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HYPOELLIPTIC CONVOLUTION EQUATIONS

LARS HORMANDER

We shall study convolution equations of the form
(1) S*xu = f

where S € &'(R™), the space of distributions with compact support, u
and fe @'(R"), the space of all distributions.

DeriniTiON. The convolution equation (1) (and the distribution S)
are called hypoelliptic if all solutions u € 2'(R®) of (1) are in fact in
C*®(R™) when f e C®(R").

It follows immediately from the definition that no S e Cy is hypo-
elliptic. More generally, if S e & and ¢ € CF, the distribution S+ ¢ is
hypoelliptic if and only if S is hypoelliptic.

Ehrenpreis [1] has proved that § is hypoelliptic if and only if there are
constants B; and M, such that

(2) I58)) = €72, |E = M,, EecRn,
and
(3) Im¢|flog|t| > o0 if [¢|—> o0 in C?, S(&) =0.

Here S denotes the Fourier-Laplace transform defined by
S(©) = 8(e),
where the distribution S operates on the variable x, and
x,0) = 28+ ... 42,0, .

To prove the sufficiency of this condition, Ehrenpreis constructed a
fundamental solution and proved that it is infinitely differentiable out-
side a compact set. However, he did not make any detailed study of the
size of the set of singularities of the fundamental solution. Since this is
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important if one wants to obtain local results, we shall supply such a
study here.

In what follows we use the notation K for the support of S and K,
for the singular support of 8, that is, the smallest closed set outside
which § is an infinitely differentiable function. The convex hull of any
set A will be denoted by A. If A and B are subsets of R™ we set

A+B={x+y; x€ A, yeB};

it is clear that these sets are open if either 4 or B is open.

Our main result is the following theorem which will be proved at the
end of the paper.

THEOREM 1. Let S be hypoelliptic and Q be an open set in R™. If
ue?' (Q-K+K,) and f=S*ueC®Q+K,), it follows that u e C*(R).

The main point in the proof is a precise estimate of 1 /57 when § satis-
fies (2) and (3). This estimate is obtained from the following lemmal.

LEMMA 1. Given positive constants A, B and ¢, we can find a constant N
such that if w is harmonic when x?+y?< R* and satisfies the tnequalities

(4) u(x,0) £ 0, u(z,y) =2 —aly|—Br, x?+y? < R?,
it follows that
(5) uww,y) S aly|+er,  2P4+y? < ?,

provided that 0<a<A and 0<r<R|N.

Proor. Assume that the statement were false. We can then find a
sequence of numbers a,,, R, and r, with 0<a,<4 and R,[r,>n, and a
sequence of functions w, harmonic when z%+y?< R 2 so that

un(x:o) = 0’ un(x:y) 2 —a’nlyl—Brn’ x2+y2 < an ’
un(xn’yn) 2 a’nl?/n]"'grn ’

for some (z,,y,) with z,2+y,2<r,% We now change variables, setting

’

vn(x’y) = un(rnx:'rny)/rn’ Tp = xn/rn’ y,n = yn/rn .
Recalling that R,[r,=n, we obtain
vn(x:o) £0, vn(x’y) = _anlyl_B’ x2+3/2 < n?,
Vn(® oY n) Z Oy Yl e

From Harnack’s inequality it follows that the sequence v, is also bounded
from above on every compact set. Hence we can find a subsequence

1) T wish to thank Professor P. Malliavin for a helpful discussion which led to this lemma.
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v, which has a limit v harmonic in the whole plane so that the sequences
'y, ¥ and a,. have limits z,, y, and a,. Then we have

(6) v(z,0) = 0, v(x,y) = —aply| - B, V(Tg, Yo) = A lYol +¢ -

From the first two of these inequalities it follows that v is a linear func-
tion of y, for v must be a harmonic polynomial and be bounded when y
is bounded. The slope of the linear function cannot exceed a, in abso-
lute value. But then the first and the last of the inequalities in (6) con-
tradict each other, which proves the lemma.

