ON LINEARLY MONOTONE CURVES IN THE PROJECTIVE n-SPACE

FR. FABRICIUS-BJERRE

In previous papers [3], [4] and [5] the author has studied the connection between two classes of curves in the projective space R^n : The strictly convex curves and the linearly monotone curves. In [3] and [4] it has been proved that any plane strictly convex curve is linearly monotone and, conversely, that any linearly monotone curve is strictly convex at any ordinary point, i.e., a point belonging to an open arc of order 2. Moreover, in [5], we have shown that in R^n , $n \ge 3$, any strictly convex curve is linearly monotone (Theorem 4.2, p. 228). On the following pages we shall show that, conversely, any linearly monotone curve in R^n is strictly convex at every set of n-1 points $P_0, P_1, \ldots, P_{n-2}$ such that the osculating plane at each of these has only the point of contact in common with the (n-2)-space determined by the n-1 points. This condition is satisfied if the n-1 points belong to the same arc of order n.

In Section 1 definitions of strict convexity and linear monotonicity are given. Section 2 deals with an auxiliary theorem on plane curves, and in Section 3 we prove the theorem stated above, on linearly monotone curves in \mathbb{R}^n .

1. Definitions

- 1.1. By an open or closed *curve* we shall mean a topological image in \mathbb{R}^n of a segment (including the endpoints) or a circle, respectively. The curves will be assumed n times differentiable, oriented and of bounded order. (A curve is said to be of bounded order if any hyperplane has at most finitely many points in common with it.)
- 1.2. An open or closed polygon in R^n , $n \ge 2$, is a sequence of segments $P_1P_2, P_2P_3, \ldots, P_{m-1}P_m$, resp. $P_1P_2, P_2P_3, \ldots, P_{m-1}P_m, P_mP_1$, its sides. The order of the polygon is said to be n, if m > n and no hyperplane has more than n points in common with it. (In case the hyperplane contains sides of the polygon, only their endpoints are counted.) In [5, p. 226-227]

Received January 1, 1963.

it was shown that an open polygon Π_n of order n can be changed to a closed polygon $\overline{\Pi}_n$ of order n, and conversely, by adding, resp. removing, a suitably chosen segment.

A polygon of order n=1 is by definition a finite sequence of segments on a straight line such that two consecutive segments have only an endpoint (or both endpoints) in common whereas two non-consecutive segments have no points in common. The polygon is called closed or open according as the segments make up the whole line or a segment.

The vertices P_1, P_2, \ldots, P_m of a polygon of order 1 form a monotone sequence of points on the (projective) line. The ordered set of the vertices of a polygon of order n in the (projective) R^n is called a monotone sequence in R^n [5, p. 225].

1.3. Let a hyperplane H have the m points $P_0, P_1, \ldots, P_{m-1}, \ m \geq n$, in common with a curve c, the points being taken in the order determined by the parametrization of the curve. The $chord\ P_i P_{i+1}$ is defined as that segment $P_i P_{i+1}$ which together with the arc $P_i P_{i+1}$ forms a closed curve of even order. The chords $P_0 P_1, P_1 P_2, \ldots, P_{m-2} P_{m-1}$ and, if c is closed, in addition $P_{m-1} P_0$, form a polygon Π inscribed in the curve and situated in the hyperplane H. If Π has order n-1, the vertices $P_0, P_1, \ldots, P_{m-1}$ form a monotone sequence in H, and the curve is called linearly monotone along the hyperplane H. The curve, as a whole, is called linearly monotone if it is linearly monotone along any hyperplane having at least n points in common with it.

For n=2 a curve which is linearly monotone along a line H determines an orientation of the line, namely by the cyclical order of the point P_0 , a point P_0' of the chord P_0P_1 , and the point P_1 . If $m \ge 3$, this orientation is also determined by the monotone sequence $P_0, P_1, \ldots, P_{m-1}$.

