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ON LINEARLY MONOTONE CURVES IN
THE PROJECTIVE #»-SPACE

FR. FABRICIUS-BJERRE

In previous papers [3], [4] and [5] the author has studied the connec-
tion between two classes of curves in the projective space E": The strictly
convex curves and the linearly monotone curves. In [3] and [4] it has
been proved that any plane strictly convex curve is linearly monotone
and, conversely, that any linearly monotone curve is strictly convex at
any ordinary point, i.e., a point belonging to an open arc of order 2.
Moreover, in [5], we have shown that in B", n=3, any strictly convex
curve is linearly monotone (Theorem 4.2, p. 228). On the following pages
we shall show that, conversely, any linearly monotone curve in R" is
strictly convex at every set of n— 1 points P, P,,...,P,_, such that the
osculating plane at each of these has only the point of contact in common
with the (n— 2)-space determined by the » —1 points. This condition is
satisfied if the n — 1 points belong to the same arc of order n.

In Section 1 definitions of strict convexity and linear monotonicity are
given. Section 2 deals with an auxiliary theorem on plane curves, and
in Section 3 we prove the theorem stated above, on linearly monotone
curves in R*.

1. Definitions

1.1. By an open or closed curve we shall mean a topological image in
R" of a segment (including the endpoints) or a circle, respectively. The
curves will be assumed » times differentiable, oriented and of bounded
order. (A curve is said to be of bounded order if any hyperplane has at
most finitely many points in common with it.)

1.2. An open or closed polygon in R", n= 2, is a sequence of segments
PP, P,P,,...,P, ,P,, resp. PP, PP, ....P, P, P,P, its sides.
The order of the polygon is said to be =, if m>n and no hyperplane has
more than » points in common with it. (In case the hyperplane contains
sides of the polygon, only their endpoints are counted.) In [5, p. 226-227]
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it was shown that an open polygon II, of order n can be changed to a
closed polygon /T, of order n, and conversely, by adding, resp. removing,
a suitably chosen segment.

A polygon of order n=1 is by definition a finite sequence of segments
on a straight line such that two consecutive segments have only an
endpoint (or both endpoints) in common whereas two non-consecutive
segments have no points in common. The polygon is called closed or
open according as the segments make up the whole line or a segment.

The vertices P, P,,...,P,, of a polygon of order 1 form a monotone
sequence of points on the (projective) line. The ordered set of the vertices
of a polygon of order » in the (projective) R is called a monotone sequence
D R» [5, p. 225].

1.3. Let a hyperplane H have the m points Py, P;,...,P,,_;, m=n, in
common with a curve ¢, the points being taken in the order determined
by the parametrization of the curve. The chord PP, is defined as that
segment PP, , which together with the arc PP, , forms a closed curve
of even order. The chords PyP,,P,P,,...,P, _,P,_, and, if ¢ is closed,
in addition P,, P, form a polygon I/ inscribed in the curve and situated
in the hyperplane H. If /7 has order n — 1, the vertices Py, P,,..., P,
form a monotone sequence in H, and the curve is called linearly monotone
along the hyperplane H. The curve, as a whole, is called linearly mono-
tone if it is linearly monotone along any hyperplane having at least
points in common with it.

For n=2 a curve which is linearly monotone along a line H determines
an orientation of the line, namely by the cyclical order of the point P,
a point Py’ of the chord P P, and the point P;. If m = 3, this orientation
is also determined by the monotone sequence Py, Py,...,P, ;.

With a view to an application below, we observe the following: If a
line I through a point P, on a plane curve ¢ intersects ¢ at a point P+ P,
(that is, [ is not a local supporting line to ¢ at P), and if ¢ is linearly
monotone along all lines through P, belonging to a neighbourhood of I,

then ¢ is also linearly monotone along /.

1.4. We consider a set of n—1 linearly independent points
(Pg, Py,. .., P,_5) on a curve ¢ in B*. The curve is called strictly convex
at the set (Py,Py,...,P,_,) if there exists at least one hyperplane H
having these and no other points in common with the curve. The curve,
as a whole, is called strictly convex if it is strictly convex at any set of
n—1 linearly independent points (Barner [1]).

The n—1 points Py, P,,...,P,_, span a linear space B=B"2 If ¢ is
contained in an angular domain bounded by two hyperplanes through B,
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then c is strictly convex at the set (P, Py,...,P,_,) since any hyperplane
through B in the complementary angular domain has only the points
Py, P,,...,P, ,in common with c.

