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TEMPERED DISTRIBUTIONS
IN INFINITELY MANY DIMENSIONS II,
DISPLACEMENT OPERATORS

P. KRISTENSEN, L. MEJLBO and E. THUE POULSEN

1. Introduction.

Summary of results.

In a previous paper [5] (in the sequel quoted as I) the theory of tem-
pered distributions was generalized to certain spaces of infinitely many
dimensions. Explicit representations were given for two spaces of testing
elements for such generalized tempered distributions, viz. the minimal

complete space € and the maximal (complete) space ©. These two spaces
are carrier spaces for representations of a pair a,a* of canonical field
operators (precisely speaking, a pair of operator valued distributions).
In the terminology of the physics literature, a and a* are, respectively,
annihilation and creation operators for neutral spin zero bosons.

In the present work we continue the mathematical study of tempered
distributions in infinitely many dimensions. In particular, we study dis-
placements of the canonical pair, whereby we understand transformations
of the form

a - a—f = a;,
a* —> a*—f* = a*,
where f is a tempered distribution over R, viz. fe &*. Here f* denotes
the conjugate of f in the sense of the natural conjugation in the space
&* of tempered distributions.
Following some preliminary work in Section 2, we prove in Section 3

that such a displacement can always be represented by means of an inter-
twining operator D(f), called the displacement operator, satisfying

D(f)a = (a—f)D(f) ,
D(f)a* = (a*=f*)D(f) .

Here D(f) 1is a continuous linear mapping from € into ©*, the latter space
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being the dual of 8. For all fe &*, D(f) is determined uniquely up to
a numerical factor.

Thus, D is a mapping from & * into LG, %*) (the space of continuous
operators from € into G* provided with the topology of uniform con-
vergence on bounded sets). In Section 4 we prove that D is continuous
and differentiable from F* into L(S,E*).

In general a displacement is not a unitary equivalence. It is implied
by the work of Géarding and Wightman [3] that unitary equivalence is
obtained if and only if f € 5, where the Hilbert-space # is the comple-
tion of & in the scalar product norm ||-|. For the sake of completeness
we rederive this known result in Section 5. We remark that the pair
a;,a;* belongs to one of the continuous representations (cf. [6]) whenever
feF* but f¢&#. The main result of Section 5 is: Subject to a suitable
normalization, the displacement operator D(f) may be extended to a con-
tinuous linear mapping from & onto S if and only if f € . This extension
is unique and preserves the scalar product. Thus the maximal space & is
invariant under displacements in .%#.

Scattering of neutral spin zero bosons on an external source.

The remaining part of this introduction is devoted to an application
of the above results to quantum physics.

The scattering of neutral spin zero bosons on an external source offers
the simplest non-trivial example of an application to quantum field
theory of the theory of tempered distributions in infinitely many vari-
ables. Let ¢ be the time variable, let f(¢) be a one parameter family of
elements in &* guch that

limt—>—oof(t) =0,

and let a,a* be a pair of time independent canonical field operators.
The scattering process is now described by the pair of time dependent
fields operators a(t), a*(t) defined as

a(t) = a’_f(t) ’

(1.1) a*(t) = a*—f*(t).

In particular, the total scattering is given by the field operators for the
so-called outgoing field, viz.

Tout = a(eo) = a—f(oo) s

Gy, = a*(0) = a*—f*(c0).

The axiom of unitarity requires that this total scattering be a unitary
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equivalence, i.e. that a unitary mapping S, called Heisenbergs S-matrix,
exists such that

— * * y %
Aoy, = S*aS and al, = S*a*S.

Hence we have the well-known result that f(co) € # is required by
unitarity. From now on we assume that this be the case.

However, according to the axioms of canonical quantum theory, uni-
tarity is required not only for the total scattering, but for each time in-
stant separately. This assumption is weaker than that of the existence
of a Hamiltonian. Thus f(¢) € # for all values of the time variable is a
necessary condition that canonical quantum theory hold. This fact was
first pointed out by van Hove [4] and Friedrichs [2]. If (1.1)is a unitary
equivalence for all values of ¢, we may write

a(t) = U*(@t) aU() ,
a*(t) = U*(t) a*U(?) ,

where U(t), the U-matrix of Dyson, is unitary.
If, further, f(¢) is differentiable, then U(¢) satisfies the equation of

motion . . .
iU(t) = i(a*(f @) —a(f()%) Ut
Under suitable conditions on the family f(¢) as a function of ¢, one has

lim,, U@t =1,
lim, . U@®) =8,

where 1 denotes the identity mapping and S is Heisenbergs S-matrix.

