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REMOVABLE SINGULARITIES
OF CONTINUOUS HARMONIC FUNCTIONS IN Rm»

LENNART CARLESON

Let E be a compact set of m-dimensional Euclidean space R™. If h(x)
is harmonic and bounded in a neighbourhood of E, and if the (m — 2)-
capacity of £ vanishes then u(x) can be extended as a harmonic function
to E. We say that £ is removable for the class of bounded harmonic
functions. On the other hand, if ¥ is a smooth closed surface, that is a
(m—1)-dimensional set, there exist harmonic functions with arbitrarily
high smoothness, which cannot be extended to E. Our aim here is to
prove a theorem which connects the above mentioned two results.

Let D be a domain bounded by a smooth outer surface I" and a compact
set £ and denote by H, the class of harmonic functions in D which
satisfy a Holder condition of order «, 0<x <1, in D:

(1.1) |u(z) —u(z')] < Const.|z—2z'|% z,z'eD.

The set E is said to have g-dimensional measure zero, 0 <8 <m, if £ can
be covered by open spheres of radii r, such that 3r,? is arbitrarily small.
The following theorem holds.

THEOREM. K is removable for the class H, if and only if E has
(m — 2 + &)-dimensional measure zero.

2.

We first assume the (m — 2 + «)-dimensional measure does not vanish.
It is then well-known (see Frostman [1]) that there is a distribution u
of unit mass on £ such that

,u(S) < Cym—2+a
for all spheres S where r denotes the radius of §. We shall prove that
du(y)

— y|m-2
PAEA’]

u(x) =
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satisfies (1.1). We define u(r,x)=u({y | |y — x| <r}) and find for x, 2’ € D,
lx—2'| =4,

(e o] o0

u(x) —u(x’) = fﬂ‘m du(r,x)— fr2—m du(r,x’)

0 0

= (m—2) f (ulr, ) — p(r,a’))rt-mdr
0

s

[

ym—2+a pl-m g 4 (m—2) f (w(r, ) — p(r — 6,2))rt-™ dr
2

IIA

G,

© —

< Cgt* + (m=2) [ (r, @)1=~ (r-+ O)1-m) dr

oo}

< o + c;f

[

m—2+a 6

—dr = C,6*.

rm

Since z and ' can be interchanged we have proved (1.1).

3.

We now assume that the (m — 2 + «)-dimensional measure of £ vanishes
and that u(x) satisfies (1.1). Let u,(x) be the harmonic function inside I
which is equal to u(x) on I'. If we define v(x)=wu(x)—u,(x) then v(x)=0
on I" and our assertion is that v(x)=0.

We can cover E by a finite number of closed spheres §,,

S,: lg—z,| =7,
such that
z ,,.”m—2+o¢ <e.

We assume that ¢ has its smallest value when the number of spheres
is <n. In the proof we shall also use the expanded spheres

S,t): |x—=,| £ 1, 15¢<3.

For t>1 every point of E is strictly inside US,(t)=3(t). The part of
23 (t) which is boundary of the unbounded component of the complement
of 3(t) is denoted o(t)=Uo,(t), where o,(t) is o(t)noS,(t). Clearly of(t)
does not meet E.

By Green’s formula we have, > 1,
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ov2

(3.1) p(t) = f lgradv|2 dz = fv——do‘ = %f———dc

D—2(t) o(t) o(®)

If v=constant, y(t) is =const.>0 in 1<t<3, if ¢ is small enough.
We rewrite (3.1) introducing the unit sphere U. Points on U are denoted
& and its area element dA,. The part of U for which z,+ &€ 0,(t)
is called a,(t). Integrating (3.1) and using these notations we find

3

(3.2) —2fw()t1 mdp = zrm 2J.dt fﬁvz(x +rE) dA, .

2 2 a®

In each term on the right of (3.2) we shall now interchange the order
of integration. We must then study for & fixed for which values of ¢ a
certain ray x,+r,t£ belongs to o,(¢). We distinguish four cases, the first
two of which are trivial.

(a) x,+rtE o), 2<t<3. For such a & we get 0 as contribution to
(3.2) from the »t® term.

(b) x,+rtéeo,(t), 2=t<3. We can evaluate the t-integration and get
the contribution o2, + 3.6 — vx, + 2.8) = O(r") .

(c) The remaining possibility is: «,+rtfeo,(t), 7,5t<7/, i=
0,1,2,...,p, 25 7y<7y <7;<...<7, 3. For every 7;/, ¢ <p, there is
an index u+v so that x,+7,7,/6 € 5,(7;'). We here have two essentially
different cases.

(cl) r,zr,. If we consider the two-dimensional plane containing z,, @,
and z=x,+7r,7,E, we see that z'=x,+rt&, t>7,’, must be interior to
8,(t) and hence x,+1,t& & 0,(t), t>1;'. (cl) can thus occur only if i=7p.

(c2) We now assume ¢ <p and r,=<7,. We first observe that z,+r,&,
2=<t<3, belongs to a certain sphere §,(f) in a ¢-interval and that its
length is < 6r,,~1. We now consider an interval (7;’,7;.,). The corre-
sponding spheres are S ,(t), u = uy, . . ., ;. We can write, if ¢(t) = v*(x, +7,t£),

ke

(3.3) (p(7i+1)_(p(7il) = z (‘P( ;+1 ®(s; ))
J=1

where each pair s;, s;,; belongs to one S, (3). Hence

k %
(3.4) lp(Ti) — ()| = .ZIC'%”ISM—S,-I“ = 0o _217;‘1;-
j= j=

We now evaluate the ¢-integral of the »th term in (3.2) and find

% (97— p(r) -
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If we add the relations (3.3) for =0,1,...,p—1, and use (3.4) we get
the estimate

(3.5) 0, +0Z'r,”),
where 3! indicates that the summation is extended over those u for
which z,+rt&, t £3, meets SM(3).

We consider the estimate (3.5) for different points & € U. The area of U

for which z,+rt& € 8,(3) for some ¢ is O(r,™'r,'-™). The total »tt term
in (3.2) is thus

(3.6) O(r,m=2+%) + O(r,"t 32y m-1+2) |

where 3? indicates summation over those u for which §8,(3)nS,(3)+9
and r,<r,. The last relations imply S,(1)=8,(7). Since the covering by
the spheres S,=8,(1) was assumed to be minimal we have

erym_ZH‘ § 7m—2+zxrvm—2+a .
If we use this and r,<7, in (3.6), we find that the »® term in (3.2) is
O(r,”-2+*) and so

3
n

f p(t)et-m dt < Const Y r,m=2+* < Const-e.
1

2

Hence y(t) cannot be uniformly positive and so v(x)=constant, and
then v=0, as was to be proved.
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