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ON ALMOST PERIODIC COMPACTIFICATIONS

JOHN S.PYM

In their paper [2], E. M. Alfsen and P. Holm produced the almost
periodic compactification of a topological group using topological and
group properties only, with no reference to extraneous structures such
as spaces of continuous functions. Here, using their general ideas, we
consider corresponding problems for semigroups. The main results are
in Theorem 4; as corollaries we find the almost periodic compactifica-
tions of a semigroup and of a group. The last section shows that the
weakly almost periodic compactification cannot be obtained by our
method.

Theorem 4 appears as the last of a series of solutions to universal
mapping problems (Bourbaki [3, § 3, No. 1]). The first of these is essen-
tially the question of the Stone-Cech compactification, and we include

it for completeness. It is produced in the same kind of way as below
in [1].

1. Preliminaries.

On several occasions we shall use the same method of construction
and proof, and we therefore summarize it here. Our notation for uniform
structures will follow that of Bourbaki [4].

ProrosiTioN 1. (i) Let E be a set, and let U, be a filterbase of subsets
of E x E which contain the diagonal. Define a class U by the condition

U € U if and only if there is a sequence (V) of symmetric sets in U, so
that V,oV,<V,_,<U for all n.

Then U is the finest uniformity on E whose filter base of vicinities is coarser
than %,.

(i) If F is another set, ¥~ is a uniformity on F, and f is a mapping of
E into F with the property that if V.€ ¥, (f xf)~V) contains a set of %,,
then f is uniformly continuous from (E, %) to (F,¥").
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Proor. The proof of (i) is clear except perhaps that if U, and U, are
in %, so is U;nU,. This follows from the fact that for any two sets V
and W in %,, VnW is in %, ,and

VaW)o(VnW) < (VoV)n (WoW).

(ii) follows easily, for (fxf)~1(¥#") is a uniformity on £, and the hypo-
thesis ensures that its filter base of vicinities is coarser than %,, whence

(fxfy YV )<u.
No confusion will arise if we use the

DeriniTiON. % will be called the finest uniformity coarser than %,.

2. Totally bounded uniformities.
Given a family & of sets, we shall write V,=U, -4 x 4.

LeMMaA 1. Let (F,?") be a totally bounded (i.e. precompact) Hausdorff
uniform space. Then for each V € ¥~ there is a finite covering F of F by
open sets such that Vo< V.

Proor. Let (F,¥) be the (compact) completion of F, and take V e ¥~
such that
Va(FxF)c V.

The uniformity ¥~ consists of the neighbourhoods of the diagonal in
FxF, and so we can find a finite open covering # of F such that
Vz< V. Then the family F ={AnF:A4 € F} is an open covering of F,
and Vo=Vzn(FxF)<V.

THEOREM 1. (i) Let (E,T") be a topological space. Write
Uy = {V z:F is a finite open covering of K} .

Then U, 1s a filter base on E x E. The finest uniformity % coarser than %,
18 totally bounded, and the topology induced on E by U is coarser than I .

(ii) If f is a continuous mapping of (E,T) into any totally bounded
Hausdorff uniform space (F,¥"), then f: (E, %)~ (F,?") is uniformly
continuous.

Proor. (i) %, satisfies the conditions of Proposition 1 (i), for if
{A;:1=1,...,n} and {Bj:j=1,...,m}

are finite open coverings of E, so is {4,nB;} and

U inB)x(4:nB) = Ux4)nU (B,xB).

%) 1
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Therefore % is defined. Since each U in % contains some V 4> E can be
covered by a finite number of sections of U, and each section of U con-
tains an open set. This completes the proof of (i).

(ii) We show that f satisfies the hypothesis of Proposition 1 (ii). Take
any V in ¥". By Lemma 1, we can choose a finite open covering ¢ of F
with V,<V; then

() UV) > (Fxf)UVg) = <fxf>~1[U (4 xA)]
U [f A)] - Vf—l(g) ’

Aew

and f-1(¥) forms a finite open covering of £ because f is continuous.

REMARKS (i). We may state the result in the form of a universal
mapping theorem as follows: there is a uniformity % on E with the
properties that, the identity map

. (B,7)—~ (E,%)
is continuous and that, if

[ (B.7)~>F.7)
is continuous there is a unique uniformly continuous map
h: (E, %)~ (F,7)

such that f=hot. It is then clear that the completion of (£, %) is just
the Stone—Cech compactification of (¥,7).

(ii) In order that %,=%, it is necessary and sufficient that for each
pair A and B of closed subsets of (#,.77) there are two disjoint open sets
U and V such that A< U and B<V (Bourbaki [5, § 4, example 17]).
This condition is just normality without the Hausdorff axiom. I am
grateful to the referee for pointing out that the topology J is completely
regular (again except for the Hausdorff axiom) if and only if the topology
induced on E by % is just 7 (because % defines the finest such topology
coarser than 7).