Let H be the supporting function of K, that is,

(7) H(n) = Sullg(x,n% neR,.

In view of the generalized Paley—Wiener theorem there exist constants
B, and M, such that

(8) BQ)I < [gPe MmO, ) 2 My, CeCm.
We shall now prove a corresponding estimate of 1 /S‘ .

TaroREM 2. Let S be hypoelliptic. To every positive m one can then
Jind a constant C,, such that

9) [1/8(0)] = [¢PH1eACmO if  Tm¢| < mlog|¢] and [¢] = C,, .
Here B, is the constant in (2).

Proor. Throughout the proof we reserve the notation =&+ iy for
points in the set {¢; [Im{|<m log|{|}. Note that ||/|&] - 1 if [{| - oo.
We shall study the analytic function of one complex variable

Fy(z) = S(&-+2n/In))

when |z| < M log|&|, where M is a number depending on m but not on ¢
which we shall fix later. For given M we have in view of (2) when ||
is large

(10) |F.(2)] = (2178, if =z is real and |z| < M log|é].

Further, if we write H(n/|n|)=«+p and H(—n/|n|)=«—p, we have in
view of (8)
(11) |Fy(z)] S |2£|PrefTmerelimel 2] < M loglé] .

We now introduce the function
w(z) = log{e#™™*|2¢[~P1|F (2)| '}

which, in view of (3), is harmonic when |z| < M log|&| provided that ||
is large. Using (10) and (11) we obtain
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(12) u(z) £ 0, if 2z isreal and |2| < M logl|é|,
(13) u(2) 2 —o«|Imz|—(By+ B,) log|2¢], |z| < M loglé| .

In order to apply Lemma 1 we introduce the constants

B = (B;+By+1)[(m+1), A=supd(Hn)+H(—n), e=1/2(m+1).

[nl=1

If N is the constant in Lemma 1 we put M =N(m+1). With r=
(m+1) log |£| we have

(B;+B,) log|2¢] = (B, +B,+1)log|é| = Br

provided that || is large enough. Further, we have x<A. Hence
Lemma 1 gives

(14)  u(z) £ «|Imz|+e(m+ 1) log|é], |2| < r = (m+1)log|é|.

Since |n|<mlog|¢|<(m+1)log|&|=r if |[{| is large enough, we may
take z=1|n| in (14), which gives

hence R
/8| £ =B nl |25lB1+% < HEm g Bt

when || is large. This completes the proof of Theorem 2.

We now proceed to construct and study a fundamental solution of §,
or rather a parametrix, which is sufficient for our purposes. Our argu-
ments are essentially the same as those of Ehrenpreis [1] so we shall
only indicate them briefly.

Let C be a constant =1 such that ,§(§)=|:0 if & is real and |£|=C.
According to (2), the function which is =l/;§(£) when [£|=C and =0
elsewhere is temperate, hence is the Fourier transform of a temperate
distribution F. The Fourier transform of S*F is 1 when |£]=C and 0
elsewhere. Let p be the analytic function

pa) = (20 [ dEDa.

|s=C
We then have

(15) SxF+y =9,

where § denotes the Dirac measure at the origin.

THEOREM 3. If S is hypoelliptic, the distribution F is in C* outside — K.
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Proor. Let u be a positive integer so large that 2u > B, + 1+ n, where
n is the dimension and B, the constant in Theorem 2. Then we have
with the differentiation made in the distribution sense

(16) F = (-ayea [ oS,
|4=C

where the integral is absolutely convergent in virtue of Theorem 2.
If z,¢ — K we have to prove that F is infinitely differentiable in some
neighborhood of x,. Since —zx,¢ K we can find a real  so that { —z,,7) >
H(n). Multiplying n by a constant we may assume that H(n)+ (xq,7n) <
—2. We shall now study the integral (16) when « is in the neighborhood
U of z, defined by U={n; H(n)+<{x,n)< —1}. In what follows we
keep 7 fixed.

