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ON THE GEOMETRY OF CHOQUET SIMPLEXES

ERIK M. ALFSEN

This paper is a study of certain geometrical properties of Choquet
simplexes, especially of their facial structure and of the possibility of
decomposition of convex sets into simplexes. Analytically the concept
of a closed face is related to a stable subset and a set of determinacy, and
the problem of simplicial decomposition is related to the establishment
of unique representing boundary measures by passage to appropriate
subsets of the extreme boundary. (Precise definitions follow in the
sequel.)

It turns out that many of the familiar properties of finite dimensional
simplexes fail to carry over to the general case. In this connection we
shall need a number of counterexamples, which are obtained by a general
method to construct convex compact sets K with pre-ascribed affine
dependences on the extreme boundary 0,K. (For precise definitions cf.
§ 1.) The method is analogous to the presentation of groups by generators
and relations. To every compact set X (‘‘generator set’) there corre-
sponds a unique simplex (“free group”) M,*(X) with extreme boundary
homeomorphic to X, and one may introduce affine dependences (‘rela-
tions”) on X by passage to a quotient J(X)/N(X) where N(X) consists
of all measures (‘““‘words’’) corresponding to the desired affine dependences.

We wish to thank Professor V. Klee for valuable discussions on the
subject.

1. Definitions and general properties.

In the sequel E shall be a locally convex (Hausdorff) vector space over R
and K shall be a compact convex subset of E. The extreme points of K
form the extreme boundary, denoted by 0,K. The bounded (Radon-)
measures on K form the vector lattice M(K), and the positive normalized
measures (‘‘probability measures””) on K form the vaguely compact,
convex subset M, 7(K) of M(K). The K-restrictions of continuous, affine,
real valued functions on E form a vector space 5# which is uniformly
dense in the vector space 2 of all continuous, affine, real valued functions
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on K. By definition ;# = & n(— &), where & is the convex, “sup-closed”
cone of continuous convex functions on K.

Every fe % (K) admits a greatest 1.s.c. convex minorant f, which is
determined by -
(1.1) f(x) = sup{h(z) | fzheH}.

(The function f may be considered as the second conjugate of f in a
duality theory of convex functions, cf. [4], [10], [14].)
To every f e €(K) there is associated a boundary set B(f), defined by

(1.2) B(f) = {e | ze K, f(x)=f(2)}.
By a theorem of M. Hervé [11]:
(1.3) oK = [ B(f).

JeB(K)

(In this connection cf. also [8]. Actually (1.3) is implicit in the proof
of Theorem 4.1 of [12].)

A member of M(K) is said to be a boundary measure if its total varia-
tion vanishes off any of the G,-sets B(f), fe €(K). (Recall that 0, K =
B(f) for some fe %(K) provided that K is metrizable [11].)

Choquet’s Integral Theorem states that every point  of K is the bary-
center of a boundary measure g in IR,*(K). In symbols:

(1.4) z = ftd,u(t),

where the integral is taken in the weak sense ([8], cf. also [3], [5], [6],
(7], [11], [13]).

An affine dependence on 9,K is a non-zero (signed) boundary measure
4 such that u(K)=0, and

(1.5) f tdu(t) =0 (weak integral) .

K is a simplex if there is no affine dependence on 9,K, or briefly if 9,K is
affinely independent. Clearly this requirement is equivalent to uniqueness
of the measure g in (1.4).

K will be said to be an r-simplex if it is a simplex and if 9,K is closed.
(The letter r denotes ‘“‘resolutive”, since the r-simplexes are exactly those
compact convex sets for which the Dirichlet problem is solvable in J#
for every fe %(6,K) (1], [2]). By a theorem of H. Bauer, K is an r-sim-
plex if and only if every x € K is the barycenter of a unique measure
u € M,*(K) supported by 9, K ([1], [2]). This yields a ““concrete’ represen-
tation of r-simplexes. They are the sets I,*(X) with vague topology,



ON THE GEOMETRY OF CHOQUET SIMPLEXES 99

X being an arbitrary compact (Hausdorff) space. (Recall that
9. M,"(X) = X.)

We shall use the symbol 4, to denote the r-simplex M,*(N), where N
is the one-point compactification of the set N of natural numbers.
Clearly we may also consider 4, to be the subset of R¥ consisting of all
a= {0, }new such that 32 &, +x,=1and «,20 for n € N. The extreme
boundary of 4, consists of the points d,,={6,, ,}..x Where m € N: Note
that the mapping {x,}.5 = {¥n}new i8 an affine and topological iso-
morphism of 4, onto the positive part of the unit ball in ! equipped
with the Tykhonov topology.

