REMARKS ON THE EQUIVALENCE PRINCIPLE IN FLUCTUATION THEORY

CHARLES HOBBY¹ and RONALD PYKE²

Let $c=(c_1,c_2,\ldots,c_n)$ be an arbitrary sequence of real numbers, and let \mathscr{P}_c be the set of all n! sequences that can be formed from c by permutations. If $x=(x_1,\ldots,x_n)$ is in \mathscr{P}_c , let $s_0(x)=0$, and $s_i(x)=x_1+x_2+\ldots+x_i$ for $i=1,2,\ldots,n$. Set $L_n(x)$ equal to the first subscript j for which $s_j(x)=\max\{s_i(x);\ 0\leq i\leq n\}$, and let $N_n(x)$ denote the number of partial sums $s_i(x)$ for which $s_i(x)>0$. Define $v_n(k;c)$, $w_n(k;c)$ to be the number of elements $x\in\mathscr{P}_c$ for which $N_n(x)=k$, $L_n(x)=k$, respectively.

A basic theorem in fluctuation theory states that $v_n(k;c) = w_n(k;c)$. This result (called the Equivalence Principle by Feller [4]) was first proved by Sparre Andersen [1] in 1953. A simpler proof was given by Feller [4] in 1959. Both authors used induction arguments. Although these arguments, particularly that of [4], are simple, they do not provide any hint as to the explicit natural one-to-one correspondence which exists between the set of paths for which L_n is equal to k and the set of paths for which N_n is equal to k. A direct proof of this Equivalence Principle is given below by describing a natural one-to-one correspondence. [The authors appreciate the referee's pointing out that such a proof is attributed in [7] to Ian Richards. A similar method of proof is used by Sparre Andersen [8], to obtain a generalization of Theorem A, quoted below.] It is the purpose of this paper to show how this correspondence can be used to obtain a simple proof of a recent generalization of the Equivalence Principle due to Brandt [3].

Theorem A (Sparre Andersen). For every sequence $c = (c_1, c_2, \ldots, c_n)$, $(1) v_n(k; c) = w_n(k; c), k = 0, 1, \ldots, n.$

Proof. This theorem will be proved by obtaining a one-to-one trans-

Received July 11, 1962.

¹ This author's research was supported in part by a grant from the U.S. National Science Foundation.

² This author's research was supported in part by the U.S. Office of Naval Research.

formation, $\pi=\pi_n$, of \mathscr{P}_c onto itself such that $N_n(x)=L_n(\pi(x))$ for all $x\in\mathscr{P}_c$. Choose $x\in\mathscr{P}_c$. If $N_n(x)=0$, set $\pi(x)=x$. Then clearly $L_n(x)=0=N_n(x)$. Suppose $N_n(x)=k>0$. Let $i_1< i_2<\ldots< i_k$ and $j_1< j_2<\ldots< j_{n-k}$ denote, respectively, the subscripts of the positive and of the negative partial sums of x. That is, $s_{i_m}>0$ for $m=1,2,\ldots,k$, while $s_{j_m}\leq 0$ for $m=1,2,\ldots,n-k$. Then, define

$$\pi(x) = (x_{i_k}, x_{i_{k-1}}, \ldots, x_{i_1}, x_{j_1}, x_{j_2}, \ldots, x_{j_{n-k}}).$$

It turns out that this definition insures that π is one-to-one onto, and satisfies $N_n(x) = L_n(\pi(x))$. In order to prove this, we shall define the "natural" transformation, ψ say, from \mathscr{P}_c into itself, for which $L_n(x) = N_n(\psi(x))$. From its definition it will be clear that ψ^{-1} exists and is equal to π , thereby proving that π is one-to-one onto. The transformations π and ψ are illustrated in Fig. 1.