With a view to an application below, we observe the following: If a line l through a point P_0 on a plane curve c intersects c at a point $P \neq P_0$ (that is, l is not a local supporting line to c at P), and if c is linearly monotone along all lines through P_0 belonging to a neighbourhood of l, then c is also linearly monotone along l.

1.4. We consider a set of n-1 linearly independent points $(P_0, P_1, \ldots, P_{n-2})$ on a curve c in R^n . The curve is called *strictly convex* at the set $(P_0, P_1, \ldots, P_{n-2})$ if there exists at least one hyperplane H having these and no other points in common with the curve. The curve, as a whole, is called strictly convex if it is strictly convex at any set of n-1 linearly independent points (Barner [1]).

The n-1 points $P_0, P_1, \ldots, P_{n-2}$ span a linear space $B = B^{n-2}$. If c is contained in an angular domain bounded by two hyperplanes through B,

then c is strictly convex at the set $(P_0, P_1, \ldots, P_{n-2})$ since any hyperplane through B in the complementary angular domain has only the points $P_0, P_1, \ldots, P_{n-2}$ in common with c.

2. Plane curves.

2.1. Let c denote an open or closed curve in a projective plane. It is assumed to be linearly monotone along any line l_P which connects a fixed point P_0 on c with a variable point $P \neq P_0$ on c. The lines l_P are then oriented in accordance with the orientation of the curve, as described above. We denote by l_{P_0} the tangent to c at P_0 oriented in accordance with the orientation of c. Let e be a conic having P_0 as an interior point, and let u denote the polar of P_0 with respect to e. The line l_P intersects u in a point U_P and e in two points of which we choose that point E_P for which the triple (P_0, E_P, U_P) is in accordance with the orientation of the line. The point E_P is called the point of orientation of the oriented line l_P . Without restricting the generality the conic e may be regarded as a circle with centre P_0 .

To each point $P \in c$ corresponds in this manner a point $E_P \in c$. The mapping φ of c into e thus defined is continuous. Consequently, the image $\varphi(c)$ is closed and connected, hence a closed arc of e or the whole circle e. However, if P and Q are points on c both different from P_0 , the corresponding points E_P and E_Q cannot be diametrically opposite. This implies that the image $\varphi(c)$ is an arc contained in a semicircle, and that it cannot be a semicircle unless E_{P_0} is one if its endpoints.

If the arc $\varphi(c)$ is smaller than a semicircle, the curve c is contained in one of the angular domains bounded by the lines joining P_0 with the endpoints of $\varphi(c)$. Since a line through P_0 in the complementary angular domain has only P_0 in common with c, it follows that c is strictly convex at P_0 in this case.

Now, if P_0 is an ordinary point of c, that is, an interior point of a convex subarc of c, then E_{P_0} is an interior point of the arc $\varphi(c)$, and hence this arc is smaller than a semicircle. The lines joining P_0 with the endpoints of the arc $\varphi(c)$ are local supporting lines to c at points different from P_0 . If c is open, these lines may pass through the endpoints of c.

2.2. The above result has been deduced under the assumption that c is linearly monotone along every line l_P . However, because of the fact observed at the end of 1.3, it is still true if, for a *finite* number of lines, we replace the assumption of linear monotonicity by the assumption that each of these lines *intersects* c in at least one point different from P_0 .

Thus we have shown

Theorem 1. If a curve c is linearly monotone along the lines which connect an ordinary point $P_0 \in c$ with an arbitrary other point $P \in c$, with the exception of at most finitely many lines which intersect the curve outside P_0 , then the curve c is contained in an angular domain with P_0 as vertex and, hence, is strictly convex at P_0 .

2.3. If P_0 is a point of inflection of c, the point E_{P_0} may be an interior point of $\varphi(c)$, and the above conclusion that c is strictly convex at P_0 then still holds. This is also the case if E_{P_0} is an endpoint of $\varphi(c)$ and the diametrically opposite point on e is not a point of orientation. However, it may happen that E_{P_0} is an endpoint of $\varphi(c)$ and the diametrically opposite point is a point of orientation. Then c is not strictly convex at P_0 since the lines l_P then cover the whole plane. This can only be the case if the line l_{P_0} has at least one point different from P_0 in common with c and is a local supporting line to c at each of these points.