The results of the present paper show that even in the case that there
exist values of the time variable ¢ such that f(¢) ¢ 5, it is possible to save
a continuous interpolation in time between the identity mapping and S
provided only that the family f(¢) of tempered distributions converges
pointwise on testing functions to an element f(oco) of #°. The precise
result is this:

Let f(oo) € H and let f(t) € F*, —oo<t<oo, be such that lim, ,f(t)=
f(o0) in F*. Then the corresponding family of displacement operators may

be chosen such that, in the topology of L(%,%*),
tim,.,.. D(f©) = D(f()

Further, D( f(oe ) has a unique continuous extenswn to a wnitary operator
S in the Hilbert-space  obtained by completion of € in the scalar product
norm |||-|]| (cf. Corollary 1, p. 144, and Lemma 6, p. 147).
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Of course S becomes identical with Heisenberg’s S-matrix for the
scattering process considered.

If, in particular, f(¢) is differentiable, it follows from Corollary 2,
p. 145, that D(f (1)) satisfies the equation of motion

iD(f(t)) = ia*(F &) D(f () —iD(/(t))a(f ()%) — 6@)D(f(2)) »

where 0 is a numerical function of ¢. According to the definition of D,
this equation may be written in the form

iD = HD iff (f,f) exists.

2. Survey of the theory of tempered distributions in infinitely many
variables and an extension theorem.
In this section we first give a brief summary of some of the notions and

main results of I, and then we add a general extension theorem (Theo-
rem 1).

General notions.

All vector spaces are assumed complex and provided with a locally
convex topology.

If §; and S, are locally convex spaces, then the space of all continuous
linear mappings from 8, into S, is denoted L(8S,, S,) and provided with
the topology of uniform convergence on bounded sets. In particular,
the space L(S,C) is denoted S*; its topology is the so-called strong
topology.

If S is a locally convex space, the completion of § is denoted compl S.
More specifically, we write comply S resp. compl,. S for the completion
of § in the topology J resp. in the topology determined by the norm |- |.

It T e L(8,,8,), then the dual operator T* € L(8,*,8,*) is defined by

(T*fp2y) = {fo T2y} .
If {-,-) is a scalar product on S, and if 7" and 7'* are linear operators
on § such that
(T*wy, 1) = {2y, T2y ,
then T' and T are said to be adjoint.

The space ™.

The space ™ may be identified with Schwartz’ space of testing func-
tions in R* for tempered distributions. In & there is defined a continu-
ous scalar product {-, > with the corresponding norm |-||, and continu-
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ous linear mappings b;,b;*, =1,2,...,n, which are pairwise adjoint with
respect to the scalar product and satisfy the well known commutation

relations
[bq,’ 7 ] - 6@]’ [bu ]] - [b j*] =0.

The topology of & is determined by the system of norms ||,
r=0,1,..., where ||¢||,2={p, (A")"p), p € . Here

i=1

has an inverse (A™)-1 e L(",%"). Thus |||, may be given a meaning
also for negative integers ». The norms ||-||,, =0, +1, +2,..., satisfy
the fundamental norm inequality

(2.1) 7 2 #l-lF in &7 r=0,%1,.

Note that |- [l;=]|-|l. The space &” contains a normed element y,, called
the cyclic element, which is characterized uniquely up to a numerical
factor of modulus 1 by b,y,=0, i=1,2,...,n

There exists a unique projection sym, € L(&", ¥") (sometimes simply
denoted sym) satisfying sym, y,=1vy, and

sym,, b, Z b;sym,, sym,b* = - z b;*
'L 1

In Schwartz’ representation, sym,, projects on the subspace of symmetric
functions. The symmetric part &, *=sym, #" of F" is given the same
topology as ™. The space 1=, 1is often denoted by &. As a matter
of convention, for n=0 we identify ¥°=.%,% with the complex field C
and define |ic||,=d,,c| for r=0, ce C.

The spaces (¥, ") are complete metrizable perfect spaces and hence
Montel spaces.

We define

o, = comply, S

Obviously s#," is a Hilbert space, and in virtue of the basic norm in-
equality (2.1) we have 7, <7, r=0,+1,.... For n=1, or (and)
r=0 we often omit the corresponding index. Thus, in particular,
H =H,'. Algebraically,

[oo]

y_'_n = n Hn
r=0
while for the dual spaces we have

g = J #,.
=0
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It may be shown that &,™ is the projective limit of the sequence of
contracting space #,*, r=0,1,..., and that &,»* is the inductive limit
of the expanding sequence #",, r=0,1,.... For the proof of the non
trivial parts of this statement we refer to I, Appendix B.