Let $x\in \mathscr{P}_c$ be such that $L_n(x)=k>0$. Define ascending ladder points as the indices $k=m_0>m_1>\ldots>m_h=0$ for which $s_{m_j}\geq s_i$ for all $i\leq m_j$. Also define descending ladder points as those indices $k=\mu_0<\mu_1<\ldots$ for which $s_{\mu_j}\geq s_i$ when $i\geq \mu_j$. From these sets of ascending and descending ladder points choose subsequences $k=m_{i_0}\geq m_{i_1}>\ldots>m_{i_r}$ and $k=\mu_{j_0}<\mu_{j_1}<\mu_{j_2}<\ldots<\mu_{j_\varrho}$, defined recursively as follows: i_1 is the largest integer $v\geq 0$ for which $s_{m_v}\geq s_{\mu_1},j_1$ is the largest integer $v\geq 0$ for which $s_{\mu_v}>s_{m_{i_1}+1},i_{\alpha}$ is the largest integer $v>i_{\alpha-1}$ for which $s_{m_v}\geq s_{\mu_{j_{\alpha-1}}+1}$, while j_{α} is the largest integer $v>j_{\alpha-1}$ for which $s_{\mu_v}>s_{m_{i_{\alpha}+1}}, \alpha=2,3,\ldots$. Set

$$m'_{\alpha} = m_{i_{\alpha}}, \quad \mu'_{\alpha} = \mu_{j_{\alpha}}, \quad y^{\alpha} = (x_{m'_{\alpha-1}}, x_{m'_{\alpha-1}-1}, \dots, x_{m'_{\alpha}+1})$$

and

$$z^{\alpha} = (x_{\mu'_{\alpha-1}+1}, x_{\mu'_{\alpha-1}+2}, \dots, x_{\mu'_{\alpha}})$$
 for $\alpha = 1, 2, \dots$

Let it be understood that y^1 is an empty sequence if $i_1=0$. Define the transformation $\psi: \mathscr{P}_c \to \mathscr{P}_c$ by $\psi(x)=x$ when $L_n(x)=0$ and $\psi(x)=(y^1,z^1,y^2,z^2,\ldots)$ and otherwise, where $\psi(x)$ is to be considered as an n-tuple. It is a routine matter to check that $s_j(\psi(x))>0$ if and only if the j-th element of $\psi(x)$ is one of the elements x_1,x_2,\ldots,x_k , that is, one of the elements of an ascending y^x sequence. Consequently, $N_n(\psi(x))=k=L_n(x)$. Furthermore, it is clear that $\pi(\psi(x))=x$ for all $x\in \mathscr{P}_c$ thereby implying that π and ψ are one-to-one transformations of \mathscr{P}_c onto itself. This completes the proof of the theorem.

In a recent paper, Brandt [3] derives a generalization of the Equivalence Principle. He defines $N_{n,\delta}(x)$ to be the number of partial sums greater than δ , and $L_{n,\delta}(x)$ to be the index of the first partial sum greater than or equal to $\max_{0 \le i \le n} [s_i(x) - \delta]$ if $\delta \ge 0$, and the index of the last partial sum greater than $\max_{0 \le i \le n} [s_i(x) + \delta]$ if $\delta < 0$. Define $v_n(k; c, \delta)$,

 $i_5 = 8$, $i_6 = 10$, $i_7 = 11$

$$\begin{split} \pi(x) = \\ (x_{11}, x_{10}, x_8, x_7, x_6, x_3, x_2, x_1, x_4, x_5, x_9) \\ L_{11}(\pi(x)) = 7 \end{split}$$

$$y = (y_1, y_2, \dots, y_{11})$$

 $L_{11}(y) = 7$
 $m'_0 = 7, m'_1 = 5, m'_2 = 2, m'_3 = 0,$
 $\mu'_0 = 7, \mu'_1 = 8, \mu'_2 = 10, \mu'_3 = 11$

$$(y_8,y_7,y_6,y_9,y_{10},y_5,y_4,y_3,y_{11},y_2,y_1)$$

$$N_{11}(\psi(y))=7$$

Fig. 1.

 $w_n(k; c, \delta)$ to be the number of sequences $x \in \mathscr{P}_c$ for which $N_{n,\delta}(x) = k$, $L_{n,\delta}(x) = k$, respectively. In [3], Brandt proves the following:

THEOREM B (Brandt). For every sequence $c = (c_1, \ldots, c_n)$ and all real δ $(2) v_n(k; c, \delta) = w_n(k; c, \delta), k = 0, 1, \ldots, n.$

PROOF. For $\delta = 0$, (2) is exactly (1). It therefore suffices to consider $\delta \neq 0$. However, this case may be derived as a direct application of the mappings π and ψ defined above in the proof of Theorem A. This is seen as follows. Assume first that $\delta > 0$. For each $x \in \mathcal{P}_c$ for which