An affine manifold M in Z is said to be a supporting manifold for K if

(1.6) KnM &+ 0, K\ M is convex .

Clearly, a hyperplane H supports K if and only if it meets K and K
is located on one side of H, and a one point set {x} supports K if and
only if x € 9,K.

The traces on K of supporting affine manifolds are called faces. Clearly
a subset F of K is a face if and only if it is convex and satisfies the re-
quirement:

(1.7) (y,2,A) e Kx K x(0,1] & Ay+(1—AzeF = yelF.
An equivalent form of (1.7) is

(1.8) (xF —(x—DK)nK =« F forall oaxl.
It is not hard to prove that if 4 is a convex subset of K, then the set
(1.9) U@4-@-1)E)nK
a1

is also convex. Hence it is the smallest face of K containing 4. It will
be denoted by facex A or simply by faceA.

If G is a (not necessarily convex) subset of K satisfying (1.7), then
face{r} <@ for all z e G. It follows that a subset G of K satisfies (1.7)
if and only if it 18 a union of faces.

By finite induction one may replace (1.7) by the equivalent require-
ment:

n
(1.10) zeF & x=7 l;z; (proper convex combination on K)
i=1
= x;eF for 1=1,2,...

It is known (cf. e.g. the footnote of [8, p. 141]), that every u € M, (K)
can be vaguely approximated by point-measures 37 _;A;¢, Wwith the
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same barycenter as u. By means of this and by (1.10), one can prove that
a closed subset G of K satisfies (1.7) if and only if

(1.11) e MHEK), ftdﬂ(t)ea = Spb(u) < @.

A closed subset @ of K is said to be stable if it satisfies the requirement
(1.11). Now the results of the above discussion may be summed up in
the following:

ProrosiTioN 1. A4 closed subset G of K 1is stable if and only if it is a
union of faces. If G is convex and stable, then it is a face.

We state two elementary results for later references.

ProrositioN 2. If F is a face of K and G is a face of F, then G is a face
of K. In particular, if x is extreme in F, then x ts extreme in K.

ProrosiTioN 3. Let ¢ be a linear mapping of E into another vectorspace
E'. A subset F' of p(K) 18 a face of p(K) if and only if p~X(F)NK s a face
of K.

Application of the Krein-Milman Theorem yields the following:

CoROLLARY. Let ¢ be a continuous linear mapping of E into another
locally convex vector space E' and assume that the restriction of ¢ to 0K is
1-1. A4 point x of p(K) is extreme in o(K) if and only if p=*(x)N K reduces
to a single point and this point is extreme in K.

Let M(K) be the linear subspace of M(K) which consists of all affine
dependences on 0, K. It is not hard to verify that if £=R"® and the
number of extreme points of K is m (possibly m =o0), then

(1.12) m—n—1 = dmW(K) £ m-1.

In this case, N(K) is finite dimensional if and only if K has a finite
number of extreme points, or in other words if K is a (convex) poly-
hedron. In the general case we define K to be a polyhedron if M(K) is
finite dimensional. In particular, every simplex K is a polyhedron.

The theory of compact convex sets and simplexes is presented in a
functorial setting in a forthcoming paper of Z. Semadeni [15].

2. Closed faces of simplexes.

It is of some interest to decide if the closure of a face is a face. We
shall see that the answer is affirmative for r-simplexes, but negative for
simplexes in general.
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ProrosiTioN 4. Every closed face F of K can be represented in the form
(2.1) F =conv4d, A< ikK.
If K is an r-simplex, then every set F of the form (2.1) is a closed face.

Proor. 1) Let F be closed face of K and define 4=Fnoj,K. By
Proposition 2, ¢, F=A. Hence (2.1) follows in virtue of the Krein-
Milman Theorem.

2) Let K be an r-simplex and let 4 be a subset of 9,K. Define
F=convAd, and consider a convex combination

(2.2) z = Ay+(1-24)z,

where y,z€ K, 0<A<1, and x € F.
Let » and p be two measures in I%,"(K) which are supported by the
closed set 9,K and have barycenters y and z respectively. Define

(2.3) = Iw+(1-Ap.

Clearly = € M,"(K), Spt(x)<9.K, and = has barycenter x.

