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IDEALS IN THE SECOND CONJUGATE
ALGEBRA OF A GROUP ALGEBRA

PAUL CIVIN

1. Introduction.

Let & denote an infinite locally compact abelian group, and let L(®)
be its group algebra. The second conjugate space L**(®) can be made
into an algebra by the use of Arens multiplication [1] [2]. The algebra
which is so obtained has been shown by Civin and Yood [6] to be not
commutative and not semisimple. The object of the present work is to
exhibit some of the properties of the maximal modular left ideals of
L**(@), or equivalently since L**(() has a right identity, of the maximal
left ideals of L**(@).

Let = denote the natural embedding of L((®) into L**(®). In § 2 it is
shown that any maximal left ideal M of L**(®) either satisfies MW >
nL(®) or there is a unique character y € ¢ such that MnaL(®) is the
injection into L**(®) of the maximal ideal of L(®) corresponding to y.
The stated phenomenon occurs despite the fact, also shown in § 2, that
aL(®) is not an ideal of L**(®) if & is not compact. In § 3 it is shown
that each of the various types of maximal left ideals, the possibility for
whose existence arises from the results of § 2, indeed exists. It is also
shown in § 3 that when & is not compact there exist multiplicative
linear functionals on L**(®) which do not correspond to characters of &.
Section 4 deals with the relation of the behavior of a subspace of L**(®)
with respect to translation invariance to the question of whether the
subspace is a left or right ideal. In § 5 some results are obtained relating
to the linear space annihilators of maximal left ideals. As a corollary,
it is deduced that the only w*-closed maximal left ideals are those de-
termined by a character of the group.

It should be noted that the choice of the maximal modular left ideal
as the subject of investigation is not an arbitrary one. The presence in
L**(@®) of a right identity, which, for & not discrete, is not a left identity,
makes the above ideals more accessible than the corresponding right ideals.
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2. Maximal left ideals.

Let M, denote the maximal ideal in L(®) which corresponds to the
character y € @&, that is,

(1) My, = {xeL(@) | f;?(t)x(t)dt=0} .
(¢

Let 7 denote the natural embedding of L(®) into L**(®), and n, that of
L*(®) into L***(¢). We adopt the notational convention that @ is a
subset of L*(®). Thus we may also write for y € §,

(2) My, = {we L(G) | 7(x)=0}.

Since 7 is a multiplicative linear functional on L(®) if y € &, it follows
from [6, p. 854] that 7,7 is a multiplicative linear functional on L**(®).
Consequently

(3) M, = {FeLl**06)|mp(F)=0} = {F € L**®) | F(7)=0}

is a maximal modular two-sided ideal of L**(®). Note that M, >=M,,.
In fact it follows from [6, p. 865] that I, is the w*-closure of 7M.,
The above notation will be used throughout the sequel, as well as the
symbol IR for an arbitrary maximal modular left ideal in L**(®). As
noted in the Introduction, the latter is also a maximal left ideal in L**(@)
since L**(®) has a right identity [6, p. 855]. The symbol £ will be used
for an arbitrary, but fixed right identity. Some further notation,
however, is needed for the present. For 6 a proper open set in @, let

Sy = {we L(®) | g(x) = 0 for all a¢6}.
Also for y € &, let

There exist 6 open in &,

T(y) = ‘xeL(@) y€0, and g(x) = 0 for all 76

Clearly, T'(y) is an ideal in L(®) and S, is a closed ideal in L(®).

Lemma 2.1. If MdaT(y), y € @, then there exists an open set 6 in &,
y €8, and M> xS,

Proor. Suppose MdnT(y). Let x e T(y), and nx ¢ M. Then there
exists an open set 0 in &, y € 0, and for u € 0, ji(x)=0. Since L**(§)
has a right identity £, and nL(®) is central [6, p. 855] in L**(®), it fol-
lows from the maximality of N that

L*(®) = M+ L**(G)nee .
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Thus E=M+ Anz, M € . Since nL(®) is central and = is a homo-
morphism, for any y € S,

ay = nyll = ayM + An(xy) .
Now ji(y)=0 for g ¢ 6. Also a(x)=0 for 7€ 6. Hence
Axy) = @gx)ay) = 0 forall pe®.

