}') .
Hence by theorem 3
e Nw, ) € C(8)
and

(21) |D,fe(@,y)| y) exp (= b)|A[Y™) [le(x, )|

<C
s C’a(x) Cy(y) exp ( — (b(x) +b(y))IAlYm) ,

where (20) has also been used. Let & be a function in Cy(R") with
(h(x)dr=1. Then

e N(x,y) = lim 6" |e,(x,z) k((z—y)/é) dz (z,yel).
6—>+0
Here all the functions under the limit sign are easily seen to be continu-
ous in §x 8, and from (21) it follows that the convergence is uniform
on compact subsets of SxS. Hence e*(z,y) is continuous in §x 8.
For u and v in H we always have (E(A)u,v)=(u,H(A)v). Here we lot u
and v be in Cy(S). Using (19) (with || =0) we get

JuweE gy o dedy = [u(y) e,2) v(@) dedy

where e, is ¢,® for |x|=0. Since » and v are arbitrary in Cy(S), we get
e(x,y)=e,(y, x) for x,y €8, and it follows that e,(x,y) e C(SxS). We
also find e,®(x,y)=(—1)*'D,%,(x,y), and so (21) gives an estimate for
DD fe)(x,y). Since it follows from (12) that we have no difficulty in
defining e,(z, -) also for A>0 we have the following theorem.

THEOREM 4. For every x €S and every real A there s an element
e;(x, ) of H such that

EWf(x) = (fefx,))  (feH).
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Here e,(x,y) 1s infinitely differentiable in S xS, e, (x,y)=c¢,(y, x) and
DD fej(x,y) < O,(x)O4ly) exp (—(b(@) +b)Am) (4 £ 0),

where C,(2) and b(z) are the positive numbers which by theorem 3 correspond
to the compact subset {z} of S and the derivation index y.

Now let us consider the self-adjoint operator 42. It is an extension
of a? defined on Cy(8). Moreover, it is bounded from below. So we
have by Bergendal [1, theorem 3.2.1, p. 43] (he considers only the case
H =L28), but his proof works as well in the general case) the following
estimate for the spectral function E,(x,y) of A2, when 4 - + oo,

(22) D,DJfE;(x,y) = D,*D,E, y(x,y) + O(1)An+~I+lbrem (og )1 ,

which is uniform on compact subsets of SxS. Here E, ,(x,y) is the
spectral function of the unique self-adjoint extension in L* R") of the
operator with constant coefficients (p,(z,D,))?, defined on Cy(R"), and
D,D/fE, ,x,y) is short for [D, D fE, (x,y)],_,- By a Fourier trans-
formation we can easily calculate X, ,(x,y) and we find

B, J@,y) = f exp (— iz —y)£) dé .

Palz, §)2=4
Evidently

E, (x,x) = c(z)An?™,

where ¢(z) is independent of 4, and so by (22), E, ,(z,z) is an asymptotic
estimate for K (x,x) as 4 > +oo. Now, with the spectral functions cor-
responding to @ we have the following relations (1> 0)
el(x7y) = —;.(x,?/)’*'EAZ(x,?J) 5
e, %,y) = B, p(x,y)

provided that K(1) is defined conveniently when 4 is an eigenvalue,
which has no influence on the asymptotic formulas. Thus

el(x’y)—ez,a(x,y) = @_;.(95:?/) + (En(x’y)_Ez,ﬂ(x’y))
and so by theorem 4 and (22)

D,*D f(e;(®,y) — e, (,y)) = O(1)An+lel+1abim (log 2)-1

where the estimate is uniform on compact subsets of §xS. Hence we
have the following theorem.

THEOREM 5. For the spectral function e,(x,y) defined in theorem 4 we
have the estimate (x,y € S and A - + o0)
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DD fe\(x,y) = D,>Dfe, x,y) + O(1)An+lel+ibbim(log2)-1

where e, ;(x,y) 18 the spectral function of the unique self-adjoint extension
in L2(R") of the differential operator with constant coefficients p,(z,D,),
defined on C(R™). The estimate is uniform on compact subsets of 8 x S.

REMARK. If the operator a has constant coefficients in S, then
DD fe)(@,y) = DD fe, ;(x,y) + O(1)An+=I+lel-Dim

where e, ,(,y) is the spectral function of the unique self-adjoint exten-
sion in L*(R") of a, defined on Cy(R"). In fact, by Bergendal [1, theorem
3.1.1, p. 37] this is true in the semi-bounded case, and so we get the
general case, arguing as above.
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