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REMARKS ON THE EQUIVALENCE PRINCIPLE
IN FLUCTUATION THEORY

CHARLES HOBBY! and RONALD PYKE?

Let c=(c;,¢y, .. .,c,) be an arbitrary sequence of real numbers, and
let #, be the set of all »! sequences that can be formed from ¢ by per-
mutations. If x=(z,...,2,) is in £, let s4(x)=0, and s;(x)=x; +x,+

e..+x; for i=1,2,...,n. Set L,(x) equal to the first subscript j for
which s;(x) =max {s,(x); 0=i=<n}, and let N, (x) denote the number of
partial sums s;(x) for which s,(x) > 0. Define v,(k; ¢), w,(k; ¢) to be the
number of elements x € &, for which N, (x)=k, L,(x)=Fk, respectively.

A basic theorem in fluctuation theory states that v,(k; ¢)=w,(k; c).
This result (called the Equivalence Principle by Feller [4]) was first
proved by Sparre Andersen [1] in 1953. A simpler proof was given by
Feller [4] in 1959. Both authors used induction arguments. Although
these arguments, particularly that of [4], are simple, they do not provide
any hint as to the explicit natural one-to-one correspondence which
exists between the set of paths for which L, is equal to k and the set of
paths for which N, is equal to k. A direct proof of this Equivalence
Principle is given below by describing a natural one-to-one correspond-
ence. [The authors appreciate the referee’s pointing out that such a
proof is attributed in [7] to Ian Richards. A similar method of proof
is used by Sparre Andersen [8], to obtain a generalization of Theorem
A, quoted below.] It is the purpose of this paper to show how this cor-
respondence can be used to obtain a simple proof of a recent generaliza-
tion of the Equivalence Principle due to Brandt [3].

TaEOREM A (Sparre Andersen). For every sequence ¢=(cy,Cs, .. .,Cp),
(1) v(k; ¢) = w,(k;c), k=01,...,n.

Proor. This theorem will be proved by obtaining a one-to-one trans-
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formation, n=m,, of &, onto itself such that N,(x)=L,(n(x)) for all
ze P, Choose xe?, If N, (x)=0, set n(x)=x. Then clearly L, (x)=
0=N,(x). Suppose N, (x)=k>0. Let i;<is<... <9, and j;<jp<...<
Jn—i denote, respectively, the subscripts of the positive and of the nega-
tive partial sums of z. That is, s; >0 for m=1,2,...,k, while s; <0
for m=1,2,...,n—k. Then, define

w(x) = (%;,2; Xy T T

k—17 * ° (ARt St had P ’xfn—k) :

It turns out that this definition insures that =z is one-to-one onto, and
satisfies NV n(x):Ln(n(x)). In order to prove this, we shall define the
“natural” transformation, y say, from £, into itself, for which L, (z)=
N n(zp(x)). From its definition it will be clear that yp—! exists and is equal
to &, thereby proving that = is one-to-one onto. The transformations s
and y are illustrated in Fig. 1.

Let x € Z, be such that L, (x)=Fk>0. Define ascending ladder points
as the indices k=my>m;> ... >m;,=0 for which s, =s; for all ¢ <m;.
Also define descending ladder points as those indices k=py,<py; < ...
for which 8,; 2 8; when ¢ = u;. From these sets of ascending and descend-
ing ladder points choose subsequences k=m; =m; > ...>m; and k=
Bio < Bjy < Mjy < -+ - <fhj; defined recursively as follows: 7, is the largest
integer v= 0 for which s, 2s,,j; is the largest integer v2 0 for which

84> Smis1 ¥ 18 the largest integer v >4, | for which s, =s,, 4, while
J. is the largest integer v>j, ; for which s, >sm; ., x=2,3,.... Set
r r L .
m,=m;, W,= W, Y = (xm,a_l,xm,a_l_l, .. .,xm,aﬂ)
and
& —
25 = (T 110 @y ghr - B) for «=1,2,....