On the other hand, there is a measure u, in M, (¥) which is supported
by 9, F and has barycenter x. Let u be the canonical image of g, in
M, H(K) (u vanishes identically off F). It follows by Milman’s Theorem,
that 8,F < A. Hence Spt(u)<A<9,K. Clearly u has barycenter x, and
by the uniqueness property of r-simplexes, u=u.

Now it follows that Spt(z)<A4, and by (2.3) and the fact that 1> 0,
it also follows that Spt(v)< A. Then the barycenter of » must belong to
the closed convex hull of 4, and so y € F. This proves that F satisfies
the requirement (1.7), and so it is a face of K.

THEOREM 1. If K is an r-simplex, then the closure of any face of K is
a face. The corresponding statement is tnexact for general simplexes.

Proor. 1) Let F be any face of an r-simplex K, and define & to be
the set of all u € M,*(K) with barycenter in F and with support contained
in the closed set 0,K.
Define 4= U Sptia),

reF
and let A be the closure of 4,. Clearly 4<9,K, and by Proposition 4
it suffices to prove that F =conv 4.

For every x € F, there exists a u € M,*(K) with barycenter x and with
support contained in 0,K. By definition u € %, and hence Spt(u)<A4.
This implies « € conv4, and hence F <conv 4.
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To prove the converse relation, it suffices to verify that 4 < F, since F
itself is closed and convex. Let x be an arbitrary point in 4,, and let V
be any closed convex neighbourhood of x. By the definition of A4, there
exists a u € & such that x € Spt(u), and then u(V)+0.

If w(V)=1, then u is supported by ¥V and hence the barycenter of u
belongs to the closed convex set V. By the definition of &, this bary-
center belongs to F, and hence FnV =+ in this case.

If u(V)<1, then we write u(V)=4 and define

p=Atup,  py = (1-2)" gy .
Now

(2.4) uo= Aug+ (1 —A)p,, 0<i<l1.

Let y, y, and y, be the barycenters of u, u,, and u,, respectively. By
(2.4) one has

y=x+(1=2Ay,.

It follows from the definition of & that y € F, and the characteristic
property (1.7) of faces implies that y, € F. Being the barycenter of a
measure u, € M, (K) supported by V, the point y, itself belongs to V.
Hence FnV 0@ in this case as well.

It follows that x € F. Thus we have proved AOCF, and hence A<F,
completing the first part of the proof.

2) Let A4, be the r-simplex in R¥ which is defined in § 1, and let M
be a one dimensional subspace of R¥ generated by the vector a={x,},.¥
for which

3 for n=1,2,
(2.5) 6, =13 0 for 2<n<oo,
—1 for n=o0c.

Let ¢ be the canonical mapping of R¥ onto E=R¥/M, and let K =¢(4,).
Let F, be the subset of 4, which consists of all b={g,},.5 for which

(2.6) Pr="F=Px=0,

and let F=g¢(F,). We claim that K is a (compact) simplex in E, that ¥
is a face of K, whereas F is no face.

To prove these claims we first observe that ¢ maps 4,=1{d, |ne N}
biuniquely into K. By the Corollary to Proposition 3, 9,K consists of
those elements d,,, n € N, for which ¢g—1¢(d,)n4,=1{d,}. It is easily veri-
fied that this equality holds for n = oo, and so ¢(d,) is an extreme point
of K for n=1,2,.... The point ¢(d,), however, is non-extreme, since
the relation
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%dl+%d2—doo =a
implies
(2.7) 1o(dy) +1e(ds) = (dy) -
Thus we have proved that 9,K ={p(d,) | » € N}, and it follows that 9,K
is homeomorphic to N (with discrete topology).
An affine dependence on 9,K is given by a sequence {u,}, .n such that

(2'8) zlﬂn =0, zliun(p(dn) =0,

where the first sum converges absolutely on R, and the second sum con-
verges in the topology of K. By the continuity of ¢, the last sum of
(2.8) may be written
@ ( z o dn) =0,
n=1
which is equivalent to

(2.9) > und, = Aa,
n=1

for some A €eR.

The relation (2.9) is an equality between members of R¥. Comparing
the co-components, we obtain A=0. Hence u,=0 for n=1,2,..., and
8o we have proved that there can be no affine dependence on 9, K. Thus
K is a simplex.

Next we observe that F is a face of A,. It is easily verified that ¢
maps F, biuniquely onto F, and it follows by Proposition 3 that F
is a face of K.

