MATH. SCAND. 12 (1963), 167—177

MEAN SUMMABILITY
FOR ULTRASPHERICAL POLYNOMIALS!

RICHARD ASKEY and I. I. HIRSCHMAN, JR.

1. Introduction.

In this note we will be concerned with the mean Cesaro summability
of ultraspherical polynomials. In the present section however we shall,
for the sake of notational simplicity, deal only with Legendre poly-
nomials. Let L?(—1,1) denote the space of those functions f(x) defined
and measurable on (—1,1) for which

1 1/p
Il = ( [ @ dx)

-1

is finite. If f(x) e LP(—1,1) for some p=1 and if we set

) = f f@)P, @) da
then the formal Legendre series _fi)r flz) is
@) ~ 3 (et D) Po(@)
The partial sum of index N of this series is
Sxf- @) = % (n+ D () Po@)

Pollard has proved that if 4<p<4 then there exists a constant A(p)
depending only upon p such that

(1) Snfll, = A@Iflp, N =0,1,....
An immediate corollary of this inequality is that if i<p<4
(2) limy o [If=Syfllp = 0.
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Newman and Rudin have shown that (1) and (2) are false if p<% or

p=4. Let us define
N
Syf(x) = (Ay")! ZO (n+3)f"(n) A%, Py(x)
where

A= (n+o¢) _ («x+l)...(<x+n).

" n n!
We will show here that if 0<x <} and if

4 4
<p< ——

3
3) 3+ 2« 1—-2«

then there exists a constant A(p,«) depending only upon p and « such
that

(4) ISx°fllp = A, D) Ifllp, N =0,1,....
This implies that under the same restrictions on « and p
(5) th—)oo”f_ SNaf”p =0.

If p<4/(3+2«x) or p=4/(1—2«) then (4) is false. The special case x =0
is Pollard’s theorem. If x>} then (4) holds for all p, 1< p=<oo.

2. End point estimates.
For >0 we set
d n
20y +§), W, (n,2) = (= 1)n(1—a?)t~ (d_x) (1—a2ymrt
dQ,(x) = (1—a?p-tde,

_ IO+ (n+ 2)
@M = s D@

The W, (n,x) are the ultraspherical polynomials of index » normalized
by the condition W,(n,1)=1. We have

1
[ W)W, m,2) d2@) = 8, s, (m)
-1
where 6, ,, is 1 if n=m and is 0 otherwise. Let us denote by L,? the space
of those functions f(x) measurable on (—1,1) for which

1 1/p
Imb=<fvdeQ@0

-1
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is finite. Given f(z) € L,? we set

1
1o = [ f@W,m2 dw .
-1
The (formal) expansion of f(x) in terms of the W (n,z) is then

1@) ~ 3 0 Bf W, (kz)

Let us define
N
Sy (x) = (AN“)‘lkzoAi'v_kwv(k)f “(k)W, (k) .

Our main objective in the present section is to prove the following result.
This result is due to Kogbetliantz but the following proof is so simple
and natural that we include it for completeness.

THEOREM 2a. If a>wv, then there exists a constant A(x,v) depending
only on x and v such that for every fe L}

IISN"‘fIh < A(x,»)|Iflly -
Let us set
C,(x,y,2) = 212 (v)=(1 — 2% —y2 — 22+ 2zy2)~1[(1 —2?)(1 —y?) (1 — 22) ]~

if 1-22—y2—224+22y2z>0, and let C,(x,y,2) be zero otherwise. The
following formula is due to Gegenbauer, see [1, vol. 1, p.177]. If
—1l<y<l1, —1<z<l1, then

1
[ W20 y.2) d0,@) = W00, )Wn2)
-1

From this formula it is easily verified that if f,g € L,! and if we define

11

9@ = [ [10)9@)C9.2) 42,9) 42,2

-1-1

(f*x9)"(n) = f"(n)g"(n) .

then

We also find that

/%9l = Iflh liglly -
For a more complete discussion of these formulas see [2]. It now follows
that if

N
pa(x) = (ANt 3 Ay o,(k)W (k)
then k=0
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Syf- (@) = f+ oy (2)

ISnf+ @ = lpn* @l [1f1lx -
Now it is proved in § 9.41 of [10] that if « >» then

(1) len*@)ly = A(x,v), N =0,1,...,

and thus that

for some finite constant A(x,») independent of N. This proves Theorem
2a.
We also record for future use the results of Pollard, see [5], [6], and [7]:

TarOREM 2b. If

2v+1 2v+1

— < p < ,
r+1 p y

then there is a constant A(v,p) depending only upon v and p such that
SN @, = 40, Dfll, N =0,1,....