Let m be an arbitrary positive number. For every real & with
|£| 2 max (1,C,,) we denote by #(¢) the smallest positive number such that
tln|=mlog|&—ity| and let I, be the set of all points {=£&—it(&)n
thus obtained. Then we have when x € U

(17) F(x)

il

(—ay@ay” [ @D @ o dt,

where the symbol = means that the two sides only differ by a Laplace
integral over a compact set, hence an analytic function of x. In fact, it
follows from Theorem 2 that the shift of the integration contour is
legitimate. Now we have on I,

Iei(x, C)S‘(C)—ll < et(m,n)|ClBl+letH(n) < et Pl = || Brtiomiinl

Choosing m so large that m/|n| > B;+ 1 +n we can thus differentiate (17)
under the integral sign and obtain

(18) Fx) = (2m)" f d@08(eytds, zeU,
I'm
and by repeated differentiations we find that F e C¥U) if m/|n| >

B,+1+n+k. Since m may be chosen arbitrarily large, this shows that
F e C*(U). The proof is complete.

Proor or TurorEM 1. It is clearly enough to prove the theorem
when K, is replaced by an arbitrary open convex set w>K, Let
@ € C(w) be equal to 1 in a neighborhood of K, and write S=8,+8,
where S, = ¢S has its support in w and S,=(1—¢)S € Cy’. From a remark
made after the definition of hypoellipticity it follows that §; is also
hypoelliptic. Hence we can according to Theorem 3 find a distribution
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F, which is in C*° outside a compact subset of —w and a function y, € C*
so that Sy *F, +y,=08. Let y € Cy(—w) be equal to 1 in a neighborhood
of the singular support of F'; and set F';=yF,. Then F';—F, is in C*,
hence 8, *F'; +y’; =6 for some y'; in €7’ (K —w), and F,’ has its support
in —w.

Now if ue2'(2—K+w) and f=8*uec C°(Q+w), it follows that
fi=81*u € C°(Q+w). Hence u=0*u=(S;*xF'1+vy')*u=F xf;+v¢ *xu
is in C*(Q2), which proves Theorem 1.

In particular it follows from Theorem 1 that Theorem 3 can be im-
proved by replacing — K by —K,. In general, it is easy to see that the
set K, in Theorem 1 can be replaced by a compact set K’ if and only
if the singular support of the parametrix F is contained in —K'. It
would therefore be interesting to improve further the description of the
singularities of F' given by Theorem 3. However, the following theorem
shows that our result is not less precise than the usual theorem of sup-
ports.

THEOREM 4. Let S be hypoelliptic and F be a parametriz, that is,
S+xF—6€eC®R,). Then it follows that sing suppS and —sing suppF
have the same convex hull.

Proor. Let as before K, be the singular support of S and denote the

smgular support of F by L, From Theorem 1 it then follows that

c —K,. Now take ge C’°°( ) equal to 1 in a neighborhood of L,

and set F'=¢@F. Since F'—Fe(C; we have singsuppF’'=L, and
SxF'—é=ye Cy. Hence

(19) SF =1+.

If 4 is an upper bound for |x| when z € suppy, we have for an arbitrary
integer N in virtue of the Paley—Wiener theorem

D) = O((1+[g))N edtmely

Hence () -0 if ¢ - co while |Im¢|/log|¢| remains bounded. Thus
it follows from (19) that (2) and (3) are valid with S replaced by F,
that is, F' is hypoelliptic. From the equation S*F'—d=ye C5(R,)
we thus obtain by applying Theorem 1 to the hypoelliptic convolution
operator F’ that K, — L, which completes the proof.

ReMaRrk. Note that the proof of Theorem 4 shows at the same time
that the conditions (2) and (3) are in fact necessary for the existence of
a parametrix of § with compact singular support.
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