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ON CHARACTERIZATIONS OF PRUFER RINGS

CHR. U. JENSEN

According to the classical definition a Priifer ring is an integral domain
R in which the set of all finitely generated non-zero ideals forms a multi-
plicative group, or, equivalently, any finitely generated ideal = (0) is
invertible (or projective considered as an R-module).

In recent years it has turned out that Priifer rings appear in a very
natural way in some important concepts of homological algebra as for
instance the functors Tor,, n=1,2, and thereby tensor products of tor-
sion-free modules, cf. Hattori [4], where Priifer rings are characterized
in terms of homological algebra.

It therefore might be of some interest to give some further character-
izations in terms of entirely ideal-theoretical notions. In particular in the
case of Noetherian domains we thus obtain characterizations of Dedekind
domains some of which were first found by I. S. Cohen [1].

The first characterization which we shall give here refers to the lattice
formed by all ideals in R (ordered with respect to set inclusion). In
fact, we prove the following

THEOREM 1. An integral domain R is a Prifer ring if and only if the
lattice formed by ideals of R is distributive, i.e.

an(d+c)=anb+anc

for any three ideals in R.

REMARK. Rings in which the lattice of ideals is distributive have been
discussed by L. Fuchs [3]. The theorem shows that ‘“‘arithmetical”
domains in the sense of Fuchs actually are Priifer rings.

For the proof of this and some of the next theorems we shall be using
the following well-known result a simple proof of which may be found
in Jaffard [5].

Lemma 1. An integral domain R is a Prifer ring if and only if the
quotient ring R, is a valuation ring for any maximal ideal p.
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An ideal a in R is uniquely determined by its local components a,
which is an immediate consequence of a=(1,a,, p running through the
maximal ideals in R. Since the formation of sums and intersections of
ideals is preserved by extensions of ideals from R to R,, in view of
lemma 1 the “only if”’ part of theorem 1 is clear once it has been proved
for local domains. (Here and in the following the use of the word local
should not involve any assumptions of the ring being Noetherian.) The
“only if”’ part of theorem 1 is now obvious, because the ideals in a valua-
tion ring are totally ordered by set inclusion.

To prove the second part of theorem 1 we first point out that the dis-
tributive law for R’s ideals is inherited by any quotient ring Rg, S
being a multiplicative system. In fact, let a', b’ and ¢’ be arbitrary
ideals in Rg and a, b and ¢ their respective contractions to B. We only
have to prove

an®+c)ca nbd +a'ne
since the converse inclusion is satisfied for any commutative ring.
Any element x in a’n (b’ +¢’) admits representations

x =als;, aca, ,€8; x=2>bls; +¢c[s3, beD, cec, s5,8€8.
Since $;8,5.x € an(b+c),
818985% = U+, weanb, veanc,

which shows the desired inclusion, s,8,8; being a unit in Rg. The “if”
part of theorem 1 therefore is contained in the following lemma which
we with a view to a later application set up in a slightly more general
form by admitting zero-divisors.

LeMMmA 2. The ideals of a local ring R with a distributive lattice of ideals
are totally ordered by set inclusion.

Proor. It is clearly sufficient to show that for any two non-zero
elements a and b, at least one of the statements a | b or b | @ will be true.

In fact, since the ideals are assumed to form a distributive lattice
we have

(@) = (@) n [(B)+(a—b)] = (@) n (b) + (@) N (a—D)
so that @ may be written in the form
a =t+(a-b),

where ¢ is an element in (a)n(b) and b-c an element in (a). If ¢ is a unit,
b is a multiple of bc and thus belongs to (a). If ¢ is not a unit, 1 —¢ must
be a unit since the ring considered is local (the non-units form R’s unique
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maximal ideal). Therefore a is a multiple of a(1 —¢)=¢—bc, which is an
element in (b). This means that either a |b or b |a.

We shall now give an application of theorem 1, or more precisely of
lemma 2, concerning a simple characterization of Dedekind domains.
It is a classical theorem that every proper ideal in a Dedekind domain
has a basis consisting of two elements. This property is not character-
istical of Dedekind domains, as shown by non-maximal orders in quad-
ratic extensions of the rational number field. The stronger property
enjoyed by a Dedekind domain R that any proper residue class
ring R/a, a#(0) is a principal ideal ring, however turns out to be
characteristical. We state this as

THEOREM 2. An integral domain R is a Dedekind domain if an only if
any proper residue class ring Rla, a=(0) is principal ideal ring.

