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APPROXIMATION
THEOREMS OF BOREL AND FUJIWARA

ASMUS L. SCHMIDT

1. Introduction.

The purpose of this note is to give a unified proof of one theorem of
Borel [1] and two theorems of Fujiwara [2] [3], stated as theorem I,
II, III, respectively, below. However, I believe that the part of theorem
III dealing with the approximation of a rational number & is new.
The method of proof is based on an idea of Khintchine [4].

For any real number & let [a4,a4,. . .] be the regular continued fraction
expansion (if £ is rational, we consider any of the two continued fraction
expansions), and let p,/qg, p1/94,. .. be the corresponding convergents.
The properties of continued fractions to be used are

(1) a, is an integer; a,, is a positive integer, n = 1.
(2) 1=t qp-1, n21, with %=1, ¢1=0,.
(3) Puln-1—Pnln==%1, 2L

(4) & lies between two consecutive convergents.

With this notation theorems I, II, IIT may be formulated as follows.

THEOREM 1. At least one of D, _1/qn_1 Pullns Pri1/Ini 1, satisfies
the tnequality
(5) g2

q

TaEOREM II. If a,,,22, n21, then at least one of D, 1/0n_1, Pnldn

Dn11/9ns1 Satisfies the inequality

< g

"

(6)

P 1
- < =
: Ql 8tg?
Tueorem I1IL. If a,. 122, n21, then either p,[q, or both of p,_1/qn-1,
Pri1/Tns1 SOtisfy the inequality
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where the equality sign can only occur if E=ag+ 2, n=1,0rf=a,+3%, n=2,
and for such & only if the shorter form of the two continued fraction expan-
sions is considered.

2. Two lemmas.
LemMA 1. Let q, ¢’ be positive integers. Then

1 1/1 1
® 7 <57
whenever ¢'[q>f(K) or qlq' > f(K), where f(K)=}(K + (K2—4)}). In par-
ticular f(51)=1(6t+1), f(8})=2t+1, f(§)=2.

Proor. (8) is equivalent to (¢'/q)>— Kq'[q + 1> 0, which immediately
yields the lemma.

LeMMA 2. Let plg<ESp'lq’, where p, p', q, ¢ are integers with q, ¢’ >0
and p'q—pq’ =1. If either q'[q>f(K) or q/q' > f(K), then either

p|_ 1 P
lem o gl

Proor. By lemma 1, ¢, ¢’ satisfy (8), i.e.

! 1 1/1 1
pp L 11,1y
9" 9

4

<
g 9 9¢ K
whence

p 1

P, 1
—_t— > .
9 K¢* ¢ Kq*

This proves lemma 2.

3. Proof of theorems I, II, III.

1) If ¢,/g, 1> 3(51+1), either p, 1/, 1 OF p, /g, satisties (5) by (3),
(4) and lemma 2 (K=5%). If on the contrary ¢,/q,_,<%(5%+1), then
qn-—l/qn > %(51& - 1) Hence Qn+1/qn=an+l+qn—1/qn >1+ %(5%'— 1) = %(5i + l)
by (1), (2), consequently in this case either p,/q, or p,,,/q, ., satisfies
(5). This proves theorem I.

2) If ¢q,/9,-1>2+1, either p, ,/q,, or p,[q, satisties (6) by (3),
(4) and lemma 2 (K=8). If on the contrary g¢,/q,.,<2!+1, then
@n-1/9n>2t—1. Hence

Qn+1/q'n = a‘n+1+qn——1/Qn>2+2&”l = 241
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by (2) and the assumption a,,, =2 of theorem II, consequently in this
case either p,/q, or p,.,/q, , satisfies (6). This proves theorem II.

3) If p,/q, satisfies (7) with strict inequality, we are finished. On the
contrary assume that

1
‘f—& Z 5
qn 29n
then by (3), (4)
1
= (P _Pul IE—&‘ + lf—p'”l 25
Inn+1 9n+1 9n n 9n+1 5qn

or ¢,.1/9,<3%, with strict inequality unless &é=p, /¢, and

Ig—&b 5 : 2"

qn 29n
Now ¢,,41/9, =11+ ¢_1/q,, hence a, ., =2 and ¢, _,/q,, < } with strict in-
equality unless £=p,1/¢,.1 and ,.1/¢, =3

In any case g, ,,/9, > 2, so by lemma 2 (K =3) either p,[q, or p,,1/¢n:1
satisfies (7) with strict inequality, i.e. p,,1/q, ., does so, since p, /g, does
not by assumption. If further q,_ /9, <3, ¢,/¢n-1>2, so by lemma 2
(K =3) either p, /g, or p,/q, satisfies (7) with strict inequality, i.e.
Pp-1/0n—1 does so, since p,[q, does not by assumption. This proves the
main case of theorem III.

There remains only to show that &é=p,.1/9,1, 9ni1/9n=3% An:1=2,
919, =% leads to the exceptional case of theorem III.

By (3) ¢,-1. ¢, are relatively prime and by (1), (2) l1=¢,Sa;,=
¢1<93<¢q3<.... This requires ¢, _;=1, ¢,,=2, ¢q,.,=>5 and either n=1
or n=2 in which case a,=1. Hence by (2) either {=[ay,2,2]=a,+ % or
&=[ay,1,1,2]=a,+ £, where q, is an integer. In the first case

Po _ % P 20+

N =

7 1 T 2
both satisfy (7) with equality. Similarly with

P G+l p1_ 2a,+1

b

4 1 qq 2

in the second case. This completes the proof of theorem III.
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