These remarks show that a curve linearly monotone as a whole is strictly convex not only at the ordinary points but in general also at the points of inflection, that is, it is strictly convex as a whole.

3. Curves in \mathbb{R}^n , $n \geq 3$.

3.1. Let c denote an open or closed curve in \mathbb{R}^n . We assume that c is linearly monotone along a hyperplane H, that is, there exists in H a polygon Π_{n-1} (or $\overline{\Pi}_{n-1}$) with vertices $P_0, P_1, \ldots, P_{m-1}, m \geq n$, which is inscribed in c. If c is open we replace the open polygon Π_{n-1} by the corresponding closed polygon $\overline{\Pi}_{n-1}$ (§ 1.2).

We consider the projection of c from a vertex P_i onto a hyperplane H_1 different from H. The intersection $H_1 \cap H$ is an (n-2)-space H'. We prove the following

Lemma. If c is linearly monotone along H, its projection c' is linearly monotone along H'.

To prove the lemma we shall show that the projection of $\overline{\Pi}_{n-1}$ into H' is a polygon of order n-2 and inscribed in c'.

Derry [2] has shown that the projection of a closed polygon \bar{H}_{n-1} into a hyperplane from a vertex P_i is an open polygon Π'_{n-2} whose sides are the projections of the sides of $\bar{\Pi}_{n-1}$, with the exception of $P_{i-1}P_i$ and P_iP_{i+1} . The polygon Π'_{n-2} may be closed without increasing its order by adding the projection $\sigma' = P'_{i-1}P'_{i+1}$ of that segment $\sigma = P_{i-1}P_{i+1}$

which together with the sides $P_{i-1}P_i$ and P_iP_{i+1} forms a polygon (a triangle) of odd order [2, p. 51].

Since a closed curve of even order is projected onto a closed curve of even order from a point outside the curve, the sides

$$P'_0P'_1,\ldots,P'_{i-2}P'_{i-1},P'_{i+1}P'_{i+2},\ldots,P'_{m-2}P'_{m-1}$$

(and, if c is closed, $P'_{m-1}P'_0$) are chords of c'. The union of the segment σ and the arc $P_{i-1}P_iP_{i+1}$ is a closed curve of odd order. For, a hyperplane through a point of σ which intersects the chords $P_{i-1}P_i$ and P_iP_{i+1} has an odd number of points in common with each of the corresponding arcs $P_{i-1}P_i$ and P_iP_{i+1} . Now, a closed curve of odd order is projected onto a closed curve of even order from a point even on the curve, and consequently even0 is a chord of even1. This finishes the proof of the Lemma.

3.2. Now we assume that the curve c is linearly monotone along any hyperplane H = H(P) which connects n-1 fixed points $P_0, P_1, \ldots, P_{n-2} \in c$ with a variable point $P \in c$. For any position of H the points $P_0, P_1, \ldots, P_{n-2}$ and P are vertices of a polygon Π_{n-1} (or $\overline{\Pi}_{n-1}$) and consequently linearly independent. The fixed points $P_0, P_1, \ldots, P_{n-2}$ determine a (n-2)-space $B = [P_0P_1 \ldots P_{n-2}]$.

Let α denote a plane which has only P_0 in common with B. By the projection from the (n-3)-space $[P_1,P_2,\ldots,P_{n-2}]$ onto the plane α the curve c is mapped onto a curve c'. The image P' of a point P is the intersection of the (n-2)-space $[P_1,P_2,\ldots,P_{n-2},P]$ with α , and the line P_0P' is the intersection of H(P) with α .