Proor. Let R be an integral domain for which any proper residue class
ring is a principal ideal ring. R is then necessarily a Noetherian domain,
and it suffices to show that R is a Priifer ring, since this will imply that
every non-zero ideal is invertible. By lemma 1 we have to prove that
any quotient ring R,, p being a maximal ideal, is a valuation ring.

Let @ and b be two arbitrary elements +0 in R. Since the property
that any proper residue class ring is principal ideal ring clearly is in-
herited by the quotient rings, in particular, the residue class ring R, /(a-b)
must be a principal ideal ring.

The lattice of ideals in any principal ideal ring is distributive. This
may be seen either directly or by Krull’s theorem that any principal
ideal ring is a direct sum of principal ideal domains and of ‘“‘special”’
principal ideal rings (i.e. local rings with nilpotent maximal ideals).

Consequently the residue class ring R,/(a-b) is a local ring whose
ideals form a distributive lattice, and are therefore (by lemma 2) totally
ordered with respect to set inclusion. For the ideals (a)/(ab) and (b)/(ab)
in R,/(ab) this means that at least one is contained in the other, implying
that we inside R, have (a)<(b) or (b)<(a). This shows that R, is a
valuation ring, since any principal ideal in R, may be generated by an
element in R.

The “‘only if”’ part of the theorem being well known, theorem 2 is now
proved.

REMARK. By the same method it can be shown that an integral domain
R is a Priifer ring if any proper residue class ring R/a, a = (0) is a Bezout
ring (i.e. a ring in which any finitely generated ideal is principal.) This
result, however only yields a sufficient condition for R to be a Priifer
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ring. In fact, if K is an algebraic number field for which the number A
of ideal classes is greater than 1, the subset of K[[X]], consisting of all
formal power series whose constant terms are algebraic integers, will
form a Priifer ring R for which the residue class ring R/(X) is no Bezout
ring.

Next we establish two characterizations of Priifer rings involving the
multiplicative structure of ideals, namely

THEOREM 3. The integral domain R is a Priifer ring if and only if one
of the following equivalent conditions is satisfied

I a-(bnec)=abna-c  for any three ideals in R.
II. (a+Db)-(anb)=ab for any three ideals in R.

Proor. Since the formation of sums, products and intersections of
ideals is preserved by extension from R to a quotient ring R, the proper-
ties I and II at once follows for Priifer rings, because in this case R,
is a valuation ring for any maximal p and the ideals in E, thus totally
ordered by set inclusion.

To complete the proof we show that I implies I, and II implies that
R is a Prifer ring.

Suppose I holds; then

(a+b)-(anb) = (a+b)an(a+b)b =2 ab .

Comparing this with the converse inclusion (a+b)(a n b)<cab valid for
any commutative ring, we obtain II.

If IT holds we shall show that any finitely generated ideal =(0) is
invertible. We shall do this by induction with respect to the number »
of generators.

If n=1 the ideals considered are principal and therefore invertible.
Let us assume that any ideal generated by (n—1) elements has been

proved to be invertible. Let ¢=(c,,...,c,) be an arbitrary ideal generated
by n non-zero elements. Putting a=(cy,...,c,_;) and b=(c,) we have
¢c(anb) =ab

which shows that ¢ is invertible since a and b were assumed to be so
and products and factors of invertible ideals are invertible.

ReMARK. The relations I, IT and the distributive law expressed in
theorem 1 have a meaning in any lattice-ordered semigroup, but are in
general not equivalent, as may be shown by simple examples.

We shall now give two simple applications of theorem 3. The first one
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generalizes the well-known theorem that a Dedekind domain with unique
factorization is a principal ideal domain, namely

CoroLLARY 1. Any Priifer ring with unique factorization is a principal
ideal domain.

Proor. It suffices to show that the greatest common divisor d of any
two elements ¢ and b (+0) may be expressed as a linear combination
of @ and b. Dividing by d we may well assume that a and b are relatively
prime, so that (a)n(b)=(a-b). By property II of theorem 3 we obtain
(@,b)- (ab) = (ab) and thus (a,b)=R=(1).

As a second application we shall give the following characterization of
Dedekind domains:

COROLLARY 2. An integrally closed domain R is a Dedekind domain if
and only if any ideal in R is an intersection of finitely many fractionary
principal ideals.