3. An interpolation theorem.

Let (&, % ,u) be a measure space; that is & is a set of points, # is a
o-field of subsets of &, and p a non-negative countably additive set
function defined on the elements of #. We denote by LP(%) the space
of all complex # -measurable functions for which

11y = ( [1r@e dﬂ(x))

4

is finite. Let 7,7, T,,... be a sequence of linear transformations of
Uicp<od?(&) into Ny, LP(F). We define a new sequence of linear
transformations by setting for any complex «+ —1,-2,-3,...,

N
Sy* = (Ay) 1S A%, T, N =01,....
k=0

We further define ||Sy?|,, to be the norm of Sy* as a linear transformation
of L?(&) into itself. We begin our study of [|Sy||, by noting the fol-
lowing simple result.

THEOREM 3a. Let 1<p=<oo, f>a> —1. Then if

Sy, = M, N =0,1,...,
it follows that
ISy, < M, N =0,1,....
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This is a consequence of the relations

N
A5 8% = Z AsS; AT,

z A AR = AR,
and the fact that the various “4’s” are all non-negative

THEOREM 3b. Let 1<p, S o0, —1<wx,f<oco. Suppose that

ISy, £ My, N =0,1,..

1S3l £ My, N =0,1,....
Then if for some 0, 0< 0 <1, we have

and

D

IIA

r

1 1
=(1-0)-+6-,
P q

y > (1-0)x + 68,
it will follow that

ISyl = AM,'-0M
where A depends only upon «, B, p, q, 0, and y.

lemma:

LeMMA 3e. If for 1S p=< oo and 6> —1 we have

Sy, < M, N =0,1,2,...
then for any ¢>0

[[Syd+e+iv), < e@v’M, N
We have

0,1,..., —o<y<co.

N
d+etiy __ O+eti, e—1+1
Sy = (AyTy 3 4 RANLY

from which it follows that B

(1) ”Sg\j-e-l iy”p < lWlA5+E+ZJI—l zA&lAe——Hz B

Now we note that if £> —1,

o _ Gy D(E+y+2). . (E+iy+n)
Aks y/Al;El - (E+l)(§+2), (£+n) i

|
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We begin our proof of Theorem 3b by demonstrating the following
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We thus see that

(2) |45t [A¢ =2 1,
and that
A4 vV AYE
+iy < |1 — N | .
A "“[+(§+1)] [+<E+n)]
Since

[1 - (E%%)Z] s o (2(;12@2)

(E+k)*

1

it follows that if
c=1

T™Me

then
(2) |4+ [ 4,8 < eV

Using (2) and (2') in (1) we obtain our desired result.
We now return to the proof of Theorem 3b. Choose ¢> 0 so that
y = (1-0)(x+e) + 0(f+¢).
Fix N. By Lemma 3¢

”SNIH‘E-H:ZI“p é ec(e)szl ’

1S yB+eriv|, < ecew® I g -

By Stein’s interpolation theorem, see [12, Chapter XII], we have

ISxll, = AM,'°M,°
as desired.
Theorem 3b is essentially due to Stein and Weiss [8].

4. The main theorem.
On combining the theorems of sections 2 and 3 we see that we have

proved a result of the desired type.

THEOREM 4a. If 0<v<oo, 0Sx<v, and if

2v+1 2v+1

- — < p < ,
v+ 14o p Y—o

(1)

then there exists a constant A depending only upon v, x, and p such that

(2) ISnfllp = Allfl,, N =1012,....

The result quoted in the introduction is the special case v=}.
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In the remainder of this section we will prove, using a variation of
the method of Newman and Rudin [4], that if
p = (2+D)/(+14+x) or p 2 (+1)/(v—0n)

then (2) is false.
In what follows we shall use 4 for any positive constant independent
of N. The constant 4 may have different values in different relations
or even within one relation. We require the following preliminary result.
Lemma 4b. If

N
L. g(x) =k§0¢A(k) w,(k)W,(k,z) ,
2. 1=p<oo,

then
lPlle = AN +1)@+0/2|jgf .

We have trivially that
(3) Pl = llPllos -
Since |W,(k,z)| <1 we see that since
1
") = [ @)W, (k) d2,)

-1
it follows that

lo”(®)] < lgll -
Consequently
N
lelleo = liglly 3 0, (R)
E=1
(4) lplle = AN +1)>* iglly

where 4 depends only on ». Applying a polynomial interpolation theo-
rem of Stein [9] to (3) and (4) we obtain our desired result.

THEOREM 4¢. If 0Sv<oo, 0 <, and if 1Sp=(2v+1)/(v+1+«) or
(2v+1)/(v—a) Sp =< oo, then (2) does not hold.
It is sufficient to prove that (2) is false for the single value
pL= (v+1)(v—0).