The semi-simplicity of L(®) yields axy=0, and consequently ny=
ayM e M, and thus M > =S,

Lemma 2.2. If MoaT(y), y € @, then M>aMy,.

Proor. Let xeM,. Then [7, p. 151] x=limxy, with xy, c T(yp).
Since #7'(y) <IN which is norm closed and = is continuous, it follows
that 7z € M. Thus 7M,,., <M.

THEOREM 2.3. Let I be a maximal modular left ideal in L**(®). Then
either M aL(®) or there exists a unique y € & such that M > aMy,,-

Proor. If M>7M,, and M>aM,, for y,ue® and_u+y, then
M>xL(G). Thus we assume that IMpaIM,, for any y € @ and show
that this leads to a contradiction. It follows from Lemma 2.2 that
M baT(y) for any y € . Consequently by Lemma 2.1 for each y € &,
there is an open set P(V) in @& such that M > 7Sy, Let J be the sum of
the ideals Sy, v € &, in L(®), i.e. J is the smallest ideal in L(®) con-
taining all the S,,,. If J were not dense in L£ &), then by the Tauberian
property of L(®), there would exist a 6 € ¢§ such that J<I,,, and
consequently §(x)=0 for all x € J. Since J> 8, the regularity of the
Banach algebra L(G) yields an z € Sy, such that §(x)=1. This contra-
diction shows that J is dense in L(®) and consequently n$ is dense in
al(®). Since M >7mSy,, for all y € &, M>a%. As M is closed it follows
that M >aL(@). The conclusion M>#L() is inconsistent with our
supposition that MPpaM,, for any y e ®. Consequently the proof of
the theorem is complete.

If it were true that nL(®) were a two-sided ideal in L**(®), it would
be possible to give a particularly simple algebraic proof of Theorem 2.3
using Theorem 2.6.6 of [9]. However, the next theorem shows that in
general the modified argument is not possible since nL(®) is ordinarily
only a subalgebra of L**().

THEOREM 2.4. The subalgebra nL(®) is a two-sided ideal of L**(®) if
and only if ® is compact.
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Proor. Let Y denote the smallest closed subspace of L*(®) which
contains the multiplicative linear functionals on L(®), and let Yt be its
linear space annihilator in L**(®). It is noted in [6, p. 854] that Y! is
a two-sided ideal of L**(®). Suppose that nL(®) is a two-sided ideal
of L**(®). Let F € Yt and x € L(®). Then nxF € nL(G)nYL. However,
if nyenal($)nY*, then ny(u)=u(y)=0 for all multiplicative linear
functionals x# on L(G). Thus the semi-simplicity of L(®) yields
aL(@)NnYPL+=(0). Hence for all z € L(®), nxF =0. However, since left
multiplication in L**(®) is w*-continuous [2] and since nl(®) is w*-
dense in L**(@®) it follows that L**(§)F =0 for all F € Y. In particular
PL=R**, the radical of L**(@).

Suppose that & is not compact. It is known [6, p. 861] that R** <YL
and that the inclusion is proper. Consequently the prior argument
shows that if #I(®) is a two sided ideal of L**(®) then & is compact.

Suppose now that & is compact. Since nL(®) is central, it suffices to
see that it is a right ideal. Let x € L(®) and let F € L**((). Suppose
that F when restricted to the continuous functions corresponds to the
countably additive regular Borel measure u. For any fe L*(®),
axF(f)=F({f,x)), where the notation is that of [6]. Thus

maB(f) = [ Faxoduty,

since it was noted in [6, p. 856] that {f,x) has a representation as a
continuous function on & with value at ¢t e & equal to [f(x)x(x—t)dw.
Then

meF(f) = [{[ £ 2l =1) dnfdptt) = [{ [ ala— ) du)} @) d,

since both measures involved are now countably additive. Let A(x)=
Jx(x—t)du(t). Then

[ @) s = [ [ 1w —0] dipl(e) ds < Yol 1l

where ||u|| indicates the usual norm for a countably additive measure.
Thus & € L(®) and we see that nxF (f)=f(kh)==nh(f) for any fe L*(&).
Thus #zF =nh and since x and F were arbitrary in L(®) and L**(®)
respectively, it follows that #L(®) is a two sided ideal of L**(@).

