APPROXIMATION THEOREMS OF BOREL AND FUJIWARA

ASMUS L. SCHMIDT

1. Introduction.

The purpose of this note is to give a unified proof of one theorem of Borel [1] and two theorems of Fujiwara [2] [3], stated as theorem I, II, III, respectively, below. However, I believe that the part of theorem III dealing with the approximation of a rational number ξ is new. The method of proof is based on an idea of Khintchine [4].

For any real number ξ let $[a_0, a_1, \ldots]$ be the regular continued fraction expansion (if ξ is rational, we consider any of the two continued fraction expansions), and let $p_0/q_0, p_1/q_1, \ldots$ be the corresponding convergents. The properties of continued fractions to be used are

- (1) a_0 is an integer; a_n is a positive integer, $n \ge 1$.
- (2) $q_{n+1} = a_{n+1}q_n + q_{n-1}, n \ge 1$, with $q_0 = 1, q_1 = a_1$.
- (3) $p_n q_{n-1} p_{n-1} q_n = \pm 1, \ n \ge 1.$
- (4) ξ lies between two consecutive convergents.

With this notation theorems I, II, III may be formulated as follows.

Theorem I. At least one of p_{n-1}/q_{n-1} , p_n/q_n , p_{n+1}/q_{n+1} , $n \ge 1$, satisfies the inequality

$$\left|\xi - \frac{p}{q}\right| < \frac{1}{5^{\frac{1}{2}}q^2}.$$

Theorem II. If $a_{n+1} \ge 2$, $n \ge 1$, then at least one of p_{n-1}/q_{n-1} , p_n/q_n , p_{n+1}/q_{n+1} satisfies the inequality

$$\left|\xi - \frac{p}{q}\right| < \frac{1}{8^{\frac{1}{2}}q^2}.$$

Theorem III. If $a_{n+1} \ge 2$, $n \ge 1$, then either p_n/q_n or both of p_{n-1}/q_{n-1} , p_{n+1}/q_{n+1} satisfy the inequality

$$\left|\xi - \frac{p}{q}\right| \le \frac{1}{\frac{5}{2}q^2},$$

Received February 24, 1964.

where the equality sign can only occur if $\xi = a_0 + \frac{2}{5}$, n = 1, or $\xi = a_0 + \frac{3}{5}$, n = 2, and for such ξ only if the shorter form of the two continued fraction expansions is considered.

2. Two lemmas.

LEMMA 1. Let q, q' be positive integers. Then

$$\frac{1}{qq'} < \frac{1}{K} \left(\frac{1}{q^2} + \frac{1}{q'^2} \right)$$

whenever q'/q > f(K) or q/q' > f(K), where $f(K) = \frac{1}{2}(K + (K^2 - 4)^{\frac{1}{2}})$. In particular $f(5^{\frac{1}{2}}) = \frac{1}{2}(5^{\frac{1}{2}} + 1)$, $f(8^{\frac{1}{2}}) = 2^{\frac{1}{2}} + 1$, $f(\frac{5}{2}) = 2$.

PROOF. (8) is equivalent to $(q'/q)^2 - Kq'/q + 1 > 0$, which immediately yields the lemma.

LEMMA 2. Let $p/q \le \xi \le p'/q'$, where p, p', q, q' are integers with q, q' > 0 and p'q - pq' = 1. If either q'/q > f(K) or q/q' > f(K), then either

$$\left| \xi - \frac{p}{q} \right| < \frac{1}{Kq^2} \quad or \quad \left| \xi - \frac{p'}{q'} \right| < \frac{1}{Kq'^2}.$$

PROOF. By lemma 1, q, q' satisfy (8), i.e.

$$\frac{p'}{q'} - \frac{p}{q} = \frac{1}{qq'} < \frac{1}{K} \left(\frac{1}{q^2} + \frac{1}{q'^2} \right),$$

whence

$$\frac{p}{q} + \frac{1}{Kq^2} > \frac{p'}{q'} - \frac{1}{Kq'^2}.$$

This proves lemma 2.

3. Proof of theorems I, II, III.

- 1) If $q_n/q_{n-1} > \frac{1}{2}(5^{\frac{1}{2}}+1)$, either p_{n-1}/q_{n-1} or p_n/q_n satisfies (5) by (3), (4) and lemma 2 $(K=5^{\frac{1}{2}})$. If on the contrary $q_n/q_{n-1} < \frac{1}{2}(5^{\frac{1}{2}}+1)$, then $q_{n-1}/q_n > \frac{1}{2}(5^{\frac{1}{2}}-1)$. Hence $q_{n+1}/q_n = a_{n+1} + q_{n-1}/q_n > 1 + \frac{1}{2}(5^{\frac{1}{2}}-1) = \frac{1}{2}(5^{\frac{1}{2}}+1)$ by (1), (2), consequently in this case either p_n/q_n or p_{n+1}/q_{n+1} satisfies (5). This proves theorem I.
- 2) If $q_n/q_{n-1} > 2^{\frac{1}{2}} + 1$, either p_{n-1}/q_{n-1} or p_n/q_n satisfies (6) by (3), (4) and lemma 2 $(K = 8^{\frac{1}{2}})$. If on the contrary $q_n/q_{n-1} < 2^{\frac{1}{2}} + 1$, then $q_{n-1}/q_n > 2^{\frac{1}{2}} 1$. Hence