The closure of F, contains d,. By convexity, F, consists of all
b={B,}nex € 4, such that
(2.10) Br=pB,=0.

(Note that F, is a closed face of the r-simplex 4,).
It follows by the continuity of ¢ and the compactness of F, that
(2.11) F = ¢(F,).

We claim that ¢(d;) ¢ F for i=1,2. In fact if ¢(d,) € F, then there would
be a b e F, and a 1€ R such that

dl = b+la.

The second component of d, vanishes and so does that of b (cf. (2.10)).
It follows that A=0. This, however, is a contradiction since the first
component of d, is 1 and the first component of b is 0. A similar contra-
diction is obtained from ¢(d,) € F.
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It follows from (2.11) that ¢(d,) € F, and the relation (2.7) proves
that F does not enjoy the characteristic property (1.7) of faces. This
completes the proof.

3. Closed faces and sets of determinacy.

We have noted in Section 1 that the faces of K are the traces on K
of supporting affine manifolds. Clearly the trace of a closed supporting
manifold is a closed face, and it is of some interest to know if every
closed face can be obtained in this way. Equivalently we may ask if
every closed face F' of K satisfies the requirement

(3.1) F = K n (affF),

where aff F' denotes the affine hull of F.

It follows from the Hahn-Banach Theorem that Kn(affF) is equal
to the set
(3.2) {xeK | heA#, h=0on F = h(z)=0}.

This set may naturally be termed the set of determinacy by F with respect
to the function space 5#, and the problem is to decide if the concept of
a closed face and of a (stable) set of 5#°-determinacy will coalesce. Clearly
the answer is affirmative for finite dimensional (Hausdorff) spaces where
every affine subspace is closed. In the present paragraph we shall show
that the answer is negative in general, even for r-simplexes in Banach-
space, but we shall prove that the question has a positive solution if
A is replaced by 5. Thus the concept of a closed face and of a (stable)
set of sP-determinacy will in fact coalesce.

LemMA. There exists an infinite dimensional (compact) r-simplex K in
the Banach-space 1! such that K =faceg (0).

Proor. We have seen in Section 1 that the r-simplex 4, may be inter-
preted as the positive part of the unit ball in {1. To make it norm compact,
we apply the linear transformation

(3'3) 'y)({o‘n}neN) = {2_n‘xn}neN .

Clearly y is an isomorphism of /! into itself, and it is continuous from
the Tykhonov topology on 4, to the norm topology. In particular, it
maps 4, onto a norm compact r-simplex in 1.

Let x={&,},.y be some point of 4, such that &,+0 for all ne N. It
is not hard to verify that for any a € 4, the line segment [a,z] can be
extended beyond x within 4,. Hence the face of x in 4, is all of 4,.
Clearly, the point y(x) has the corresponding property relatively to
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p(4,). Translation yields the norm compact r-simplex K =y(4,)—v(x)
with the desired property.

THEOREM 2. There exists an r-simplex K in the Banach-space I pos-
sessing a closed face F such that

(3.4) F + Kn(aff F).

Proor. Let K, be an infinite dimensional (compact) r-simplex in I
such that K,={faceg (0). Then the affine span M of K, is given by

(3.5) M= nK,.
n=1

By the Baire Theorem, M is non-closed, for otherwise the compact set K,
would have an interior point contrary to the infinite dimensionality.
Let . € M\ M, and define

(3.6) K = conv(z,K,) .

By a known theorem, K is compact. We claim that K is an r-simplex,
and that K, is a (closed) face of K.

Using the definition of K and the fact that x ¢ M, one may prove that
Ko=MnK, and that K\ M is convex. Hence K, is a face of K (cf.

(1.6)).

Since K is a face of K, every extreme point of K is also extreme in K
(cf. Proposition 2). It is easily verified that the point x is also extreme in
K and that no other point of K can be extreme. Hence

(3.7) 0,K = 8,Kq U {z} .

By assumption 9,K is closed, and hence 9K is closed as well.
Let y be an arbitrary point of K. It follows from the fact that x ¢ M,
that y has a unique decomposition

(3.8) y=2&+(1-2)2 zeK, 0=1=1.