3. Jointly uniformly continuous semigroups.

We shall demand that our semigroups contain an identity. This does
not effect the general validity of our results, since an identity may al-
ways be algebraically adjoined, and we can then ensure that it is topo-
logically irrelevant by making it an isolated point.
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Lemma 2. Let (F,7") be a semigroup in which multiplication is jointly
uniformly continuous, that s, (x,y) — xy is uniformly continuous. Then for
each V € ¥ we can find Vye ¥ with the property that

U {(axb,ayd) : (x,y)e Vy} < V.

a,beF

Proor. Since (z,y,2) > xyz is uniformly continuous,

Vo = {(x,y) : (axb,ayb) € V for all a,b e F}

is a vicinity for 7.
In the same way as Theorem 1, our next result is a universal mapping
theorem.

THEOREM 2. (i) Let E be a semigroup, and % a wniformity on E. For
each U € U, write

U = U {(axb,ayd) : (x,y)e U},
a,beE

and let %, be the set of all such U'. Then %, is a filter base. The finest
uniformity U’ coarser than %, is also coarser than %, and multiplication
18 jointly uniformly continuous in %'.

(il) Any wniformly continuous homomorphism f of (E,%) into any
jointly uniformly continuous semigrowp (F,¥") is also uniformly continuous
with respect to U’.

Proor. (i) %, is a filter base because if U, and U, are in %, U;nU,
isin %, and (U,nU,)' <U,'nU,". So %' is defined, it is coarser than %
because E contains an identity, and multiplication is jointly uniformly
continuous in %’ because if (z,y) and (z,t) are in U’ (where U’ has the
form given in the statement of the theorem), then also (xz,yz) and
(yz,yt) are in U’, whence (xz,yt) e U'-U".

(ii) Given V in 77, choose V, according to Lemma 2, and then we can
choose U in % so that (fxf)(U)<V, since f is #-uniformly continuous.
Then since f is a homomorphism, (fxf)(U’)< V, so that f satisfies the
condition of Proposition 1 (ii), and is therefore %’'-uniformly continuous.

4. Separately uniformly continuous semigroups.

Multiplication in a semigroup is said to be separately (uniformly)
continuous if for each z both the map x - xz and the map x - 2z are
(uniformly) continuous. The results of this section parallel those of the
last.
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LemMMA 3. Let (F,7") be a separately uniformly continuous semigroup.
Then for each V € ¥~ we can find a mapping (a,b) — V(a,b) of Fx F - ¥~
with the property that

U {(axb,ayd) : (x,y) € V(a,b)} < V.

a,beF
Proor. Since x — axb is uniformly continuous for each pair (a,b),
V(a,b) = {(x,y) : (axb,ayb) € V}
is a vicinity for ¥”. The mapping (a,b) — V(a,b) satisfies our conditions.

THEOREM 3. (i) Let E be a semigroup, and U a uniformity on E. For
each mapping (a,b) - U(a,b) of E x K into %, write

U = U {(axb,ayd) : (x,y) € U(a,b)},
a,be B

and let %, be the set of all such U’. Then %, is a filter base. The finest
uniformity U’ coarser than %, is also coarser than U, and multiplication
18 separately uniformly continuous in U'.

(ii)) Any wuniformly continuous homomorphism f of (E,%) into any
separately uniformly continuous semigroup (F,¥") is also uniformly con-
tinuous with respect to U’.

Proor. (i) To show that whenever U, and U, are in %, U,'nU,’
contains a set of %,’, we use the mapping

(a/;b) - Ul(a’b) n Uz(a,b) .

Then, as in Theorem 2, %’ is a uniformity coarser than %. We indicate
how to prove that multiplication is separately uniformly continuous by
showing that, for a given z in E, the mapping « — zx is uniformly con-
tinuous.

In fact, we can apply Proposition 1 (ii); it is enough to show that
the inverse image of a given U in %’ under the mapping # — zx contains
a set of %,’. Choose some U’ in %, which is contained in U; write
W(a,b)=U(za,zb), and use the mapping (a,b) — W(a,b) to form a set W’
in %,’. Then if (x,y) € W', we can find (a,b) € £ x E and (u,v) € W(a,b)
so that (x,y)=(aub,avd); but then

(zx,2y) = (zaub,zavb) and (u,v) € W(a,b) = U(za,zb)

so that (zx,zy) € U’ < U, and we have finished.
(ii) We may use the proof of Theorem 2 (ii) after replacing “Lemma 2"
by “Lemma 3.