3. Existence questions.

From the introduction to Section 2, it can be seen that the two-sided
ideal sm,, yE (35, intersects 7L(®) in 7M. From Theorem 2.3, it follows
that any maximal modular left ideal in L**((®) either contains nL(®) or
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intersects it in a set of the form 7R, for some y € ®. In this section,
we consider the question of existence of maximal modular ideals of the
former type and of the existence of those of the second type distinct
from those of the form of ..

TuEOREM 3.1. There exist maximal left ideals I in the algebra L**((),
such that M P aL(®) and M+ M, for any y € & if and only if & is not
compact.

Proor. Suppose & is not compact. Let € be the subspace of L*(¢)
generated by the continuous functions on & vanishing at infinity, and
let @ be its linear space annihilator in L**(@). By [6, p. 869] there is
an algebraic isomorphism, «, of L**()/€* onto M(®), the algebra of
countably additive regular Borel measures on ®. Let J, be the maximal
ideal in M(®) corresponding to y € (¥, that is

3, = | e 1) | [70a0) =0},

Let B be the natural mapping of L**(®) onto L**(®)/CL. Let M=
(xf)~1y,. Since each of x and f is an algebra homomorphism, It is a
maximal left ideal in L**(®) and IN>EL Suppose that MM =M;, for
some d € 5. Then M,>EL, so M, =€ and thus 6 € €. However, since
& is not compact, this is a contradiction, and so M + M, for any é € &.
Let x e L(®). From the way in which « and g are defined (see [6,

p. 860]), af(nx) = a(nr+Ct) = nx | €,

the restriction of #z to €. The value of the Fourier transform of (nz|C€)
at y € (& is given by

[70 2 dt = 7@) = 7).

Thus xf(nzx) € J, if and only if 7z € M, or if and only if z € M,,. Thus
MPzaL(@), and M+M, for any y € @, and consequently any maximal
left ideal obtained in this fashion is of the required type.

Suppose now that @& is compact, and suppose that IR is a maximal
left ideal of L**(®) such that MPxL(®) and M>7a,, for some
y e &. Since, according to Theorem 2.4, 7L(®) is an ideal in L**(§),
MnrL(®) =M, nal(®)is a maximal modular ideal in the algebra zL(®).
Let nj be an identity modulo the latter ideal in nL(®). Then nj & M,
and mj ¢ M. It follows that

nj2—nj e M N al(B),
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so 77j% ¢ MNaL(®). Thus L**(E) =M+ L**()zj. Let F e M,. Then
F=M+Qnj, with M €. Since nj is central, mjF =njM + Qmj2. As
ajF € aL(G)NIM, we see that Qnj2e M. Since

Q(rj%—mj) € M n =L(G) ,

it follows that Qmje MM and thus F € . We therefore conclude that
M=M\,.
Let 7; denote the natural embedding of L*(®) into L***(®).

CoroLLARY 3.2. If & is not compact there exist multiplicative linear
functionals on L**(®) which are not of the form my, y € @.

Proor. Let the notation be as in the first part of the proof of Theorem
3.1. Let pe (M (¢))* be the multiplicative linear functional correspond-
ing to the evaluation of the Fourier transform at y € 5. Let = (x8)*(¢),
so that w e L***(#). Now, for F, G € L**(®),

= (@AM FG) = p(ap(FR) = p(af(F))@(xB(G)) = p(F)p(G)

80 y is multiphcatwe, and is clearly not the zero functional. Thus the
nullspace of p is a maximal left ideal of L**(®). Since for F e I,

p(F)=@(xB(F))=0, it follows that the nullspace of y is M. Now if
p=m,0 for some & € §, then M =9I, in contrast to what was observed in
the proof of Theorem 3.1.

THEOREM 3.3. If & is not discrete, there exists a maximal left ideal N
in L**(®) such that N> aL(®).

Proor. If & is compact, then Theorem 2.2 asserts that nL(@®) is an
ideal. Since L**(®) has a right identity F, nL(®) is a proper modular
left ideal and the existence of the asserted ideal is immediate.