The complex conjugate of an element ¢ € & is denoted by ¢*. Then
(bip)* = —b;p* and (b*)*= —b*p*.

The space S.

The space © may be identified with a space of sequences (the Fock
representation of &) of the form

Y = {yos-- s ¥ps---} = {¥u}»

where y, € &#,». The topology of © is determined by the system of
semi-norms |||+||[,, r=0,1,..., where

NP2 =2 lwall,?
n=0

and © consists of all sequences for which all these semi-norms are finite.
In particular, & is a complete metrizable space, and perfect, and hence
© is a Montel space. We often write |||-||| instead of |||-]|],; this semi-
norm is the norm corresponding to the scalar product {{-,-)) given by

€@ = 3 ()

where @={p,}, ¥={y,} are elements of &.
On occasion it is convenient to exhibit the relationship between an
element ¥ € © and its representing sequence {y,} by the symbol

(2.2) ¥ =3 (n)Ha*O(y,) ¥, .
n=0
It will appear in the sequel that the right hand side admits an inter-
pretation as a convergent sequence in &, a fact which for the moment
is of no importance.
We define a pair of continuous linear mappings a and a* (called
canonical field operators) from & into L(S, ©) by the formulas

a(p*)¥ = 3 (n!)-&a*n@)((n_,_ 1)¥g, V’n+1>(1))lllo )
(2'3) n=0

o0

aX(@)¥ = 3 (n!)ta*"®(nt sym, (¢ ® v,-1)) P, ,
n=1
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where ¥ is considered given by (2.2). Here we have used the following
notation: For ¢ € & and y, € ¥, ¢ ® p,, denotes that element of F7+1,
which in Schwartz’ representation is given by

(@@ vu)ty,- - stpi1) = @) Yaltes - - -5 tnsa)
and {@,y,> denotes that element of #»-1, which is given by

fw*(t)wn(t, biolaye o v slpq) dE .

Later we shall use the symbols ¢, ® v, and {@,,, ¥, w, k=min(m,n),
defined analogously.

The mappings p® and (g, - )y are continuous, and the latter is uniquely
determined on &," by its values on elements of the particular form yp"®
as follows from I, Corollary (2.23), which we here reproduce in the form
of

Lemma 1. The elements of the form pyQyp® ... Q p=yp"®, pe L,
span a dense subset F,"® of F,".

Let ke L(&,¥). We define an operator K € L(S, €), called the nor-
malized bi-quantization of k, by

KY¥ =3 (n!)-ta*® (k™y V¥, ,

n=1

where the operator k™ e L(&,",.%.") is characterized by
kWyr® = n sym, (ky @ ¢*-D®).

The element in & corresponding to the sequence {1,0,0,...} is denoted
Y, and called the (normalized) vacuum element. Up to a numerical
factor of modulus 1, it is characterized uniquely by the equations
Pl =1, a(p)¥y=0, p € . Observe that K¥,=0 for all k € L(&, ¥).
As an immediate consequence of these definitions we have: a(p*) is
the adjoint of a*(¢), and for all p,p € &, the canonical commutation
relations o o
2.4 [a(p¥),a*(p)] = (P9,

[a(@*),a(yp*)] = [a*(p),a*(p)] = O

hold. If k is self-adjoint (with respect to the scalar product), then so is
its bi-quantization K, and

[K.a*(g)] = a*(kg) .
Let P, be the projection on ¥, viz. Py¥' = Wy, ¥)), and let H be
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the normalized bi-quantization of h=bb* € L(¥,¥). Then |[||¥]||,2=

(P, H™PY), and hence [[|¥,||l,=0, r=1,2,.... However, it follows
from (2.1) that (H + Py)~' € L(S,©), and that the norms ||| ||, defined
by

PG = (P, (H+P)WPyy, r=0%1,+2,...

are increasing. It is easily seen that (H + P,)"=H"+ P, for r>0, and
hence the family |||- |||, 7=0, £ 1, £ 2,. .., determines the topology of &.
We define

&)r = Complmm(r) @, r = O, + ].,. “e e

The space © is now the projective limit of the contracting sequence of
Hilbert-spaces {9,}, r=0,1,..., while the dual space &* is the inductive
limit of the expanding sequence {$_,}, 7=0,1,..., In particular, a sub-
set of ©* is bounded if and only if it is a bounded subset of some Hilbert-
space 9_,.

