REMOVABLE SINGULARITIES OF CONTINUOUS HARMONIC FUNCTIONS IN R^m

LENNART CARLESON

1.

Let E be a compact set of m-dimensional Euclidean space R^m . If h(x) is harmonic and bounded in a neighbourhood of E, and if the (m-2)-capacity of E vanishes then u(x) can be extended as a harmonic function to E. We say that E is removable for the class of bounded harmonic functions. On the other hand, if E is a smooth closed surface, that is a (m-1)-dimensional set, there exist harmonic functions with arbitrarily high smoothness, which cannot be extended to E. Our aim here is to prove a theorem which connects the above mentioned two results.

Let D be a domain bounded by a smooth outer surface Γ and a compact set E and denote by H_{α} the class of harmonic functions in D which satisfy a Hölder condition of order α , $0 < \alpha < 1$, in D:

$$(1.1) |u(x)-u(x')| \leq \operatorname{Const.} |x-x'|^{\alpha}, x, x' \in D.$$

The set E is said to have β -dimensional measure zero, $0 < \beta < m$, if E can be covered by open spheres of radii r_{ν} such that $\sum r_{\nu}^{\beta}$ is arbitrarily small. The following theorem holds.

Theorem. E is removable for the class H_{α} if and only if E has $(m-2+\alpha)$ -dimensional measure zero.

2.

We first assume the $(m-2+\alpha)$ -dimensional measure does not vanish. It is then well-known (see Frostman [1]) that there is a distribution μ of unit mass on E such that

$$\mu(S) \leq C r^{m-2+\alpha}$$

for all spheres S where r denotes the radius of S. We shall prove that

$$u(x) = \int_{\mathbb{R}} \frac{d\mu(y)}{|x-y|^{m-2}}$$

Received April 19, 1963.

satisfies (1.1). We define $\mu(r,x) = \mu(\{y \mid |y-x| < r\})$ and find for $x, x' \in D$, $|x-x'| = \delta$,

$$\begin{split} u(x) - u(x') &= \int\limits_0^\infty r^{2-m} \; d\mu(r,x) - \int\limits_0^\infty r^{2-m} \; d\mu(r,x') \\ &= (m-2) \int\limits_0^\infty \left(\mu(r,x) - \mu(r,x') \right) r^{1-m} dr \\ &\leq C_1 \int\limits_0^{2\delta} r^{m-2+\alpha} \; r^{1-m} \; dr \; + \; (m-2) \int\limits_{2\delta}^\infty \left(\mu(r,x) - \mu(r-\delta,x) \right) r^{1-m} \; dr \\ &< C_2 \delta^\alpha \; + \; (m-2) \int\limits_\delta^\infty \left(\mu(r,x) (r^{1-m} - (r+\delta)^{1-m}) \; dr \right. \\ &< C_2 \delta^\alpha \; + \; C_3 \int\limits_\delta^\infty \frac{r^{m-2+\alpha} \delta}{r^m} \; dr \; = \; C_4 \delta^\alpha \; . \end{split}$$

Since x and x' can be interchanged we have proved (1.1).

3.

We now assume that the $(m-2+\alpha)$ -dimensional measure of E vanishes and that u(x) satisfies (1.1). Let $u_1(x)$ be the harmonic function inside Γ which is equal to u(x) on Γ . If we define $v(x) = u(x) - u_1(x)$ then v(x) = 0 on Γ and our assertion is that $v(x) \equiv 0$.

We can cover E by a finite number of closed spheres S_{ν} ,

$$S_{\nu}: |x-x_{\nu}| \leq r_{\nu}$$

such that

$$\sum r_{\nu}^{m-2+\alpha} \leq \varepsilon$$
.

We assume that ε has its smallest value when the number of spheres is $\le n$. In the proof we shall also use the expanded spheres

$$S_{\nu}(t): |x-x_{\nu}| \leq r_{\nu}t, \qquad 1 \leq t \leq 3$$
.

For t>1 every point of E is strictly inside $\bigcup S_{\nu}(t)=\sum(t)$. The part of $\partial \sum(t)$ which is boundary of the unbounded component of the complement of $\sum(t)$ is denoted $\sigma(t)=\bigcup \sigma_{\nu}(t)$, where $\sigma_{\nu}(t)$ is $\sigma(t)\cap\partial S_{\nu}(t)$. Clearly $\sigma(t)$ does not meet E.

By Green's formula we have, t > 1,

(3.1)
$$\psi(t) = \int_{D-\Sigma(t)} |\operatorname{grad} v|^2 dx = \int_{\sigma(t)} v \frac{\partial v}{\partial n} d\sigma = \frac{1}{2} \int_{\sigma(t)} \frac{\partial v^2}{\partial n} d\sigma .$$

If $v \equiv \text{constant}$, $\psi(t)$ is $\geq \text{const.} > 0$ in $1 < t \leq 3$, if ε is small enough. We rewrite (3.1) introducing the unit sphere U. Points on U are denoted ξ and its area element dA_{ξ} . The part of U for which $x_{\nu} + tr_{\nu}\xi \in \sigma_{\nu}(t)$ is called $a_{\nu}(t)$. Integrating (3.1) and using these notations we find

(3.2)
$$-2 \int_{2}^{3} \psi(t) t^{1-m} dt = \sum_{\nu=1}^{n} r_{\nu}^{m-2} \int_{2}^{3} dt \int_{a_{\nu}(t)} \frac{\partial}{\partial t} v^{2}(x_{\nu} + r_{\nu} t \xi) dA_{\xi}.$$

In each term on the right of (3.2) we shall now interchange the order of integration. We must then study for ξ fixed for which values of t a certain ray $x_v + r_v t \xi$ belongs to $\sigma_v(t)$. We distinguish four cases, the first two of which are trivial.