$$q_{n+1}/q_n = a_{n+1} + q_{n-1}/q_n > 2 + 2^{\frac{1}{2}} - 1 = 2^{\frac{1}{2}} + 1$$

by (2) and the assumption $a_{n+1} \ge 2$ of theorem II, consequently in this case either p_n/q_n or p_{n+1}/q_{n+1} satisfies (6). This proves theorem II.

3) If p_n/q_n satisfies (7) with strict inequality, we are finished. On the contrary assume that

$$\left|\xi - \frac{p_n}{q_n}\right| \ge \frac{1}{\frac{5}{2}q_n^2},$$

then by (3), (4)

$$\left| rac{1}{q_n q_{n+1}} = \left| rac{p_{n+1}}{q_{n+1}} - rac{p_n}{q_n} \right| = \left| \xi - rac{p_n}{q_n} \right| + \left| \xi - rac{p_{n+1}}{q_{n+1}} \right| \ge rac{1}{rac{5}{2}q_n^2}$$

or $q_{n+1}/q_n \leq \frac{5}{2}$, with strict inequality unless $\xi = p_{n+1}/q_{n+1}$ and

$$\left|\xi - \frac{p_n}{q_n}\right| = \frac{1}{\frac{5}{2}q_n^2}.$$

Now $q_{n+1}/q_n = a_{n+1} + q_{n-1}/q_n$, hence $a_{n+1} = 2$ and $q_{n-1}/q_n \le \frac{1}{2}$ with strict inequality unless $\xi = p_{n+1}/q_{n+1}$ and $q_{n+1}/q_n = \frac{5}{2}$.

In any case $q_{n+1}/q_n > 2$, so by lemma 2 $(K = \frac{5}{2})$ either p_n/q_n or p_{n+1}/q_{n+1} satisfies (7) with strict inequality, i.e. p_{n+1}/q_{n+1} does so, since p_n/q_n does not by assumption. If further $q_{n-1}/q_n < \frac{1}{2}$, $q_n/q_{n-1} > 2$, so by lemma 2 $(K = \frac{5}{2})$ either p_{n-1}/q_{n-1} or p_n/q_n satisfies (7) with strict inequality, i.e. p_{n-1}/q_{n-1} does so, since p_n/q_n does not by assumption. This proves the main case of theorem III.

There remains only to show that $\xi = p_{n+1}/q_{n+1}$, $q_{n+1}/q_n = \frac{5}{2}$, $a_{n+1} = 2$, $q_{n-1}/q_n = \frac{1}{2}$ leads to the exceptional case of theorem III.

By (3) q_{n-1} , q_n are relatively prime and by (1), (2) $1 = q_0 \le a_1 = q_1 < q_2 < q_3 < \dots$ This requires $q_{n-1} = 1$, $q_n = 2$, $q_{n+1} = 5$ and either n = 1 or n = 2 in which case $a_1 = 1$. Hence by (2) either $\xi = [a_0, 2, 2] = a_0 + \frac{2}{5}$ or $\xi = [a_0, 1, 1, 2] = a_0 + \frac{3}{5}$, where a_0 is an integer. In the first case

$$\frac{p_0}{q_0} = \frac{a_0}{1}, \qquad \frac{p_1}{q_1} = \frac{2a_0 + 1}{2}$$

both satisfy (7) with equality. Similarly with

$$\frac{p_1}{q_1} = \frac{a_0 + 1}{1}, \qquad \frac{p_1}{q_2} = \frac{2a_0 + 1}{2}$$

in the second case. This completes the proof of theorem III.

REFERENCES

É. Borel, Sur l'approximation des nombres irrationnels par des nombres rationnels,
 C. R. Acad. Sci. Paris 136 (1903), 1054-55.

- M. Fujiwara, Bemerkung zur Theorie der Approximation der irrationalen Zahlen durch rationale Zahlen, Tôhoku Math. J. 11 (1916), 239-42.
- M. Fujiwara, Bemerkung zur Theorie der Approximation der irrationalen Zahlen durch rationale Zahlen, Tôhoku Math. J. 14 (1918), 109–15.
- A. Khintchine, Neuer Beweis und Verallgemeinerung eines Hurwitzschen Satzes, Math. Ann. 111 (1935), 631-37.

UNIVERSITY OF COPENHAGEN, DENMARK