Proor. The “only if”’ part is well known. To prove the “if”’ part we
notice that the assumption that any ideal a may be expressed as an
intersection of principal ideals involves that a=a, where q, denote the
v-ideal generated by a, that is, a,=M)5,(x), (x) running through all
fractionary ideals containing a. By Krull [6] § 46 this implies that the
integrally closed domain R is a Priifer ring. On the other hand part II
of theorem 3 ensures that any finite intersection of principal ideals
(more generally of finitely generated ideals) in a Priifer ring is finitely
generated. Then R is both Priifer and Noetherian, hence a Dedekind
domain.

The next criterion for Priifer rings concerns relations between the
quotient of ideals, namely

THEOREM 4. An integral domain R is a Prifer ring if and only if one
of the following equivalent conditions is satisfied:

I. (a+b):c=a:c+b:c for arbitrary ideals a and b, and finitely
generated ¢;

II. c:(anb)=c:a+c:b for finitely generated a and b, and arbi-
trary c.

Proor. For any multiplicative system § in R the relation (Rga: Rgb)=
Rg(a:b) is easily checked for ideals a and b in R, provided b is finitely
generated. Since sums and intersections, as already pointed out, are
preserved by passage to quotient ring, the properties I and II follow for
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a Priifer ring by considering the local rings R, for maximal p where I
and II clearly are satisfied, because R,’s ideals are totally ordered by
set inclusion.

By the proof of the remainder of the theorem we shall be utilizing
the following lemma which actually in a slightly disguised form appears
already by Dedekind [2]:

Lemma 3. The integral domain R is a Prifer ring, if any non-zero
tdeal, generated by two elements, is invertible.

A detailed proof may be found in Jaffard [5].

To conclude the proof of theorem 4 let us suppose that I holds. For
any two non-zero elements a and b in R property I implies by setting
a=(a), b=(b), c=(a,b) that

(*) R =(1) = (a): (0)+(D): (a) .

Hence there exists an element xz € (a):(b) and ye (b):(a) such that
l=x+y. Since ab | b(bx) and ab | a(ay) the relation

ab = a(bx)+ b(ay)

shows that (a,b)-(bx,ay) = (ab), that is, (a,d) is invertible.
Similarly, if IT holds good, we obtain (*) by putting

a=(a), b= (b)9 ¢ = (a) n (b)’
which as above implies that (a,b) is invertible.

Finally we shall mention and comment on the following well-known
theorem (see for instance Jaffard [5]).

THEOREM 5. The integral domain R is a Prifer ring if and only if
a-b=a-c, a being a finitely generated ideal +(0), implies b=c.

On this occasion it might be of some interest to notice the following
fairly obvious consequence. Recalling that an ideal a in the integral
domain R is called integrally closed in R’s quotient field K, if any ele-
ment z in K integrally dependent on g, i.e. satisfying an equation of the
form .

2+ a1+ ... +a, =0, a€al, 1ZiZn,
belongs to a, it is easily seen by Jaffard [5] (corollaire 1, p. 43), that the
restricted cancellation law expressed in the above theorem is equivalent
to the condition that any finitely generated ideal be integrally closed.
Moreover, since any ideal in a Priifer ring is integrally closed, theorem 5
immediately yields
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CoroLLARY. The integral domain R is a Prifer ring, if and only if any
tdeal in R is integrally closed in R’s quotient field.

In connection with theorem 5 the question naturally arises for which
rings the unrestricted cancellation law holds for the multiplicative semi-
group of all ideals, that is, for which rings will ab =ac, a #(0), not neces-
sarily finitely generated, imply b=c? One might believe that such a
ring must be Noetherian and hence a Dedekind domain. This, however,
is disproved by choosing for R the ring of all integers in the infinite
algebraic number field obtained by adjoining to the rational number
field @ the set of all square roots of rational numbers.

We shall finish this paper by giving some necessary and sufficient
conditions for a ring that its ideals satisfy the above cancellation law.

THEOREM 6. For an integral domain R the following conditions are
equivalent :

I. The cancellation law holds for the semigroup of R’s non-zero ideals,
that is ab=ac, a+(0) = b=c.

II. R is a Prifer ring for which any proper prime ideal p is maximal
and satisfies the condition p2+p.

III. For any maximal ideal p in R the quotient ring R, is a discrete
valuation ring.

IV. The semigroup of R’s non-zero ideals may be embedded in a direct
product of ordered cyclic groups.

V. Any quasi-primary ideal (i.e. the radical being a prime ideal) is
irreducible, and N;_,am=(0) for any ideal a+ R.

VI. R is a Prifer ring for which N;,_,a"=(0) for any ideal a=+ R.

Proor. We carry out the proof in the following steps: I = II = III
= IV =1 IIl = V = II and III < VI.