Let it be understood that y! is an empty sequence if ¢, =0. Define the
transformation y:2,—~ %, by y(x)=x when L,(x)=0 and y(xr)=
(y%,21,9%,2%,...) and otherwise, where y(x) is to be considered as an
n-tuple. It is a routine matter to check that s;(y(x))> 0 if and only if
the j-th element of y(x) is one of the elements x,,x,, . . .,x,, that is, one
of the elements of an ascending y* sequence. Consequently, N, (y(x))=
k=L,(x). Furthermore, it is clear that n(y(x)) =« for all # € 2, thereby
implying that & and y are one-to-one transformations of &, onto itself.
This completes the proof of the theorem.

In a recent paper, Brandt [3] derives a generalization of the Equiv-
alence Principle. He defines N, ;(x) to be the number of partial sums
greater than 6, and L, ,(x) to be the index of the first partial sum greater
than or equal to makogign[si(x)~6] if 620, and the index of the last
partial sum greater than max,;.,[s;(x)+4] if 6<0. Define v,(k; c,9),
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Fig. 1.

wy(k; ¢,0) to be the number of sequences x € &, for which N, ,(x)=Fk,
L, s(x)=k, respectively. In [3], Brandt proves the following:

TareoreM B (Brandt). For every sequence ¢=(c,,
(2)

..,¢,) and all real &
v,(k; ¢,8) = wy(k; ¢,0),

k=0,1,...,n.
Proor. For 6=0, (2) is exactly (1). It therefore suffices to consider
0+ 0. However, this case may be derived as a direct application of the
mappings = and y defined above in the proof of Theorem A. This is

seen as follows. Assume first that 6>0. For each z e &, for which
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N, s(x)=k, form the new (n+1)-tuple 2'=(~4,2;,%,,...,2,). Observe
that NV, ,,(z")=k. By applying the transformation =, considered as being
defined for (n+1)-tuples, to 2', one obtains a sequence n(z')=
(by,bs, - - -, byyq) for which L, (w(x'))=k. Observe that b,,,=—4, and
that by deleting this element, the modified sequence

b = (bl’ .. "bk’bk+2’ .o .,bn+1) € .@c
and L, s(b)=k. On the other hand, if
T = (X, %y ...,2L,) EP,

is a sequence for which L, s(x)=Fk, form the new (n+ 1)-tuple

' = (X, %y -« s Tpy — O, Lpiqy - - - L) »
for which L, ,(x"')=%. Now apply v, considered as being defined for
(n+1)-tuples, to z’’ to obtain a sequence y(z')=(d,d,,...,d,,,) for
which N, ,(y(2"))=k. By the definition of y, it may be checked that
d,= —¢ and that the modified sequence

d = (dpdy,...,dy ) € P,

satisfies N, ;(d)=4k. This proves (2) for 6>0. Now assume that §<O0.
If xeZ, is such that N, ;(x)=Fk, then observe that for this case,
N,.(x')=k+1. Hence, with 2’ and b as before, it follows that
Ly y(n(@'))=k+1 and L, 4(b)=k. On the other hand, if z € &, is such
that L, ,(x)=Fk, then L, ,(x"')=k+1 and Nnﬂ(zp(x")) =k+ 1. Thus with
d as before, N, ,(d)=Fk. Consequently, in both cases, the mappings
described above, which take = into b and z into d respectively, suffice
to prove (2).

RemaRks. (i) It is possible to obtain results for the location of the
mantmum partial sum, analogous to those obtained above for L,. For if

X = (X,Zg,...,%,)EP,

is such that L, (x)=F, then for y=(x,,%,_4, .. .,%;), the index of the last
minimum partial sum among {s,(y); 0<i<n}, is n—k.

(ii) A further generalization of the Equivalence Principle is possible
as follows. In [5], we studied the joint behavior of the two quantities
N, (z) and M, (x)= DN, ((Xp%py;, - - .,%;)). It is natural to ask whether or
not there exists a quantity K, (x) such that a one-to-one correspondence
exists between paths for which N,=k and M, =4, and paths for which



REMARKS ON THE EQUIVALENCE PRINCIPLE IN FLUCTUATION THEORY 23

L,=k and K,=j. That this is possible follows directly from the proof
of Theorem A, as we indicate now. Let z € &, be such that L, (x)=k.
Obtain the ladder points

1 ’ ’ ’ 14 ’ ’
m, <m' . <...<msmy =k =p'<p'<... <y,

and the corresponding subsequences yl,42, ...,y" and 21,22 ...,2% as
described in the proof of Theorem A. For 620, let K (x), 15i<p,
be the number of partial sums of the path z® which do not exceed
Sy 1(T) =8y (x) — 0. Set

K, @) = 3 K9,(x) .