- (a) $x_v + r_v t \xi \notin \sigma_v(t)$, $2 \le t \le 3$. For such a ξ we get 0 as contribution to (3.2) from the v^{th} term.
- (b) $x_{\nu} + r_{\nu}t\xi \in \sigma_{\nu}(t)$, $2 \le t \le 3$. We can evaluate the t-integration and get the contribution $v^2(x_1 + 3r_2\xi) - v^2(x_1 + 2r_2\xi) = O(r_2^{\alpha})$.
- (c) The remaining possibility is: $x_{\nu} + r_{\nu}t\xi \in \sigma_{\nu}(t)$, $\tau_{i} \leq t \leq \tau_{i}'$, i = 1 $0, 1, 2, \ldots, p, \ 2 \le \tau_0 < \tau_0' < \tau_1 < \ldots < \tau_n' \le 3$. For every τ_i' , i < p, there is an index $\mu \neq \nu$ so that $x_{\nu} + r_{\nu} \tau_{i}' \xi \in \sigma_{\mu}(\tau_{i}')$. We here have two essentially different cases.
- (c1) $r_{\mu} \ge r_{\nu}$. If we consider the two-dimensional plane containing x_{ν} , x_{μ} and $x = x_v + r_v \tau_i' \xi$, we see that $x' = x_v + r_v t \xi$, $t > \tau_i'$, must be interior to $S_{\mu}(t)$ and hence $x_{\nu} + r_{\nu}t\xi \in \sigma_{\nu}(t)$, $t > \tau_{i}'$. (c1) can thus occur only if i = p.
- (c2) We now assume i < p and $r_{\mu} \le r_{\nu}$. We first observe that $x_{\nu} + r_{\nu}t\xi$, $2 \le t \le 3$, belongs to a certain sphere $S_{\mu}(t)$ in a t-interval and that its length is $\leq 6r_{\mu}r_{\nu}^{-1}$. We now consider an interval (τ_i', τ_{i+1}) . The corresponding spheres are $S_{\mu}(t)$, $\mu = \mu_1, \dots, \mu_k$. We can write, if $\varphi(t) = v^2(x_v + r_v t \xi)$,

(3.3)
$$\varphi(\tau_{i+1}) - \varphi(\tau_i') = \sum_{j=1}^k (\varphi(s_{j+1}) - \varphi(s_j)),$$

where each pair s_j , s_{j+1} belongs to one $S_{\mu l}(3)$. Hence

$$|\varphi(\tau_{i+1}) - \varphi(\tau_{i}')| \leq \sum_{j=1}^{k} C r_{\nu}^{\alpha} |s_{j+1} - s_{j}|^{\alpha} \leq C 6^{\alpha} \sum_{j=1}^{k} r_{\mu_{j}}^{\alpha}.$$

We now evaluate the t-integral of the v^{th} term in (3.2) and find

$$\sum_{i=0}^{p} \left(\varphi(\tau_i') - \varphi(\tau_i) \right) \, .$$

If we add the relations (3.3) for i = 0, 1, ..., p-1, and use (3.4) we get the estimate

(3.5)
$$O(r_{\nu}^{\alpha}) + O(\sum_{\nu}^{1} r_{\mu}^{\alpha})$$
,

where Σ^1 indicates that the summation is extended over those μ for which $x_{\nu} + r_{\nu}t\xi$, $t \leq 3$, meets $S_{\mu}(3)$.

We consider the estimate (3.5) for different points $\xi \in U$. The area of U for which $x_{\nu} + r_{\nu}t\xi \in S_{\mu}(3)$ for some t is $O(r_{\mu}^{m-1}r_{\nu}^{1-m})$. The total ν^{th} term in (3.2) is thus

(3.6)
$$O(r_{\nu}^{m-2+\alpha}) + O(r_{\nu}^{-1} \sum_{n=1}^{\infty} r_{n}^{m-1+\alpha}),$$

where Σ^2 indicates summation over those μ for which $S_{\mu}(3) \cap S_{\nu}(3) \neq \emptyset$ and $r_{\mu} \leq r_{\nu}$. The last relations imply $S_{\mu}(1) \subset S_{\nu}(7)$. Since the covering by the spheres $S_{\nu} = S_{\nu}(1)$ was assumed to be minimal we have

$$\sum^{2} r_{\mu}^{m-2+\alpha} \leq 7^{m-2+\alpha} r_{\nu}^{m-2+\alpha}.$$

If we use this and $r_{\mu} \le r_{\nu}$ in (3.6), we find that the ν^{th} term in (3.2) is $O(r_{\nu}^{m-2+\alpha})$ and so

$$\int_{2}^{3} \psi(t) t^{1-m} dt \leq \operatorname{Const} \sum_{1}^{n} r_{r}^{m-2+\alpha} \leq \operatorname{Const} \cdot \varepsilon.$$

Hence $\psi(t)$ cannot be uniformly positive and so $v(x) \equiv \text{constant}$, and then $v \equiv 0$, as was to be proved.

REFERENCE

 O. Frostman, Potentiel d'équilibre et capacité des ensembles, Thèse, Medd. Lunds Univ. Mat. Sem. 3 (1935), Lund.

UNIVERSITY OF UPPSALA, SWEDEN