Math. Scand. 12 — 13
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Remarks. (i) If (,7) is a topological semigroup with separately
continuous multiplication, and % is the uniformity produced on ¥ by
Theorem 1, then %'=% in Theorem 3. We have only to show that
multiplication is separately uniformly continuous in %, and this follows
immediately from Theorem 1 (ii) on taking (¥,¥") to be (E,%) and con-
sidering the mappings x — zx and x — xz.

(ii) The constructions in Theorems 2 and 3 are particular cases of a
general process. Let &/ be any collection of mappings of £ x E into %,

and write
ay = U {LbJE(axb,ayb): (x,y) € x(a,b)} .
acgof a,be

Then we are in the situation of Theorem 3 (resp. Theorem 4) if we take
&/ to be the set of all constant mappings (resp. all mappings).

5. Compactifications and precompactifications.

THEOREM 4. Let E be a semigroup and I a topology on E. Then there
exist a totally bounded Hausdorff semigroup (E*,%*) in which multiplica-
tion 18 jointly uniformly continuous (resp. separately uniformly continuous)
and a continuous mapping

i (B,T) > (B*U*)

with the property that if f is any continuous homomorphism of (E,T") into
any totally bounded Hausdorff semigroup (F,¥") with jointly wniformly
continuous (resp. separately uniformly continuous) multiplication, there is
a unique uniformly continuous homomorphism

h: (E*U*) > (F,¥)
such that f=hot.

Proovr. Starting with (¥,.7), we construct on ¥ first the uniformity
% provided by Theorem 1, and then the uniformity %’ provided by
Theorem 2 (resp. Theorem 3); we then take (E*,%*) to be the Hausdorff
space associated with (£,%’), and ¢ to be given by the natural map

(B, ') ~ (E*,U*) .

It will follow that (E*,%*) is a semigroup with the desired continuity
properties if we can prove that the equivalence relation i(x) =1(y), that is,

@y e U,

Ued

is compatible with multiplication in E. Take any couples

(z,y) and (2,t) in n U,
Ued
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we shall show that, given any U’ e %', (xz,4t) € U’, which is enough.
Choose W e ' with WoW <U'. If multiplication is separately uni-
formly continuous (and this case obviously includes the jointly continu-
ous one), we can find W, € %’ such that (u,v) € W, implies (uz,vz) e W,
and W,e %' such that (u,v) € W, implies (yu,yv) € W. Now (z,y) e W,
and (2,t) € W,; therefore both (xz,y2) and (yz,yt) lie in W; but then

(xz,yt) e Wo W < U’ .

It is now immediate from Theorems 1 and 2 (resp. 3) that (E*,%*) has
the required universal factorization property.

CoroLLARY 1. Let (E,7) be a semigroup with a topology. Then there is

a jointly (uniformly) continuous compact semigroup (IZ’ , %) and a continuous
map A
. (B,7)—> (H,%)

such that if f is any continuous homomorphism of (E,T) into any jointly

(untformly) continuous compact semigroup (F,¥"), there is a (uniformly)
continuous homomorphism

h: (B,%) ~ (F,¥)
such that f=hoi.

Proor. We first point out that the completion (S,"/if ) of a jointly

uniformly continuous semigroup (8,%#”) is again such a semigroup; for
the uniformly continuous mapping (x,y) - xy of

(SxS,#'x#') into (S,%")
has a unique uniformly continuous extension to

SxSH x#) into (5,4).
In particular, in the jointly continuous case of Theorem 4, we can re-
place the precompact semigroup (F,¥") by its compact completion.
Then the completion (¥, %) of the semigroup (E*,#*) provided by this
theorem is also a compact semigroup, and any uniformly continuous

homomorphism of (E*,%*) into (F,¥") has a unique extension to (E, 0?/)
which is again a homomorphism.

REMAREK. (E‘,”l}) is known as the almost periodic compactification of
(E,T).

CoroLLARY 2. If E is a group, (E’,@) is a topological group.

Proor. The homomorphic image i(X) of E is dense in E and a group.
Multiplication is jointly continuous in £ by construction; we show that
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each € & has an inverse and that inversion is continuous by adapting
slightly a proof in [7] (Lemma 2 on page 813).

Suppose z € £, and let F be any filter base of subsets of 3(%) which
converges to x in . Then the filter base F1={4-1: A cF} has
cluster points in the compact set #. Let y be any one of these, and let
¥ be a refinement of & -1 consisting of subsets of ¢(F) which converges
to y. Then %! is a refinement of &, and therefore converges to z.
Since multiplication is jointly continuous, ¥-'% converges to xy; but
every set in ¥-1% contains the identity e of E, so zy=e. Similarly, yx=e.
Therefore y must be the unique inverse of x, and since y was any cluster
point of # -1, we deduce that & -1 converges to y.