The space .
Obviously the subspace of & which consists of elements

(n1)Ha* O (y,)¥,

with a fixed » is a copy of £ *. Hence the direct sum © of these spaces
may be considered a subspace of &. Algebraically G is the space of all
sequences in (the Fock representation of) &, for which all but a finite
number of coordinate functions vanish. The space € is given the direct
sum topology. Operators a and a*, as well as bi-quantizations, are
defined by restriction from &. The properties of these restricted operators
relative to & are similar to their properties relative to &. For further
details we refer to I; let us only note that the dual space €* admits a
Fock representation in which elements T e ©* have the form T=
{Ty,Ty,...,T,,...}withT, € #*, and all such sequences belong to G

An extension theorem.

The mapping a**® from elements ¢"® e &, * into L(S, &) defined by
a*"®(p"®)=a*(p)* can by linearity be extended to a mapping from
&*»®, and further, in a standard fashion (cf. Lemma 1 and the proof
of the Theorem (3.27) in I), to a continuous linear mapping from &,»
into L(®,&). In a similar way we introduce a"®. Obviously a"®(g,*)
and a*"®(gp,) are adjoint for all ¢, e &, " The restrictions to € of
a*"®(g,) and of a"®(p,*) belong to L(@, %).
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THEOREM 1. The mappings a**® and a®® have unique continuous exten-
sions as given in the following table:

a*n@ an@

Fr > L(S*,G*) | yes | yes
L~ LG, Q) no yes
Fr* > L(€*,8%) | yes | no
L > L(G, %) yes | yes

For every f, € £,°* with f, & ™ and for every ¥ e & (¥ +0),
a*"O(f )V ¢ ©.

A similar theorem holds when & is substituted by g everywhere.

Proor. The proof is essentially of the same type as the proofs given of
similar (and in part equivalent) extension theorems in Section 4 of I.
We shall only consider the topological part of the argument in detail.

An elementary calculation based on (2.3), Lemma 1, and simple con-
tinuity properties leads to the formula

) ! 3
@07 = 3 () o

P U 2
valid for all elements @, ¥ € &, and all elements w, € . *. Writing
w, = (hm)ir (Rm)-ir ¢ p, = (hO)Es (h®)~1s g, |

and using the estimate (3.23) of I (or Cauchy—Schwarz’ inequality) and
(2.1), we now find the (not best possible) estimate

(2.5) K(D,a*" () D) = Nlwyll-y [[|Plllrsssm 1Pl »

valid for all pairs of integers r,s=0.

For fixed w, € £.» and r=0 this inequality shows that a*"®(w,) is
continuous from & with the topology of $_, into & with the topology
of @*. Since ©&* is the inductive limit of the sequence {$_,}, s > oo, it
follows that a**®(w,,) is continuous from & into &, when & is given the
topology of ©*. Since € is dense in &* and ©* is complete, it follows
that a**®(w,,) has a unique continuous extension (also denoted a*"®(w,,)
from ©* into &*.

Now let r be arbitrary. By continuity, the estimate (2.5) is valid for
Y e H_,< ©*, and since bounded sets in ©* are contained in and bounded
in some §_,, it follows that a**® is continuous from &, with the topo-
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logy of #", into L(©*,&*). Since &,"* is the inductive limit of the
sequence #",, r — oo, and since F," is dense in &, "* and L(S*, &*) is
complete, we conclude that a**® has a unique continuous extension
from & "* into L(S*, ©&*).

We have now proved the yes-part of the third line of the table and a
fortiori also the assertion concerning a**® in the first line of the table.

Since a**®(w,) and a"®(w,*) are adjoint in L(S,S), the mapping
a*"®(w,) € L(G&*,&*) is dual to the mapping a"®(w,*) € L(S,S). Now,
gince & is reflexive, passage to the dual mapping is an algebraic and
topological isomorphism from L(&, &) onto L(&*, &*), and the yes-part
of the second line of the table follows.

Since © < &* algebraically and topologically, we have

L(6,8) < L(&,8%*)
and

L(e*,e*) < L(8,&%)

algebraically and topologically, and the last line of the table follows from
the second and third.

The assertion concerning a"® in the first line is by duality equivalent
to the continuity of a**® from %" into L(S, &), and this follows in a
straightforward manner (cf. the proof of I, Lemma (3.36)), from the iden-
tity .

Hs a*n@(a)n) = z (':) a*n® (h(n)iwn) Hs—t
=0
and the estimate

la**©(w,)#(|? = (n+1)" [0/ [[[#]]* -

The yes-part of the theorem is now proved as far as © and &* are
concerned. That also the no-part holds is a trivial consequence of the
definitions (2.3). Finally, for the case of € and ©*, the proof proceeds
along similar lines for each summand- and factor-space separately, and
by the properties of the direct sum topology this suffices to verify the
said extension properties, and we have proved the theorem.