For 60, let Kﬁ) s), 1 =i =r, be the number of partial sums of the path
y® which do not exceed s,,, (x)—s,, (x)—9, and set

K, o2) = 3 EQy@) + n—k.

In either case, let K, denote K, , for the special case d=s,(x). One may
then check that the mappings & and y of Theorem A exhibit the desired
equivalence between (N,,M,) and (L,,K,). In fact, the above descrip-
tion leads to an equivalence between (N,,n—N, ;) and (L,, K, ;).

For a sequence x=(cy,Cy, - . .,¢,), let €, be the set of all » sequences
formed from c¢ by cyclic permutations. Let v,*(k; ¢), w,*(k; ¢) denote,
respectively, the number of elements x € €, for which N, (x)=k, L,(x)=k.
The following specialization of the Equivalence Principle to the case of
cyclic permutations is implicit in the proof of Spitzer’s Theorem 2.1, [6].

Lemma. If ¢ is such that for all x € €,, s;(x)+0, t=1,2,...,n—1, and
() =0, then v, *(k; c)=w,*(k; c)=1 for k=0,1,...,n—1.

An interesting application of this lemma is the following. For a path
x=(2y,...,%,) define L, *(z) to be the smallest index j for which

MaXg;cp, MAX[8,(T),8,(x) —8,(2)]

occurs at 1=j. For a sequence c=(cy,C,, . . .,C,), let £, denote the set
of all n inverted cyclic permutations, namely, those permutations which
take (z;,z,,...,x,) into (s, ...,%,, —%;). One then obtains the fol-
lowing

TaEOREM. If ¢ is such that for all xe F, s)(x)*s;(x), 05i<j=<n,
then for each r=0,1,...,m—1, there exists exactly one x € S, satisfying
L, *x)=r.

Proor. As was done in Corollary 2.3 of [5], associate with any path z,
the new path z*=(x,%,,...,Z,, —%;, =%y, ..., —2,). Then s,,(c*)=0
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and c* satisfies the hypotheses of Lemma 1. Consequently, each path
y € €, yields a distinet value for L,,(y). However, it is clear that

max max[s;(x),s,(x)—s,(x)] = max s;(x*) .

0sisgn 0=si<2n
Therefore, since s,(x)—s;(x) =8,.;(x*), it follows that if L,,(x*)=4, then
L,*¥(x)=j if j<n and L, *(@x)=j—n if j2n. The proof is then complete
since among the first » cyclic permutations of ¢*, L,, cannot take on
both of the values ¢ and n+1% for any 3.

REFERENCES

1. E. Sparre Andersen, On sums of symmetrically dependent random variables, Skand.
Aktuarietidskr. 36 (1953), 123-138.

2. E. Sparre Andersen, On the fluctuation of sums of random wvariables, Math. Scand. 1
(1953), 263-285.

3. Achi Brandt, 4 generalization of a combinatorial theorem of Sparre Andersen about sums
of random variables, Math. Scand. 9 (1961), 352-358.

4. William Feller, On combinatorial methods in fluctuation theory, The Harald Cramér
Volume, Ed. Ulf Grenander, New York, 1959, 75-91.

5. Charles Hobby and Ronald Pyke, Combinatorial results in fluctuation theory, to appear
in Ann. Math. Statist. 34 (1963).

6. Frank Spitzer, A combinatorial lemma and its application to probability theory, Trans.
Amer. Math. Soc. 82 (1956), 323-339.

7. Glen Baxter, Notes for a seminar in stochastic processes, 1957.

8. E. Sparre Andersen, The equivalence principle in the theory of fluctuations of sums of
random wvariables, Colloquium on Combinatorial Methods in Probability Theory,
Aarhus, 1962, 13-16.

UNIVERSITY OF WASHINGTON, SEATTLE 5, U.8.A.