The projection of c onto c' may be decomposed into a sequence of projections from single points. First, by the projection from P_{n-2} onto the hyperplane $[\alpha, P_1, P_2, \ldots, P_{n-3}]$ the curve c is mapped onto a curve c_1 . Then this is mapped onto a curve c_2 by the projection from P_{n-3} onto the subspace $[\alpha, P_1, P_2, \ldots, P_{n-4}]$. Continuing in this way we end up with the projection from P_1 onto α , by which a certain curve c_{n-4} in a 3-space is mapped onto $c_{n-3}=c'$.

By repeated use of the lemma it is seen that c' is linearly monotone along any line P_0P' where P' is an arbitrary point of c' which is different from P_0 and from the projections $P'_1, P'_2, \ldots, P'_{n-2}$ of the corresponding points of c. If c' is contained in an angular domain V' then c is contained in an angular domain V such that $V' = \alpha \cap V$.

To make the application of Theorem 1 possible we have to add assumptions in order that P_0 be an ordinary point of c' and that the lines P_0P_i' for $i=1,2,\ldots,n-2$ intersect c' at points different from P_0 . These conditions will be satisfied if we assume that the osculating planes

 $\tau^2(P_i)$, $i=0,1,\ldots,n-2$, have only the point of contact in common with the (n-2)-space B. It is clear that P_0 will be an ordinary point of c', and since the tangent to c' at a point P_i' , $i \neq 0$, is the intersection of α and the hyperplane $[P_1P_2\ldots P_{n-2},\tau^2(P_i)]$, it cannot pass through P_0 , that is, the line P_0P_i' intersects c' at P_i' .

Using Theorem 1 we have then proved

Theorem 2. If a curve c is linearly monotone along every hyperplane which connects n-1 linearly independent points $P_0, P_1, \ldots, P_{n-2}$ on c with an arbitrary point P on c, and the osculating planes $\tau^2(P_i)$, $i=0,1,\ldots,n-2$, have only the point of contact in common with the (n-2)-space $B=[P_0P_1,\ldots,P_{n-2}]$, then c is contained in an angular domain V bounded by two hyperplanes through B and is strictly convex at the set (P_0,P_1,\ldots,P_{n-2}) .

The boundary hyperplanes of V are locally supporting hyperplanes for c and pass through a tangent or, if c is an open curve, possibly through an endpoint of c.

3.3. If the n-1 points $P_0, P_1, \ldots, P_{n-2}$ belong to the same arc b_n of order n, then the condition for the osculating planes $\tau^2(P_i)$ is always satisfied. For, if for instance $\tau^2(P_0)$ had other points than P_0 in common with B there would exist a hyperplane through B and $\tau^2(P_0)$ having the n-2 points $P_1, P_2, \ldots, P_{n-2}$ and 3 coinciding points at P_0 in common with b_n . But this is impossible (see [6, p. 174]).

Hence, if c as a whole is linearly monotone, it is strictly convex at any set of n-1 points belonging to the same arc of order n.

REFERENCES

- M. Barner, Über die Mindestanzahl stationärer Schmiegebenen bei geschlossenen strengkonvexen Raumkurven, Abh. Math. Sem. Univ. Hamburg 20 (1956), 196-215.
- 2. D. Derry, On polygons in real projective n-space, Math. Scand. 6 (1958), 50-66.
- Fr. Fabricius-Bjerre, Om lineært-monotone elementarkurver, Nordisk Mat. Tidskr. 7 (1959), 27-35.
- 4. Fr. Fabricius-Bjerre, On strictly convex curves and linear monotonicity, Monatsh. Math. 65 (1961), 213-219.
- Fr. Fabricius-Bjerre, On polygons of order n in projective n-space, with an application to strictly convex curves, Math. Scand. 10 (1962), 221–229.
- P. Scherk, Über differenzierbare Kurven und Bögen I-II, Časopis Pest. Mat. Fys. [Journ. Tchecoslovaque Math. Phys.] 66 (1936), 165-191.