We conclude this section by the remark that with the literal inter-
pretation now possible, the right hand side of (2.2) converges uncon-

ditionally to the element ¥ € &. If in particular ¥ is an element of S
we sometimes write
¥ =2 (n)Hta*O(y,) ¥, .
n

Here, as well as in the sequel, we let a primed summation sign denote
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the sum of a series in which but a finite number of terms are different
from the zero element.

3. Displacement operators in @

Let fe #* and ¢ € &. In the sequel (g, f) denotes the complex con-
jugate of (f,).

DzrintTioN. Let fe £*. An operator D( f)eL(g, @*) is called a
displacement operator associated with f iff

(3.1) D(f)ale*) = (alg*)— @, ))D(f)
(3.2) D(f)a*(g) = (a*(p)—{f,))D(f)
for all p e &.

In this section we prove the existence and essential uniqueness of
displacement operators. We remark that in our framework the ‘“‘boundary
condition” D(f) € L( 8,8% roughly speaking is the weakest possible one.

Before stating the main theorem of this section we introduce some
further notation.

If fe &*, then f*® denotes that element of % »* which on elements
of the form ¢"® has the value

f®,9"®) = (f,p)

(cf. Lemma 1).
We introduce the operators a, and a;* (called the displaced field
operators) by
a *) = a(p*)— s s
(3.3) #(9*) = alg*)— <o, f>
a*(p) = a*(@)—<{f.9) >

for p e &, fe ¥*, and their “tensor powers”

af ( 7,) a(""@((wn’ fr®>(r)) >
(3.4)

*n@

z =1y (1) a9, p)

for y, € #.*. Obviously these operators are adjoint with respect to the
scalar product. Further, a/*® and a/**® are continuous from &," into

L(E*,&*).

THEOREM 2. Let fe F*. Then D(f) is a displacement operator asso-
ciated with f iff it is of the form
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(3.5) D(f)¥ = 3 (n!)Ha " O(yp,) Pl f]
for all ¥={p,} e, with
(3.6) f] = ¢ 3 () Hamm®((n ) frO)E

where ¢ ts some complex number.

Proor. First note that if D(f) is a displacement operator associated
with f, then it follows from (3.1) that D(f)¥, satisfies the equation

3.7) a(g*)T = {p, /)T

for all p € . We shall prove below (Lemma 2) that the complete solu-
tion to (3.7) is the one-dimensional manifold defined in (3.6).
Next, it follows from (3.2) that

D(f)a*®(¢"®) = a*"B(g"®)D(f)
for all p € &, and hence that
D(f)a**O(y,) = a*"®(y,)D(f)
for all y, € #*. Consequently, D(f) must have the form (3.5). Now
consider the mapping D(f) defined by (3.5) and (3.6). Since the mapping
a @ ()P [f] is continuous from &, * into ©*, it follows from the prop-
erties of the topology of G that D(f) eL(@’,@’*).

It is trivial that D(f) satisfies (3.2). To prove (3.1) we first remark
that by the commutation relations (2.4) we get

[a(p*),a*"®(yn®)] = nlp,p)a*VO (y»VE) .
Using this and Lemma 2 below, we find for ¥={yp,} e g
a(@)D(f)¥ = 3’ (n!))Fa"®((n+ 1)Ke, ppsrdw) Pol f1+
" +3 () Ha Oy )aig) Eilf]
= D(f)a(@*)¥ + D(fXp, /H¥ .
LrevMma 2. The complete solution in ©* to the equations
(3.7) wg)T =g, HT, @9e,
18 the one-dimensional manifold (3.6).
ProoF. Define (g, - ), € L(F®+D* Fn*x) by
o Tridw¥n) = Tris @ vn)
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and let T={T,} e ©*. It is easily seen that
(o]
T =3 (n)}a*&(T,)¥,
n=0

and o
a(p*)T = go(n!)—*a*n®((n+ 1)%<‘P»Tn+1>(1))yjo .

Hence (3.7) may be written in the form

S )50+ Dp, o) o = 3 (1) O, Lo

that is, (3.7) is equivalent to the recursion formula
(n+ 1)é<¢1 Thivo = <o, HTy, n=012...,
for which the complete solution is given by

T, =cmn)ifr®.
This proves the lemma.

For use in the next section we remark that for all f € &#* the displace-
ment operator D(f) (with constant ¢ in (3.6)) may be factorized

(3.8) D(f) = ¢D_(f)D.(f),

where

M8

D(f) = e = 3 (=1)*(n)a(f*)",

n

I
=)

M3

D_(f) = e# =

n

(nh)"ra*(f)".