2. Plane curves.

2.1. Let ¢ denote an open or closed curve in a projective plane. It is
assumed to be linearly monotone along any line I, which connects a
fixed point P, on ¢ with a variable point P+ P, on c. The lines I, are
then oriented in accordance with the orientation of the curve, as de-
scribed above. We denote by I, the tangent to ¢ at P, oriented in ac-
cordance with the orientation of ¢. Let e be a conic having P, as an in-
terior point, and let u denote the polar of P, with respect to e. The line
Ip intersects u in a point U, and e in two points of which we choose that
point K p for which the triple (P,, K p, Up) is in accordance with the orien-
tation of the line. The point E is called the point of orientation of the
oriented line /,. Without restricting the generality the conic e may be
regarded as a circle with centre P,.

To each point P € ¢ corresponds in this manner a point £, ec. The
mapping ¢ of ¢ into e thus defined is continuous. Consequently, the image
¢(c) is closed and connected, hence a closed arc of e or the whole circle e.
However, if P and @ are points on ¢ both different from P, the corre-
sponding points K and E, cannot be diametrically opposite. This im-
plies that the image ¢(c) is an arc contained in a semicircle, and that it
cannot be a semicircle unless Fp is one if its endpoints.

If the arc @(c) is smaller than a semicircle, the curve ¢ is contained
in one of the angular domains bounded by the lines joining P, with the
endpoints of ¢(c). Since a line through P, in the complementary angular
domain has only P, in common with ¢, it follows that c is strictly convex
at P, in this case.

Now, if P, is an ordinary point of ¢, that is, an interior point of a
convex subarc of ¢, then Ep is an interior point of the arc ¢(c), and
hence this arc is smaller than a semicircle. The lines joining P, with the
endpoints of the arc ¢(c) are local supporting lines to ¢ at points different
from P,. If ¢ is open, these lines may pass through the endpoints of c.

2.2, The above result has been deduced under the assumption that ¢
is linearly monotone along every line l,. However, because of the
fact observed at the end of 1.3, it is still true if, for a finite number of
lines, we replace the assumption of linear monotonicity by the assump-

tion that each of these lines intersects ¢ in at least one point different
from P,
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Thus we have shown

TarorREM 1. If a curve ¢ is linearly monotone along the lines which
connect an ordinary point Py € ¢ with an arbitrary other point P € ¢, with
the exception of at most finitely many lines which intersect the curve outside
Py, then the curve ¢ is contained in an angular domain with P, as vertex
and, hence, s strictly convex at P,

2.3. If P, is a point of inflection of ¢, the point £p may be an interior
point of ¢(c), and the above conclusion that ¢ is strictly convex at P,
then still holds. This is also the case if £ is an endpoint of ¢(c) and the
diametrically opposite point on e is not a point of orientation. However,
it may happen that Ep is an endpoint of ¢(c) and the diametrically
opposite point is a point of orientation. Then ¢ is not strictly convex
at P, since the lines [, then cover the whole plane. This can only be the
case if the line [p has at least one point different from P, in common
with ¢ and is a local supporting line to ¢ at each of these points.

These remarks show that a curve linearly monotone as a whole is
strictly convex not only at the ordinary points but in general also at the
points of inflection, that is, it is strictly convex as a whole.

3. Curves in R®, n = 3.

3.1. Let ¢ denote an open or closed curve in B*. We assume that ¢
is linearly monotone along a hyperplane H, that is, there exists in H
a polygon IT,_, (or IT,_,) with vertices Py, P;,...,P, _;, mzn, which
is inscribed in ¢. If ¢ is open we replace the open polygon I7,_, by the
corresponding closed polygon I7,_, (§ 1.2).

We consider the projection of ¢ from a vertex P; onto a hyperplane
H, different from H. The intersection H,NH is an (n—2)-space H'.
We prove the following

Lemwma. If ¢ is linearly monotone along H, its projection ¢’ is linearly
monotone along H'.

To prove the lemma we shall show that the projection of I7,_, into H’
is a polygon of order »—2 and inscribed in ¢’.