 $N_{n,\delta}(x)=k$, form the new (n+1)-tuple $x'=(-\delta,x_1,x_2,\ldots,x_n)$. Observe that $N_{n+1}(x')=k$. By applying the transformation π , considered as being defined for (n+1)-tuples, to x', one obtains a sequence $\pi(x')=(b_1,b_2,\ldots,b_{n+1})$ for which $L_{n+1}(\pi(x'))=k$. Observe that $b_{k+1}=-\delta$, and that by deleting this element, the modified sequence

$$b = (b_1, \ldots, b_k, b_{k+2}, \ldots, b_{n+1}) \in \mathscr{P}_c$$

and $L_{n,\delta}(b) = k$. On the other hand, if

$$x = (x_1, x_2, \dots, x_n) \in \mathscr{P}_c$$

is a sequence for which $L_{n,\delta}(x) = k$, form the new (n+1)-tuple

$$x'' = (x_1, x_2, \dots, x_k, -\delta, x_{k+1}, \dots, x_n),$$

for which $L_{n+1}(x^{\prime\prime})=k$. Now apply ψ , considered as being defined for (n+1)-tuples, to $x^{\prime\prime}$ to obtain a sequence $\psi(x^{\prime\prime})=(d_1,d_2,\ldots,d_{n+1})$ for which $N_{n+1}(\psi(x^{\prime\prime}))=k$. By the definition of ψ , it may be checked that $d_1=-\delta$ and that the modified sequence

$$d = (d_2, d_3, \dots, d_{n+1}) \in \mathscr{P}_c$$

satisfies $N_{n,\delta}(d) = k$. This proves (2) for $\delta > 0$. Now assume that $\delta < 0$. If $x \in \mathscr{P}_c$ is such that $N_{n,\delta}(x) = k$, then observe that for this case, $N_{n+1}(x') = k+1$. Hence, with x' and b as before, it follows that $L_{n+1}(\pi(x')) = k+1$ and $L_{n,\delta}(b) = k$. On the other hand, if $x \in \mathscr{P}_c$ is such that $L_{n,\delta}(x) = k$, then $L_{n+1}(x'') = k+1$ and $N_{n+1}(\psi(x'')) = k+1$. Thus with d as before, $N_{n,\delta}(d) = k$. Consequently, in both cases, the mappings described above, which take x into b and x into d respectively, suffice to prove (2).

Remarks. (i) It is possible to obtain results for the location of the minimum partial sum, analogous to those obtained above for L_n . For if

$$x = (x_1, x_2, \ldots, x_n) \in \mathscr{P}_c$$

is such that $L_n(x) = k$, then for $y = (x_n, x_{n-1}, \ldots, x_1)$, the index of the last minimum partial sum among $\{s_i(y); 0 \le i \le n\}$, is n-k.

(ii) A further generalization of the Equivalence Principle is possible as follows. In [5], we studied the joint behavior of the two quantities $N_n(x)$ and $M_n(x) \equiv N_n((x_n, x_{n-1}, \ldots, x_1))$. It is natural to ask whether or not there exists a quantity $K_n(x)$ such that a one-to-one correspondence exists between paths for which $N_n = k$ and $M_n = j$, and paths for which

 $L_n = k$ and $K_n = j$. That this is possible follows directly from the proof of Theorem A, as we indicate now. Let $x \in \mathscr{P}_c$ be such that $L_n(x) = k$. Obtain the ladder points

$$m_r' < m'_{r-1} < \ldots < m_1' \le m_0' = k = \mu_0' < \mu_1' < \ldots < \mu_{\rho'}'$$

and the corresponding subsequences y^1, y^2, \ldots, y^r and $z^1, z^2, \ldots, z^{\varrho}$ as described in the proof of Theorem A. For $\delta \geq 0$, let $K_{n,\delta}^{(i)}(x)$, $1 \leq i \leq \varrho$, be the number of partial sums of the path $z^{(i)}$ which do not exceed $s_{u':-1}(x) - s_{m':}(x) - \delta$. Set

$$K_{n,\delta}(x) = \sum_i K_{n,\delta}^{(i)}(x)$$
.

For $\delta \leq 0$, let $K_{n,\delta}^{(i)}(x)$, $1 \leq i \leq r$, be the number of partial sums of the path $y^{(i)}$ which do not exceed $s_{m'i-1}(x) - s_{\mu'i-1}(x) - \delta$, and set

$$K_{n,\delta}(x) = \sum_{i} K_{n,\delta}^{(i)}(x) + n - k$$
.