0

Thus, for all ¥={y,}€ g,
D (f)¥ = 2 (n!)taO(y,)¥,,

D_(f)¥ = 3’ (n!)Fa*"O(y,) ¥ [f].
Obviously, D,(f) e L(& &) and D_(f) e L(S*, &*), and the dual of
D.(—f) is D_(f), viz.
(3.9) D_(f) = D(-f)*.
Furthermore,

(3.10)  D.(f)D9) = D(f+9), D_(f)D_(g) = D_(f+9)

for all f,g € F£*.
The proofs of these assertations are straightforward.
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4. Continuity and differentiability of the family of displacement
operators.

In the first part of this section we assume a common value of the
constant ¢ in (3.6) for all displacement operators, and without loss of
generality we may choose c=1. Then D is a non-linear mapping of #*

into L(@,%*). We prove in this section that D is continuous and even
differentiable.
Let ¢, € " By ¥,[¢,] we denote the element

l—pn[(pn] = (n !)“% a*" ®((pn)‘:p0

of €. The topology of L(@, %*) is determined by the system of semi-
norms

9pw, pe)(*) = sup SuP)l«d}: W,

®e B) weB(2

where B®D, B® run through all bounded sets in 8. By the properties of e
as a direct sum, the topology of L(g, @*) is already determined by the

system
QBn,Bm(°) = sup sup |<<gjn[(pn]? 'Tm[wm]>>l )

on€Bpn ymeBm

where B,,B,,, n,m=0,1,..., run through all bounded sets of ¥, * and
& ™, respectively. By (3.8) and (3.10) we have

D(f+g)—D(f) = D_(f)(D(g)—1)D(f)
and hence
<<Tn[(pn]’ (D(f+ g) - D(f)) Tm[Wm]))
= LD (=) Pl@al, (D(9) = 1)D () ¥nlpml)) -

Since D.(f) e L&, ©), we have that if B,c&™ is bounded, then
D_.(f)B,, is bounded in ©, and hence it suffices to prove that D is con-
tinuous at zero in &*. We first prove a lemma.

If B,<=%", then conv(B,) denotes the closed convex hull of B,, and
if B< %, then B" denotes the set of all elements in &%” of the form
PR ... ¢, g;eB fori=1,...,n. Then we have

Lemma 3. 4 subset B, <™ is bounded iff there exists a bounded subset
B< & such that B, <conv(B").

Proor. Assume first that B is bounded in . To prove that conv(B")
is bounded it is enough to prove that B™ is bounded (I, Lemma (A.4)).
If h;=0,b,* we have
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i

”991® o ®(pn”r2 <(P1® st ®¢m(h1+ "'+k'n)r(p1® v ®(pn>

2l - - lleall,

IIA

which verifies the boundedness of B”.

Next, assume that B, is bounded in #”. Let {y;} denote the ortho-
normal basis of Hermite elements in &. Then the elements y,=
Y, ® ...0y,, form an orthonormal basis in &7, and if ¢ € ¥, we
have the development

¢ = E CY s
re N1

the norms of ¢ being given by
Il = 3 (vl +nyle?,

where |y|=v,+ ... +v,. By Holders inequality it follows that
M= sup 3 oo

geBy ve N
is finite, and if we define

t = M_llcvlll("+l)’

, = sgn(;l'[cv[N(‘IH—I)]M’I/nwv1 ,

B = Lo 10 D 1my
(2

g

1= 2,3,...,n,
then for all ¢ € B, we have

p=249,®...0¢,, where > <1.
ve N reNn

To prove the lemma we therefore have to prove that if ¢ € B,, then the
¢,, are contained in some bounded set B< &, but this is an immediate
consequence of the boundedness of B, and Holders inequality.

For the sake of completeness we have included the proof of this lemma;
essentially the same result can be found in Ehrenpreis [1].

We now turn to the proof of the continuity of D at zero. From (3.8)
and (3.9) we get

(oulenl, (D) = Dl D) = @1+ @2+,

Q1 = LD (=)= 1), [@n], Prlvn))) ,
Q2 = <<Tn[(pn]>(D+(f) - l)lI’m[V)m]>> s

Without loss of generality we may assume m =n. An explicit calculation
then shows that

where
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Ql = 0 1)
0 for m=n,
Qz = 1)m-n (m—n)® f
(=1 ConCS 3 AP YD) or m>mn,
n—1

Q= 3 (= 1" 10000 © 700, (g ida)

where ¢, and c,,,, denote positive constants.
Consider one of the terms

Amnt = <f*(n-t)® ®f(m—t)®’ <‘pn$ "/)m>(t)>

of @5, and suppose that ¢, and y,, run through bounded sets B, and B,,
in £ ™ and & ™ respectively. By Lemma 3 there exists a bounded set B
in & such that ¢, and y,, can be represented in the form

o0

P = 2 - chl...k,,wk,® Qo ,

k=1 kp=1

Ym = z Z dll...llel® ®XI,,,’
L=1  Ilp=1

with all w;, and 1, in B, all ¢ and d non-negative, and Yc¢=<1, 3d<1.