Derry [2] has shown that the projection of a closed polygon I1,_, into
a hyperplane from a vertex P; is an open polygon I7,_, whose sides are
the projections of the sides of II,_;, with the exception of P, ,P; and

+P;.1. The polygon IT, , may be closed without increasing its order
by adding the projection o' =P, P; , of that segment o=P; ,P;,;

—1" ¢
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which together with the sides P, P, and P,P,,, forms a polygon (a
triangle) of odd order [2, p. 51].
Since a closed curve of even order is projected onto a closed curve of
even order from a point outside the curve, the sides
PoPye o PigPig, Py Piygs o Py o P,

m—]

(and, if ¢ is closed, P,, ,P;) are chords of ¢’. The union of the segment
o and the arc P,_,P,P,,, is a closed curve of odd order. For, a hyper-
plane through a point of ¢ which intersects the chords P, P, and
P,P,;,, has an odd number of points in common with each of the corres-
ponding arcs P, ,P, and P,P,,,. Now, a closed curve of odd order is
projected onto a closed curve of even order from a point on the curve,
and consequently ¢’ is a chord of ¢’. This finishes the proof of the Lemma.

3.2. Now we assume that the curve ¢ is linearly monotone along any
hyperplane H=H(P) which connects n—1 fixed points Py, P;,...,
P, _, €c with a variable point P e c. For any position of H the points
Py, P,,...,P,_, and P are vertices of a polygon IT,_, (or IT, ;) and
consequently linearly independent. The fixed points Pgy,P,,...,P,_,
determine a (n—2)-space B=[P,P,... P, _,].

Let « denote a plane which has only P, in common with B. By the
projection from the (n— 3)-space [Py, P,,...,P,_,] onto the plane x the
curve ¢ is mapped onto a curve ¢’. The image P’ of a point P is the
intersection of the (n —2)-space [Py, P,,...,P,_,, P] with «, and the line
Py P’ is the intersection of H(P) with .

The projection of ¢ onto ¢’ may be decomposed into a sequence of
projections from single points. First, by the projection from P, _, onto
the hyperplane [«, P, P,,. .., P, _;] the curve ¢ is mapped onto a curve c,.
Then this is mapped onto a curve ¢, by the projection from P,_; onto
the subspace [x,P;,P,,...,P,_,]. Continuing in this way we end up
with the projection from P; onto «, by which a certain curve c, , in
a 3-space is mapped onto ¢, _;=c’.

By repeated use of the lemma it is seen that ¢’ is linearly monotone
along any line P P’ where P’ is an arbitrary point of ¢’ which is different
from P, and from the projections P}, P;,...,P,_, of the corresponding
points of ¢. If ¢’ is contained in an angular domain V' then ¢ is contained
in an angular domain V such that V'=«nV.

To make the application of Theorem 1 possible we have to add as-
sumptions in order that P, be an ordinary point of ¢’ and that the lines
PyP; for 1=1,2,...,n—2 intersect ¢’ at points different from P,. These
conditions will be satisfied if we assume that the osculating planes
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(P,), ©=0,1,...,n—2, have only the point of contact in common with the
(n—2)-space B. It is clear that P, will be an ordinary point of ¢, and
since the tangent to ¢’ at a point P, 4+ 0, is the intersection of « and the
hyperplane [P,P,...P, ,,7v%P;)], it cannot pass through P, that is,
the line P, P; intersects ¢’ at P;.

Using Theorem 1 we have then proved

THEOREM 2. If a curve c is linearly monotone along every hyperplane
which connects n—1 linearly independent points Py, P,,. .., P, _, on ¢ with
an arbitrary point P on ¢, and the osculating planes t%(P;),1=0,1,...,n—2,
have only the point of comtact in common with the (n—2)-space B=
[PoPy,- . ., P, _sl, then ¢ is contained in an angular domain V bounded by
two hyperplanes through B and is strictly convex af the set (Py, Py,. .., P, _,).

't n—2

The boundary hyperplanes of V are locally supporting hyperplanes
for ¢ and pass through a tangent or, if ¢ is an open curve, possibly through
an endpoint of c.

3.3. If the n—1 points P, P,,...,P,_, belong to the same arc b, of
order n, then the condition for the osculating planes t*(P;) is always
satisfied. For, if for instance t%(P,) had other points than P, in common
with B there would exist a hyperplane through B and 72(P,) having the
n—2 points P, P,,...,P,_, and 3 coinciding points at P, in common
with b,. But this is impossible (see [6, p. 174]).

Hence, if ¢ as a whole is linearly monotone, it is strictly convex at any set
of n—1 points belonging to the same arc of order n.
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