I = II: That a ring with the property I is a Priifer ring follows from
theorem 5, and the relation p2+p clearly is a consequence of the can-
cellation law. If the second condition in II were not fulfilled there would
exist a prime ideal q#(0) and a maximal ideal p* for which q<jp*.
From this we shall derive a contradiction by proving that this would
imply the relation gp*=gq. This is done by showing the relation “lo-
cally”, i.e. by showing R, (qp*)=E,q for any maximal ideal p. We have
to distinguish the cases p =+p* and p=p*. For p+p* the relation fol-
lows from Bp*=ER, so that

Rp(q'p*) = RpQ'Rpp* = qu .

For p=p* we take into account that R, is a valuation ring, R being a
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Priifer ring. Let ¢ be an arbitrary element in B q and p some element
belonging to Ep but not to E,q. Since ¢ { p, and R, is a valuation ring
we must have p|q, and therefore we can find an r € R, for which ¢ = pr. Be-
cause pr € R,q, p ¢ B ,q and R, is a prime ideal, B q must contain . Hence

an = Rpp'qu = -Rp(qp*)

which together with the trivial converse inclusion shows the desired
relation.

IT = III. Since R is a Priifer ring R, is a valuation ring for maximal
p. Moreover, on account of the additional assumption on R’s prime
ideals, R, (as a valuation ring) must have rank 1 and be discrete.

ITT = IV. This implication follows from the fact that the ideals of R
are uniquely determined by their local components, and the group of
divisibility for R, is a cyclic ordered group.

IV = 1. Obvious.

IIT = V. Since any proper prime ideal in an integral domain satisfy-
ing III clearly must be maximal, we first just have to prove that any
primary ideal in R is irreducible. Let a be a primary ideal = (0) with
Rada=p’. Suppose we have a decomposition a=bnc; the ideals of R,
being totally ordered by set inclusion, the relation

Rya = Rybn Ryc

involves aR,,=bR,, say. Since aR,=bR, (=R,) for any p +p’, we see
that a=b.

The proof of the second assertion N;_ a”=(0) for a+R is done in-
directly. Assume, there existed an ideal b 4 (0) such that b <a” for all n;
we choose a maximal ideal p 2a and passing to the local ring R, we get

(0) + Rb = (Rya)* < (Byp)"

for all natural numbers », contradicting the fact that R, is a discrete
valuation ring.

V = II. We first show that any proper prime ideal p is maximal.
In fact, suppose there existed prime ideals p and g so that (0)<q<p < R.
For any positive integer » p*nq is quasi-primary, since Rad(p*nq)=gq
and hence irreducible. The inclusion p*<q obviously being impossible
we must have q<pn.

This holds for all » and therefore (0)+q<(;,_,p” contrary to the
second assumption in V. Since p2+p is an immediate consequence of
N, p™=(0), it only remains to be shown that R is a Priifer ring. Since
any proper prime ideal p is maximal, there is a 1—1 correspondence
(preserving set inclusion) between the p-primary ideals in B and the
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proper ideals in R,. Now, the p-primary ideals are totally ordered by set
inclusion, all of them being irreducible. This involves that R, is a
valuation ring and R therefore a Priifer ring.

IIT <= VI. To establish this equivalence we just have to remark that
the valuation ring R, is discrete if and only if N}_,(R,p)*=(0).

One final remark. Considering the well-known three axioms for a
Dedekind domain R,

a) R is Noetherian,
b) any proper prime ideal is maximal,
¢) R is integrally closed,

together with the obvious fact that R is a Dedekind domain if and only
if R is Noetherian and Priifer, one might think there were some connec-
tion between Priifer rings and domains with the properties b) and e¢).
However, apart from the almost trivial statement that a Priifer ring
necessarily is integrally closed no such connection exists. Choosing for R
a valuation ring of rank >1 we see that b) need not be fulfilled for a
Priifer ring. Furthermore, Krull [7] has given an example of an inte-
grally closed local domain with exactly one non-zero prime ideal, which
is not a valuation ring, and thus made clear that the conditions b) and
¢) do not ensure that R is a Priifer ring.

ADDED 1IN PROOF. After this paper has been printed, it has come to
my notice, that theorem 2 is in substance a consequence of a result
(obtained by other methods) in K. Asano, Uber kommutative Ringe, in
denen jedes Ideal als Produkt von Primidealen darstellbar ist, J. Math.

Soc. Japan 3 (1951), 82-90.
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