It follows that

[l = Ifll5™ "2 sup llool*,

Ifllz = sup [{f,w)].
weB

where

Since this estimate holds also for t=n<m, we get

B, 8, D(f)—1) = P(I|fllz) 1]z »

where P is a polynomial. We have now proved

TaEOREM 3. The mapping D (with fixed constant ¢ in (3.6)) is continuous
from F* into LG, S*).

CororrArY 1. Let f(t) be a mapping of the real axis into F* with the
property that

lim,_, ., f() = f(c0)
exists in L*, and let c(t) be a complex valued function with the property that

lim,_, () = c(o0)
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exists. Let further D( f(2)) be defined with c(t) as the constant in (3.6). Then

i L(©, ©%).

Using the same methods as in the proof of Theorem 3, one proves

TarorEM 4. The mapping D (with a fixed constant ¢ in (3.6)) has for all
f.g € &* the property that

D(f+9)—D(f) = a*(@)D(f)— D(f)alg*) + o(f, 9) ,

where for all continuous semi-norms q on I(S, ©*) and for fixed f, q(o(f.9))
1s of the order p(g)? for some semi-norm p on F*.

We introduce the definition:

DeriNiTION. A mapping F from a locally convex space S; into a locally
convex space S, is called differentiable at f € S, iff there exists a continu-
ous real-linear mapping F(f; ) (called the differential of F) from S,
into S, such that

F(f+g9) = F(f)+ F(f; 9)+o(f.9) ,

where o(f,g) has the property that for every continuous semi-norm ¢ on
S, there exists a continuous semi-norm p on §; such that q(o (f, 9 )_
o(p )) in the usual sense.

Theorem 4 can then be formulated
TuroreM 4'. The mapping D (with a fixed constant ¢ in (3.6)) is differen-
tiable at all f € F* with the differential
D(f; 9) = a*(9)D(f)~D(f)a(g*) .

In particular we have

CoroLLARY 2. Let f(t) be a differentiable mapping of the real axis into
F* and let c(t) be a differentiable complex valued function. Let further
D(f(2)) denote the displacement operator with c(t) as the const(mt n (3.6).
Then D(f(t)) is differentiable from the real axis into L(8, &%), and the
derivative ts given by

D(f®) = a*(f ®)D(f (1)) — D(f(t)a(f(t)*) +

where f denotes the derivative of f.

dlogc (?) AL by,

Math. Scand. 14 — 10
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5. Displacement operators in & and in 9.

The displaced field operators a; and a,* defined by (3.3) satisfy the
canonical commutation relations

las*(@*),a*(y)] = {p,¥),
lag* () a*(¥)] = [afp*),a(y*)] = 0,

and a/(p*) and a,;*(p) are adjoint with respect to the scalar product in &.
According to Lemma 2 the equations

(5.2) a(@*) ol f] = 0

for all p € &, characterize a vacuum element W[ f] for these operators in
an essentially unique way. However, in general ¥ [f] is not an element
of @ or even of &*.

By § we denote the Hilbert space obtained by completion of & in the
norm |||-|||. It is easily seen that § admits a Fock representation and
that

(5.1)

9 ={¥={} | vac™ 1Pl2= 3 llp,lE<oof,
n=0

where ™ denotes the completion of &.* in the norm ||-]|.

In this section we investigate the conditions under which a displace-
ment operator may be extended to &, respectively to 9, as well as
properties of these extensions.

LemmA 4. The element W[ f] belongs to O iff fe .

Proor. In the Fock representation W [f] is given by W [f]=
{c(n!)-1fr®}, and the lemma follows.

If fes#, then
AR = 3 lel2@)-LfEn = [ef2elVIF .
n=0
For fe # (and hence in particular for f € &) we shall in the remaining

part of this section normalize the factor ¢ in (3.6) to be

C = e"%”f”z s
s0 that
NPl = 1.

We shall refer to the displacement operator defined in this way as the
normalized displacement operator.

LemMA 5. The element Y[ f] belongs to © iff fe &.
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Proor. It is trivial that if Y[f] € &, then fe &. Now observe that
for fe &,
/@2 = (@, (hy+ - .. +h,) ")
= 2 G-I, = 2Tl

81+...+8p=r1

since the norm system |- ||, is not decreasing. Hence,

PN S e 3 ar )2 2n < oo,

n=0
and the lemma follows.