If @ is not compact, consider the ideal & in L**(®) generated by
aL(®). By the argument used above, it suffices if we show K ¢ J.
Suppose the contrary. Then there exist xz; € L(®) and F,e L**(®),
t=1,...,n, such that E=3"  (nz;)F;. Thus for any ye L($), ny=

;Ll(n yxz))F, Since #L(®) is central in L**(@), it follows that for any
W e L** @),
n

(4) E( alyz)\WF;—F,W) = 0.
From the w*-density of nL(®) in L**(®), we see that there is a net
{my,} which is w*-convergent to E. The w*-continuity of left multiplica-
tion together with relation (4) then yields
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=1 7

(VE

nw(WF,—F,W), or WE-EW =0.

This asserts that W=EW, for all W e L**(¢). However, for & not
discrete, L**(¥) has no identity since L**(®) has [6, p. 856] a non-zero
right annihilator.

It should be noted that for & discrete the prior result clearly fails
since L(®) and therefore [6, p. 865] L**(®) has an identity.

4. Translations in L**().

Let T,, A€ ®, denote the translation operator in L(®), that is, for
ze L(®), Tyx(f)=x(A+p), . It is a well known phenomenon
[7, p. 125] that a closed subspace in L(®) is an ideal if and only if it is
invariant under each 7';, A€ &. The object of the present section is to
discuss the similarities and differences in this type of behavior where
one considers translations in L**(®).

It is immediately verifiable that when an element F of L**(®) is
interpreted as a finitely additive set function, the set function
corresponding to the translation of the original by 1€ @& comes from
operation on F by 7,**. Thus we are concerned with questions of in-
variance of subspaces of L**(®) under 7,**. The notation which will be
used is that of [6].

LEMMA 4.1. For any 1€ ®, T**(FQ)=F(T,**G) = (T, **F)G.
Proor. For any F,G e L**(®), and any f e L*(®),
T**FG)f) = FGT*f) = F(G,T*f]) .
Also for each x € L(®), [G, T,*f1(x) = G({T;*f,xy). But for each y & L(®),
T¥fa)y) = Ti*f(ay) = f(Tixy) = f(T)y) = f@(Ty) -

If the first interpretation is used, we conclude {f,T,x)(y) = (T ,*f,x)(y)
for all y € L(®) and thus {f,T,x)=<T,;*f,x). Thus

[G,T* (@) = GKf, Tw)) = [, fI(Tw) = T*[G, flx)
for all x € L(®). Consequently [G,T,*f]1=T,*@, f] and
T**FG)f) = F(T*G, f]) = (T**F)G(f) .

Hence 7,**(FG@)=(T,**F)G. 1f the second interpretation were used
above, a like calculation would show 7', **(FG) = F(T,**@).
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THEOREM 4.2. If is a right ideal in L**(®), or if I is a left ideal that
contains the right annihilator of L**(®), then  ts tnvariant under T,**,

Ae .

Proor. The condition that a left ideal contain the right annihilator is,
of course, automatically satisfied if & is discrete since in this case the
right annihilator is zero. However, it will be shown later that for & not
discrete, the condition is essential.

Suppose first that Jis a right ideal and F € §. Then F = FE, where E
is a right identity for L**(®). Thus by Lemma 4.1, 7,**F=
F(T**E)e . If §is a left ideal and F € , then EF € &, where E is
as above. Thus

T.**(EF) = E(T,**F) = (T,**E)F e &.

Since E(T,**F)—(T,**F) is automatically in the right annihilator of
L**(®), it is in § by hypothesis. Thus 7,**F € J as asserted.

Before proceeding to the demonstration that the condition on the right
annihilator is essential, it is necessary to establish an intermediate result,
which was used without proof in [6, p. 856] for the special case ¢=0.

Lremma 4.3. If ® ¢s not discrete, then there exists fe L*(&) and A€
such that f—cT',*f has no continuous representation for any complex c.

Proor. Let 140, e ®. Let W be a neighborhood of 0 with W
compact, such that Wn(—A+ W)=0. We shall show below that there
exist fe L*(®) such that no function equal to f in the sense of L*(()
is continuous and such that {t | f(t)+=0}< W. Suppose some function f’
equal to f in L*(®) satisfies f'—cT',*f' =g, with g continuous, and ¢ a
complex number. Then for ¢t € W, f(¢) = g(¢) which is in contradiction to
the supposed nature of f. The proof thus reduces to the construction of
the desired f.