Now that we know that & is a group, we may apply the same argument
to deduce that if a filter # of subsets of / converges to #, # -1 converges
to z-1, i.e. inversion is continuous.

6. Remarks on the weakly almost periodic compactification.

We might hope that by carrying out procedures modelled on Corollary
1 for the separately continuous case, we would obtain the weakly almost
periodic compactification (i.e. a compact semigroup (£, 4/) for which the
statement of Corollary 1 holds with “‘jointly continuous” replaced every-
where by ‘“‘separately continuous”) [6]. However, this is not so, mainly
because the completion of a separately uniformly continuous semigroup
need not be a semigroup of the same form.

A simple example of this is provided by the real line B with the uni-
formity induced by the usual two-point compactification (the extended
real line B). Addition is separately uniformly continuous in R, but it is
easy to see that no way of defining addition for the two infinities makes
the operation separately continuous in E.

We shall use this example again (after Proposition 2 below) to show
that the completion of the separately uniformly continuous semigroup
produced by Theorem 4 need not be such a semigroup.

Lemma 4. Let S be a compact semigroup with separately continuous
multiplication, let T be a semigroup with a compact topology, and let h be
a continuous homomorphism of S onto T. Then multiplication is separately
continuous in T'.

Proor. For each z in S, write h(z)=2'; since % is onto 7', every ele-
ment of 7' is of this form. We shall show that for a given a in §, the
mapping «': z’ — a2’ is continuous. Let «: x — ax for some a with
h(a)=a'. Then
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Wx(@)) = h(ax) = Wa)h(z) = a'h(x) = &' (h(z)) .
So, for any subset F of T,

o/ N F) = h(h Yo' 1(F))) = h(x"(hUF))) .

If F is closed, (x—l(h—l(F)) is a closed subset of S (because the mapping
z— k(oc(x)) is continuous) and is therefore compact; since 4 is continu-
ous, it follows that «'-1(F) is compact, and hence closed. So «’ is con-
tinuous.

ProrosiTiON 2. Let S and T be two semigroups with totally bounded
Hausdorff uniformities and separately wniformly continuous multiplica-
tions, and let h be a_uniformly continuous homomorphism of S onto T
If @n the completion S of 8 we can define a separately continuous multi-
plication which extends the multiplicatron in S, we can also define a sepa-
rately continuous multiplication in T which extends the maulliplication in T'.

Proor. The mapping & has a unique continuous extension h mapping
S into 7'; but h(S) is compact and contains 7', so h(S) 7.

We see from Lemma 4 that any multiplication in 7' which makes ha
homomorphism is separately continuous. We have therefore finished if
we can define 2'y’ = (xy)’, where x'=h(z), and this is permissible if the
equivalence relation fa(x):?z(y) is compatible with the multiplication
iAn S. §0 we must show that if both h( )= A( ) and h( z)=h(t), then

h(zz) = h(ty).

In fact we shall only show that h(zx) h(zy) a repetition of the argu-
ment then gives h(zy) k(ty) to complete the proof. First, take z in S.
The mapping 2’ — 2’z is umformly continuous on 7', and so has a unique
extension z’ — 2’(2’) from 7 into 7. The mapping

of § into 7' is uniformly continuous, and so has a unique extension to 8;
but it may also be considered as the composition of the mappings

;o

> M)h(@) = h2)h(z) = h(zx)

of § into 7', and the injection of 7' into 7. Since multiplication is sep-

arately continuous in S, this mapping has the continuous extension

T — h(zx) to 8. It follows from the uniqueness of the extensions that
h(zx)=z' (h z)) . So for z in 8, we have that

A

7L(x) = h(y) implies ﬁ(zx) = ?z(zy) .
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Since multiplication is separately uniformly continuous in 3, _the mapping
z - h(zx) is continuous on S for each # in S. So if h(zx) h(zy) for all z
in the dense subspace S of S, the equality also holds for all z in 8, and
the proof is finished.

Now consider B with any topology 7 finer than the usual one, and
form the separately continuous (R*,#%*)=(R,%¥*) as in Theorem 4. The
identity map of R into R (see above) must be uniformly continuous in
*, and therefore by Lemma 4, if the completion of (B*,%*) is a sep-
arately uniformly continuous semigroup, so must E be; but we have seen
that this is not so.

Finally, we remark that if we ask only for a precompact separately
uniformly continuous semigroup (E*,%*) such that every continuous
homomorphism of (¥,.7) into any compact separately continuous semi-
group can be factored through (£*,%*), we may not obtain a unique
result; for Theorem 4 provides one solution, and the weakly almost
periodic compactification provides another; however, we can assert that
every solution lies (in an obvious sense) between these two.
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