MATH. SCAND. 14 (1964), 106—110

A BOUNDARY PROBLEM
FOR ANALYTIC LINEAR SYSTEMS WITH DATA ON
INTERSECTING HYPERPLANES

JAN PERSSON

1. Introduction.

Letx=x,,...,x, be coordinates in C* and put D =d[ox, x*=2,". . .x,*",
D*=(9]ox,)™. . .(0]0x,)*", |&|=0;+ ... +0x,. When

P = P@,D) = > a,(x)D*

is a differential operator we say that « is an index of P if a (x)+0.
The set of indices of P will be denoted by (). The order of P is the maxi-
mum of |x| as « ranges over (P). When f is analytic, we write

f=0@"
when f(x)=2%g(z) with g(x) analytic. An equivalent condition is that
2,=0, j<oy = DJf=0.
Notice that if f is analytic at the origin, the equation
Dy = f, u = 0(x%)

has a unique solution holomorphic at the origin.
We say that an index # dominates a set of indices § if there exists a
vector a=(a,,...,a,) with non-negative components a; such that

xeS = ax<af.

Here ax is the scalar product a,x, + . . . +a,x,. The geometrical meaning
of this is that § is outside the convex hull of all y such that y, £ «,,.. .,
Yn S, for some « in 8. When % dominates §; for i=1,...,l we say
that the domination is uniform if

x€eS;, = ax<af®

is true for all 4+ and a vector ¢ with non-negative components which is
independent of s.
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THEOREM. Let

(1) Duyx) = éPi,-(x,D)u,-w) + fil@),  i=1,...1,
1

be a system of partial differential equations near the origin with the boundary
conditions )
(2) u;—g; = 0@, i=1,...1.

Let P, f; and g; be analytic at the origin. Asswme further that
(3) p® dominates (P, )U ... U (Py)
uniformly and that there exist integers my,. . .,m; such that

(4) order Pﬁ < m;—my;+ |B9)

for all ©,5. Then the boundary problem (1), (2) has a unique holomorphic
solution w in a neighbourhood of the origin.

The condition (4) is fully relevant only when I>1. If I=1, then (1),
(2), (3) and (4) reduce to

(5) Diy = P(x,Dyu + f, w—g = O(?), order P<|f|,
(6) p dominates (P) .

The last condition is fulfilled if, e.g.,

(7) xe(P) = x, <P,

because then we can take a=(0,...,1). Under the assumptions (5) and
(7), the theorem is due to Hormander [4] and generalizes older results
of Darboux, Goursat and Beudon (see Hadamard [3]). That (7) can be
replaced by (6) was also observed by Hérmander (oral communication)
and I thank him for his permission to publish the proof. For systems,
i.e. when I> 1, the theorem is new. The special case when all D*® equal
D; and no P contains indices &« with «; 0 is due to Garding, Kotake and
Leray [2]. Another special case, extendable to non-linear systems, is
due to Friedman [1]. — Our proof is a combination of the proof of Hor-
mander and that of Garding, Leray and Kotake.

2. Proof of the theorem.

Putting v=u—g we see that it suffices to consider the boundary prob-
lem

(1) D, = 3 P(x,Dy; + fi, v = 0(@"”).
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To prove that (1) has a unique analytic solution we proceed in two steps.
First, following Hormander, we use (1.3) to make the coefficients of the

small by a dilatation of the coordinates.
We know that there exists an a=(a,,...,a,) with non-negative com-
ponents such that
a€(Py) = afP>ax.
Put

x; = e"ix;, 7>0.

Then, if the coefficients and the f; are analytic for
le| = ||+ ... +|z,] SR <1

the new coefficients and the new f; will be analytic for 3¢ ™[x,/|< R
and hence also for |2'| < R. Further, the new coefficients are obtained
from the old ones by the formula

agla’) = Py, (2)
and tend to zero uniformly when t — c. Hence it suffices to prove the
theorem when the coefficients of the P,; are small.

To proceed further, we shall use an elementary lemma stated by

Hoérmander [4] with a slightly different notation.

Lemwma. If v(x) is analytic for [x]<R<1, if a>0, C>0 and

|Dyo(x)| = C(R—z])~*1,  a=0 = v(x)=0,
then
[v(@)| £ Ca(R—Jz|)~*1.
Conversely, if
lv(@)| = C(B—|x|)~¢
then
[D(@)| = Ce(a+1)(R—|z|)=*1.

We shall solve (1) by successive approximations putting
(2) D%, =3 Pyvi o + f5 v, = 0@,

where v; ¢=0. It is clear that this determines the v; , uniquely. The
functions
Wi, = U5~ Vg1 r>0

satisfy the same recursion formulas with f=0. We are going to show
that there exist constants ¢ and C such that
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(3) lwi,| < Co™la™id ()= TrmD

for all . Here |x| <R, s;=|f®|, s=maxs; (1) and d(z)=(R - |z|), and
we have assumed that all m, are positive, which is no restriction. In
fact, (3) holds for r=1 if C is large enough. Assume that it holds for 7.
Then, by the second part of the lemma, we get

|D*w; .| < C’c"‘lymfel“!(m_l_mj_i_ IO‘I)M d(x)—(1'8+m7'+|zx|) )
Now for « € (P;;) we have, by (1.4),
|| +m; < my+s;, < my+s < M+s

where M =maxm,, so that, in this case

[ D"‘wj 'rl < Cer—1pmi 68+M ((7‘ + 1) s+ M)mi—mj+'9i d(x)—((r+1)s+mi) .

Since
(14 1)s 4+ MY™—mit = ¢™iti(s 4 sfr+ M [r)™ s + s[r+ M [r)™
< (28 + M)8+M7'mi+si
for all =1, putting
co = 28s+M,

we also get
|D0¢w].’ r| < Cct (coe)erM pmitsi d(w)—((r+1)3+mi) .
Now let

y = max max 3 3 |a;;, ()] -
Rl<B ¢ J «

Then, since (2) holds for w with f=0, we get

| Dﬁ(i)wi, il < Co 1 7(006)8+M piSi ()T Ds+mi)
so that by virtue of the first part of the lemma
Crcr—ly(coe)s+M7.mi+si((r+ 1)8 +mi_ 1)—-51' d(x)—((r+1)8+m¢)

Iwi, r+1| <
< O Ly(cge)™ M (r + 1)™i d(a)~(@+Dstmi)
Hence, if

¢ = V(coe)s+M ’

(3) holds for all ». Now y can be chosen arbitrarily small and if we make
it so small that ¢<R*® then c/d(x)<1 for small x so that the series
So—1w; () converges to a holomorphic solution of (1) in a neighbour-
hood of the origin.

If v satisfies (1) with f=0 then w,=v,r=1,2,.. ., satisfies the recursive
formula (2) with f=0 and hence by what we have proved v=w, tends
to zero if r — oo and p is small enough. Hence v vanishes. The proof if
complete.
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