In the proof of Theorem 1 we observed in particular that a**® maps
&,* into L(S,©). It then follows from (3.4) that a,**® maps £, ” into
L(©,©), and it is easily seen that a*"® maps # into L(9,9) provided
that f e 5. Hence we have

CoroLLARY 3. The operator D(f) maps 8 into O iff fe o, and D(f)
maps © into S iff fe &.

Levmma 6. If f € S then the normalized displacement operator D(f) has
a unique continuous extension to O, and this extension is a wunitary operator

Proor. By exactly the same reasoning as in Section 3 of I it follows
from (5.1) and (5.2) that for fe & (and hence by continuity also for
fe ) we have

LKD) ulyn)s D) P rlonl)d
= () a O () W[ f], (m!)ra ™D (g, ) Pl 1))
0 for n+m,

= Y Pny  for n=m .
Thus, for @, Y e 8 and f e o we have

D)2, D)) = KD, ¥)) ,

and since & is dense in 9, it follows that D(f) has a unique continuous
extension to , and that this extension (which we also denote D(f)) is
an isometry. That D(f) is unitary then follows from the fact that D(f)
and D(—f) are adjoint.

The unitarity of D(f) also follows from the following lemma, which
shows that apart from a numerical factor the operators D(f) constitute
a representation of the additive group 7.
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LeMmA 7. For f,g € S the normalized displacement operators D(f) and
D(g) satisfy
D(f)D(g) = e*™ /P D(f+g).

Proor. We have
D(f)D(g)a*(p) = af,(¢)D(f)D(g) ,
D(f)D(g)a(g*) = as.4(9*) D(f)D(g)
It then follows from Theorem 2 that
D(f)D(g) = kD(f+g)

for some complex number k. To evaluate & we calculate the vacuum
expectation value

L¥0, D)D) o)) = k¥, D(f+9)¥0) -
We find

K0, D(N)D(9)¥p) = KD(—=f)¥0. D(9)¥o)>
= V=11, ol

o0 __1 n
exp(— 3112 31l 3 2L g

n=0 n:
exp(—3IfI*—3lgl?—<f.9>)

Ko D(f+9)¥)) = exp(—3If+9IP) ,

and the result follows. — In particular, we get

—f) = D(f)* = D(f)™

and

for fe .

LemMa 8. Let fe &, and let H denote the normalized bi-quantization of
the operator h=>bb*; then

HD(f) = D(f)(H +a*(hf)+a((hf)*) + {f.1f))
holds from S into S.
Proor. For ¥ e & we have D,(f)¥ ¢ & and

D_(f)D(f)¥ = E(n' a*(f)" D (f)¥,

where the series is convergent in &€ (Corollary 3). Since H is continuous
from & into &, we get (pointwise in &)
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HD_(P)D.AF) = 3 (nl)* Hax(f)"D. ()
= 3 () A @A H e (f )t D)
= DY H+a*R)D.()
Furthermore, we have
HD.(f) = 3 H(= 17} alf )"

I
M3

0( — 1)"(n!)=* (H —na(f*)*~1a((hf)*))
D (f)(H +a((hf)*))

3
I

and

@) DAP) = 3 a0 (= 1) (n]) a4

2)( — 1)) al X ar(h) — na( f*)r-1f, )
D) a* (k) + L))

and the lemma follows.

We may now formulate the main result of this section.

TarOREM 5. If f € &, then the unitary mapping D(f) defined in Lemma 6
maps © onto &, and its restriction to S belongs to L(S, S).

- Proor. Let fe &, and assume ¥ € S. Then it follows from Lemma 8
that

WD) Pller = |II(H +a*(hf) +a((Bf)*) + If 12 P -

Since H +a*(hf)+a((hf)*)+|If],2 € L(S, S), it follows that D(f) is con-
tinuous from & with the topology of & into &, and hence that D(f)
has a unique extension belonging to L(S,&). This extension of course
coincides with the unitary extension of D(f) on &. Since D(f)-1=D(—f)
also maps & into S, it follows that D(f) maps © onto S.

Hence we may say that the maximal space @ is invariant under dis-
placements f € . Obviously, & is not invariant under any displacement
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other than D(0). We remark that there exist spaces of type © smaller
than & which are invariant under all displacements fe &. This is for
instance the case for the space of all ¥'={y,} € @ satisfying:

For each r=0,1,... there exists an M < c such that

20’)7/! M_n<'¢/1n, (hlhz e h’n)rwn> < 0.
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