Suppose that there exists an open set U, U< W and such that U is
not open. Let f(t)=1, te U and f(t)=0, t ¢ U. Since U is compact,
U — U is compact and U is measurable and thus f € L*(®). Lettye U—U
be such that no neighborhood of ¢, is contained in U. Since any open
set containing #, contains points both of U and the complement of U,
the alteration of f on a set of measure zero will not alter the discontinuity
at ;.

Suppose next that each open set V with V< W has V open. Let U
be open, 0 € U and U< W. Then [8, p. 54] there is a compact open sub-
group 9 of @ with < U. Clearly  is not discrete. If the desired func-
tion is constructed for the compact group 9, its extension to @ by de-
fining it to be zero off § would clearly have the desired property.
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In view of the earlier argument, we may suppose that each open set
in  has an open closure. Since 0 € § is the limit of a net {x,} in § with
0 deleted, there exists an infinite collection of disjoint compact open
sets V, in 9, such that each V, contains some z,. Let f(f)=n"1 for
teV,, and f(t)=0 for t & UV,. The function f is then continuous real
valued, and its range is an infinite set. By [8, p. 60] for any such g,
there is a compact subgroup $, of § and such that $/9, is separable
metric and g is constant on cosets modulo $,. Since the range of g is
infinite, /9, is an infinite group and since it is compact cannot be
discrete. Since $/9, is separable metric, there exist open sets U, and V,,
in /9, such that z, € U, implies limz, =0 in /9, and y, € V,, implies
limy,=0 in $/9,. The sets U, and V, may also be taken so that
U,nV,=0 for all n and j, and also 0 ¢ U,uV, for any n. Let « denote
the natural mapping from $ onto /9, and let

X, = «1U,, Y,=o1V,.

Let f(1)=1,te X,, n=1,2,..., and f(¢)=0 otherwise and in particular
on each Y,. Clearly fe L*(9). Let xy€ ;- Let Z be an open set in §
which contains z,. Then «Z is open and there is a u, € xZnU,, and a
v, €aZnV, for some integers » and m. Since f is constant on cosets
mod §,, there exist open sets in Zn X, where f has the value 1 and open
sets in Zn Y, where f has the value 0. Consequently f cannot be modi-
fied on a set of measure zero so as to become continuous and the proof
is complete.

THEOREM 4.4. If & is not discrete, there exists a closed left ideal in
L**(®) which is not invariant under T,**, 1 € &.

Proor. Let fe L*(®), A€ @ be such that f—aT,*f has no continuous
representative in L*(®) for any complex a. Let J; be the closed subspace
of L*(®) spanned by f and

I =gy |geLX®),zc L(®)}.

Suppose that T;* fe ;.

Then there exist g, I and a, complex, n=1,2,..., such that
lim(g, +a,f)=T,*. Suppose that {a,} were bounded. Let {b,} be a
subsequence of {a,} with limb,,=b. We would then have

lim (g, +b,,f) = limg,+bf = T*f,

with each ¢, € & Since [6, p. 856] each of the elements (g,x) spanning
& is continuous and convergence is uniform, we deduce that 7',*f—bf
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is continuous. Thus {a,} cannot be bounded. We may, without loss of
generality, assume that {a,} tends to infinity. Then

lim(a,-g,+f) = lima,"17,*f = 0,

and we deduce that f is continuous, contrary to our selection of f € L*(®).
Consequently we deduce that 7,*f ¢ J;.

By the Hahn-Banach theorem, there is a functional F € L**(®) such
that F(g)=0 for g € J; and F(T,*f)=1. It follows from [6, p. 855] that
F is in the right annihilator of L**(®). Since 7, **F(f)=F(T,*f)=1,
while F(f)=0, it also follows that 7,**F +cF for any complex c=0.
As T,**F =0 implies =0, we conclude 7",**F %cF for any complex c.

Let & ={cF | ¢ complex}. Since F is in the right annihilator of L**(®),
® is a left ideal of L**(®). Also from 7,**F +cF for any complex c,
we see that ® is not invariant under all 7', **, u e &.