In either case, let K_n denote $K_{n,\delta}$ for the special case $\delta = s_n(x)$. One may then check that the mappings π and ψ of Theorem A exhibit the desired equivalence between (N_n, M_n) and (L_n, K_n) . In fact, the above description leads to an equivalence between $(N_n, n - N_{n,\delta})$ and $(L_n, K_{n,\delta})$.

For a sequence $x=(c_1,c_2,\ldots,c_n)$, let \mathscr{C}_c be the set of all n sequences formed from c by *cyclic* permutations. Let $v_n*(k;c)$, $w_n*(k;c)$ denote, respectively, the number of elements $x\in\mathscr{C}_c$ for which $N_n(x)=k$, $L_n(x)=k$. The following specialization of the Equivalence Principle to the case of cyclic permutations is implicit in the proof of Spitzer's Theorem 2.1, [6].

LEMMA. If c is such that for all $x \in \mathcal{C}_c$, $s_i(x) \neq 0$, i = 1, 2, ..., n - 1, and $s_n(x) = 0$, then $v_n^*(k; c) = w_n^*(k; c) = 1$ for k = 0, 1, ..., n - 1.

An interesting application of this lemma is the following. For a path $x = (x_1, \ldots, x_n)$ define $L_n^*(x)$ to be the smallest index j for which

$$\max\nolimits_{0 \leq i \leq n} \, \max \left[s_i(x), s_n(x) - s_i(x) \right]$$

occurs at i=j. For a sequence $c=(c_1,c_2,\ldots,c_n)$, let \mathscr{I}_c denote the set of all n inverted cyclic permutations, namely, those permutations which take (x_1,x_2,\ldots,x_n) into $(x_2,x_3,\ldots,x_n,-x_1)$. One then obtains the following

THEOREM. If c is such that for all $x \in \mathscr{I}_c$, $s_i(x) + s_j(x)$, $0 \le i < j \le n$, then for each $r = 0, 1, \ldots, n-1$, there exists exactly one $x \in \mathscr{I}_c$ satisfying $L_n^*(x) = r$.

PROOF. As was done in Corollary 2.3 of [5], associate with any path x, the new path $x^* = (x_1, x_2, \ldots, x_n, -x_1, -x_2, \ldots, -x_n)$. Then $s_{2n}(c^*) = 0$

and c^* satisfies the hypotheses of Lemma 1. Consequently, each path $y \in \mathscr{C}_{c^*}$ yields a distinct value for $L_{2n}(y)$. However, it is clear that

$$\max_{0 \le i \le n} \max[s_i(x), s_n(x) - s_i(x)] = \max_{0 \le i < 2n} s_i(x^*).$$

Therefore, since $s_n(x) - s_i(x) = s_{n+i}(x^*)$, it follows that if $L_{2n}(x^*) = j$, then $L_n^*(x) = j$ if j < n and $L_n^*(x) = j - n$ if $j \ge n$. The proof is then complete since among the first n cyclic permutations of c^* , L_{2n} cannot take on both of the values i and n+i for any i.

REFERENCES

- E. Sparre Andersen, On sums of symmetrically dependent random variables, Skand. Aktuarietidskr. 36 (1953), 123-138.
- 2. E. Sparre Andersen, On the fluctuation of sums of random variables, Math. Scand. 1 (1953), 263-285.
- Achi Brandt, A generalization of a combinatorial theorem of Sparre Andersen about sums of random variables, Math. Scand. 9 (1961), 352-358.
- William Feller, On combinatorial methods in fluctuation theory, The Harald Cramér Volume, Ed. Ulf Grenander, New York, 1959, 75-91.
- Charles Hobby and Ronald Pyke, Combinatorial results in fluctuation theory, to appear in Ann. Math. Statist. 34 (1963).
- Frank Spitzer, A combinatorial lemma and its application to probability theory, Trans. Amer. Math. Soc. 82 (1956), 323-339.
- 7. Glen Baxter, Notes for a seminar in stochastic processes, 1957.
- E. Sparre Andersen, The equivalence principle in the theory of fluctuations of sums of random variables, Colloquium on Combinatorial Methods in Probability Theory, Aarhus, 1962, 13-16.

UNIVERSITY OF WASHINGTON, SEATTLE 5, U.S.A.