For it then follows using the Riesz—Thorin convexity theorem that it is
false for p, S p=<oo. Let ¢, be the index conjugate to p,

¢ = v+ 1)/(r+1+x).
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That (2) is false for 1 <p<gq, then follows by simple duality considera-
tions from the fact it is false for p; < p < .
Let us consider the functional

Ty*f = 8yf-(1)

from L,? to the real numbers. Since

1
Ty f = [ f@oy@) a2 ),
-1
a standard result on functionals on L gives

1 1
(5) TNl = llen*@ly,  —+-=1.
P q
If (2) holds for p then we have
”SNaf”p é A”f”p ’

and therefore using Lemma 4b

ITx*fll, S AN +1)@+0||f|| -
which implies that
© Ty, < AN+ 1)@+

We will prove that (6) and (5) with p=p, are contradictory. To obtain
a minorant for |lpy?|l,, we use an expression for gy* derived by Szegd
[10; 9.41.13]:

(N +2v+a+ 1) (2N + 2v + & + 2) Pylet+ir—d(g)

PN"@) = 22w+ 3) (N +v+3) T(2N + 2v + 20 + 2) A \*
® -1)...(x— 1 AN
et r J(2N+2v+a+2)...2N+2v+a+r+1) Ay
Set
X fx+r |a(x—=1)...(x—7+1)] Aot
By =3 (*7") o™l
r—1 CN+2v+a+2)... 2N+ 20+ +r+1) Ap~
Since N
A3 9R(@) = 3 A9 @) AR5
and

2 Aa+1Ar~2 A;v-!-r

k=0

and the “A’s” are positive, we see that

”‘PN“"”ql s |I¢Na+l||qla r=1,2,....
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By (5), llgn*+llg, = 1T y*+lg,- Since (2) holds for p=p, if « is replaced
by (x+1) the argument used to establish (6) proves that ||7'y*+||, <
A(N +1)@+DI1 - Consequently

Iox®* g, S AR + 1)

Thus
Ry* < AN+ 1)Z+Din § (0‘+T> |or(x _.12 (a4 D) éN:xir
- N T SN+ 2v+x+2) . 2N+ 2r+a+r+1) Ay
It is easily seen that
E: ((x-*-r) lo(x—1) ... (x—7+1)] AN‘"“SA’
s N T SN+ 204+ x+2). (2N +2v+x+r+1) Ay

where 4 is independent of N. Thus
Ry* < AN +1)@0ien
On the other hand by [10; 8.21.17] we see that

[Pyttt 2 AN +1)-H(log N)Ve
By Minkowski’s inequality
loxllgy Z AN +1)~" (log N)1t — A(N + 1)@ 0l
Since » — x = (2v + 1)/p,, we see that for N large
(M lonllg, = AN+ 1)@ VP (log Nyl

The inequalities (5), (6), and (7) are contradictory which proves that (2)
must be false if p=(2v+1)/(r — x).

5. Other polynomials.

The question posed in the introduction can be asked for other orthog-
onal sets of polynomials. Pollard has shown that the question of mean
convergence can be answered completely for Jacobi, Hermite, and
Laguerre polynomials. Mean summability for Jacobi series is still open
because the analogue of Theorem 2a is unproven at present. For Hermite
and Laguerre polynomials Pollard has shown that mean convergence
holds only if p=2. We will show that the same is true for mean sum-
mability.

Let L,?(—o0,00) be the space of functions defined and measurable on

(— o0,00) with
o 1/p
il = ( [ r@pe- dx)

—00
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finite. The Hermite polynomials are

d n
Hy@) = (=1 () e
dx
If for fe L,» we set

f(n) = w427 (nl)-1 f F(@)H, (z)e*" dw
then - =
flx) ~ gofA(")Hn(x) .

Let us define
N
Sy [ () = (Ay)™ ZOA?v_nf “(m)H (@) .
We will show that if 1 <p<2, there is a function fe L,? for which

(l) ”SNaf“p s A”f”p’ N = 0,11- L

does not hold if 4 is to be independent of N. Let f(x)=e™" where
$<c<1/p. Then fe L,». It is easily seen that

ff@n+1) =0,
(-1
4np!

Cc

() 17en) = K@) (=)

1—c

where K(c) is independent of n. We have
N N
ARSN S (@) = kE [~ (n)H () =kEOAZSi [ (@) Ay
=0 =
so that if (1) were valid it would follow that

N N
. kE_OfA(n)Hn(x) < A||f||pk§0Ag|A;v“:,} s A|fllp(V+1)%.

P
By Minkowski’s inequality we find

(3) If > () H (@), < Allfl(N +1)* .
Now it is easily shown, see [6], that

(2N)!
ol = [Hanls 2 47—

Thus

R N (2N)!
@M s 2 4 (15) G

This contradicts (3).
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