We next address the question of whether a closed subspace of L**(®),
invariant under 7',**, 1 € &, is a left or right ideal. The answer is clearly
negative if & is not compact, for zL(®) is clearly invariant under 7’,**
for each 1€ & and is not an ideal by Theorem 2.4. The answer is also
negative if & is compact. It is convenient to prove an intermediate
result with regard to translation invariance in M (®).

THEOREM 4.5. If & s not discrete, there exists a closed subspace of
M(®) which s invariant under translation and which is not an ideal in

M(B).

Proor. Let § denote the closed subspace of M(() generated by the
point masses. Clearly & is invariant under translation. Suppose that J
is an ideal in M(®). Let g denote the natural embedding of L(®) into
M(@). It follows [3, p. 54] that there is a continuous projection p of
norm one of M(®) onto SL(®) such that for each u e M(®),

llall = Nl + llw — Pl -

Furthermore, the kernel of p is the set of measures on & singular with
respect to Haar measure. In particular, §<p-1(0). Since BL(®) is an
ideal in M(®), it follows that for each x € L(®) and p € 3,

prrue I FL(G) < p~(0) n L(G) .

Since p is a projection onto SL(®) it follows that Saxxu=p(Sr*u)=0.
As the latter relation holds for each point mass u, we deduce that fx=0
and x =0 which contradicts the arbitrary nature of x € L(®). Therefore
is not an ideal in M(®).
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THEOREM 4.6. There exists a closed subspace of L**(®) which is in-
variant under T,** for all 1 € & and which is neither a left nor a right ideal.

Proor. In view of the comments made prior to Theorem 4.5, we may
suppose that & is compact and since @ is infinite we may suppose & is
not discrete. If € denotes the subspace of L*(®) consisting of the con-
tinuous functions on @, then @! is an ideal of L**() and L**(®)/C*
is isomorphic [6, p. 859] as an algebra to M(®). Consequently there
exists an algebra homomorphism, g, of L**(®) onto M(®) which is
definable in a natural way and which carries the embedding of L(®)
in L**(®) onto the embedding of L(®) in M (). Let & be the subspace
of M(®) that is used in the proof of Theorem 4.5. Then ¢-1& is a closed
subspace of L**(®) which is neither a left nor a right ideal. Further-
more the invariance of § under translation implies the invariance of
o1& under T,** for all 1€ . Consequently o1 is a subspace of the
required type.

A slightly more analogous structure is obtained for L(®) and L**(®)
if the translation operator 7' on L(®) is replaced by a related operator.

For K a compact neighborhood in &, let 7'y be defined on L(®) by

Txaly) = [aly+1) g dt,  zeL(®), ye®,
where @ is the characteristic function of the set K. Since
[l dy = [| [atr+tpx 0t | dy
= [[ 1oty + 01 dypprdt = m(E|e
it follows that 7'y is a bounded operator on L(®).
LevMaA 4.7. For z,y € L(®), T g(xy)=aTgy.
Proo¥. This follows by direct computation.

THEOREM 4.8. A closed subspace ¥ of L(®) is an ideal if and only if
it is invariant under Ty for each compact neighborhood K.

Proor. If & is a closed ideal, the use of an approximate identity
together with Lemma 4.7 yields the invariance of J under 7.

Suppose that I is a closed subspace of L(®) invariant under each T'.
Let # € § and let y, be the characteristic function of a compact neigh-
borhood K. Then for y € §,

wyx(y) = [y —1) y(®) dt = [aly+0) y_x(® dt = T_ga(y) .
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Thus xy, =T_xx € I. Since the linear combinations of the yz are dense
in L(®) and is closed, it is immediate that & is an ideal.

In view of Lemma 4.1 the following result can be established in an
identical fashion to that of Theorem 4.2.

THEOREM 4.9. If J is a right ideal in L**(®) or if  is a left ideal in
L**(§) containing the right annihilator of L**(®), then § is invariant
under T ** for each compact neighborhood K in &.

The positive result relating to invariance under 7', ** is the following.

THEOREM 4.10. If & is a w*-closed subspace of L**(®) tnvariant under
all T**, then J is a left ideal.

Proor. Let X7 be the linear space annihilator in L*(®) of §. Let
f€ S and let xx be the characteristic function of a compact neighbor-
hood K. Then the value of (f,xx) at v € @ is given [6, p 856] by

Foord) = [flr+agt)dt = T (),
and so {(f,xxy=T_g*f. Thus for any Fe g,
F(f.2x)) = F(T-g*f) = T_**F(f) = 0,

and consequently (f,z.)> € J" for each compact neighborhood K. Since
the linear combinations of such x; are dense in L(®), (f,z) € X" for all
z € L(®). This, however, is sufficient to show that & is a left ideal.
(See [4, p. 1226] where the argument is given for two-sided ideals.)

5. Linear space annihilators.

The object in this section is to obtain some information concerning
the maximal left ideals in L**(®) by considering their linear space
annihilators. We use the notation introduced in Section 2. The symbols £
will as usual denote a right identity in L**(®).

Lemma 5.1. Let I be a maximal left ideal in L**(®) such that
M > AL(G), M>aMy, for some y € &, but M+EM,. Let j be an identity
modulo My,. Then for any ¢ € M+

(i) p=<{g, ),
(il) j 28 an tdentity modulo M, and
(iii) 7j—E € MnI,.

Proor. For any F € L**(®) and z € L(®),
(p,mj)7xF) —p(nzF) = ¢(n(jo—2)F) = ¢(Fr(jz—2)) = 0,
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since L(®) is central, j is an identity modulo M, and #M,, =M. Thus
¢ —<{p,7j) € (AL(®)- L**(@))* .

Now, nL(®)-L**(§) is a two-sided ideal not contained in 9N, since
E € L**(®) and nL(®)EIM. Thus

L**(®) = nl(®)  L**(&)+M .

Since
¢o—{(p.)) € (aL(G)-L**(@))* and ¢—{p,m)e M,

it follows that ¢ ={p,mj).

Let J={njF —F | F € L**(®)}. Let ¢+0 be in ML. Then for any
I e L**(@),

plF —F) = Lpn)(F)—g(F) = 0,

by the above. Thus ¢ € §* and therefore Mt <= L, which implies F<IN.
Thus 7j is an identity modulo 9. Note that by the w*-closure of M,
one also has J<M,. The last statement then follows by letting F=E.

TarorEM 5.2. Let I be a maximal left ideal in L**(®) such that
MPal(®), M>aM,., for some y e &. Then for any e M, e L(G)

and F e L**(®),
praF) = y(@)p(F) .

Proor. Let x € L(®). Then if j is an identity modulo I, 7(j)=1
and nx—j(x)nj € M,. Since MnzaL(®)=M,nxl(G), we see that
7z —P(x)mj € M. Thus for all G € L**(@),

(nx—p(@)mj)G = A7x—j(x)mj) e M .
Consequently

p(na@) = p(F(2)mjG) = p@)Np, )G = 7(@)p(F)

which is the desired relation.
Let 7, denote the natural embedding of L*(®) into L***(®).

TaEOREM 5.3. Let M be a maximal left ideal in L**((®). Suppose that
there exist %0, and ¢ € MLnnw, L¥(G). Then M=M, for some ye &.

Proor. Say g=m,f, 0%fec L*(®). If M>aL(@) then 0=gp(azr)=f(x)
for all z e L(®) and so f=0. Consequently M>nL(®). As a conse-
quence of Theorem 2.3, there exists y € (& such that M >aMy,. Thus for
all xeM,,, 0=g(x)=f(x), but f(x)*0 for all e L(®). It follows
that f=cj for some complex c¢+0. Hence for all FeM, 0=¢(F)=
F(cp). Consequently M <M, and thus M=M,.
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CoroLLARY 5.4. All maximal left ideals of L**(®) other than the
M, ye @, are w*-dense.

Proo¥. The w*-closure of I is M™ and is [5, Lemma 4.7] a left
ideal containing M. Consequently M is w*-dense unless MW =M™. In
this case if f+0, fe M, then =, f e Minm,L*(G), and thus M=M\,
follows from Theorem 5.3.

It should be noted that the use of Corollary 5.4 affords an opportunity
to greatly simplify the arguments in [5] relating to right algebraic
annihilators of maximal left ideals.
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