Let u e M,*(K) be a measure supported by 9,K and with barycenter y.
Since « is an isolated point of 9,K, there is a 4’ €[0,1] and a measure
u € M+ (K) supported by 9,K, such that

(3.9) p=1=-Ap+1e,.
Denoting the barycenter of 4’ by 2’, one has 2’ € K, and
(3.10) y= (- +.
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By the uniqueness of the decomposition (3.8), A=4", and z=2'. Since K,

is an r-simplex, there is a unique measure in IM,*(K,) which is supported

by 6,K, and has barycenter z. Hence the measure ' of (3.9) is uniquely

determined, and so is u. Thus we have verified that K is an r-simplex.
By definition, x € M\ M, and hence

(3.11) x € Kn(aff Ko)\K, .
Thus F =K, is a closed face of K with the desired property (3.4).

TueoREM 3. Every closed face F of an r-simplex K is its own set of
determinacy with respect to the function space S, that is, for every x € K\F
there exists an h € 57 such that h=0 on F and h(x)+0. The corresponding
statement is inexact with S in the place of H#.

Proor. 1) For every y € K let u, be the (unique) measure in I,*(K)
which is supported by the closed set 9,K and has barycenter y. If
x € K\F, then Spt(u,) ¢ F; and by the definition of support, there is an
f€%(9,K) such that f=0 on 9,F=Fno,K (cf. Proposition 2) and such
that [ fdu,+0.

By a theorem of H. Bauer [1] there exists a function h e s which
extends f. To fix the ideas, we recall that

(3.12) h(y) = ffduw yekK.

Here, & is continuous and affine by virtue of the vague compactness of
M, *(@,K) and by the continuity and linearity of the mapping u —
ftdu(t).

By assumption, =0 on 9,F. A known maximum principle (based on
the Krein-Milman Theorem) implies that =0 on all of F=convd,F.
However, by (3.12)

(3.13) hiz) = ffd,», +0.

2) The last statement follows immediately from Theorem 2, since
hes#,h=0on F and x € aff F implies h(x)=0.

4. Existence of irreducible polyhedra.

A classical theorem of Carathéodory states that every point z of a
convex compact set in R” can be expressed as a convex combination of
(at most n+ 1) affinely independent extreme points. (cf. e.g. [9]).

In the terminology of the present paper this may be rephrased as
follows: Bvery convex compact set K tn R™ can be decomposed as
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(4.1) K = {4 | 4 simplex, 9,4<9,K}.

We shall see that the corresponding statement is inexact in general, even
for polyhedra. In fact one has the following:

THEOREM 4. There exists a non-simplicial compact polyhedron K with
a point x which 18 contained in no proper subset A such that

(i) A s closed and convex,
(ii) 9,4<o,K.

Proor. We consider the r-simplex 4., which we take to be the positive
part of the closed unit ball of I* (cf. § 1).

In the space /' one can easily find two vectors b={B,},.y and
Zo=1{&, }nen such that

(4.2) §ﬂn =0, B,+0 forall nelN,
n=1

(4.3) §§n < 1, £,>0 forall nelN,
n=1

(4'4) lim (‘En/ﬁn)+ = lim (Sn/ﬂn)— =0.

Let M be the one-dimensional subspace generated by b, and let ¢ be
the canonical mapping of ! onto E={1/M. We claim that the set
K=¢(4,) and the point z=g(z,) will have the desired properties stated
in the Theorem.

To prove this claim, we first note that 6,4, consists of all the points
dy= {0 n}nen» m € N, and of the origin in I* (the latter corresponds to
the extreme point d,, when 4, is interpreted as a subset of R¥). Any ele-
ment of the form d,, +ab, m € N, or of the form «b, has a series of negative
components unless x=0. Hence ¢ maps 9,4, biuniquely into K, and

¢ lod,)nd, = {d,} formeN,

and ¢~1¢(0)nd,={0}. It follows by the Corollary to Proposition 3, that
@ maps 9,4, homeomorphically onto §,K. In particular 9,K is homeo-
morphic to N (the one-point compactification of N).

An affine dependence on ¢,K is given by a sequence {u,},.5 such that

(4.5) Zlﬂnwoo =0, Zluntp(dn)wmw(()) =0,

where the first sum converges absolutely on R, and the second sum con-
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verges in the topology of K. By the continuity of ¢, the last sum of
(4.5) may be written

‘P( zll"ndn) =0,

which is equivalent to 330 ,u,d, =4b for some A € R, and this in turn is
equivalent to
(4.6) Y =4p,, TforallnelN.

It follows that RM(K) is one-dimensional, and so K s a polyhedron,
but no simplex.

Let v be some measure in I%,"(K) which is supported by 9,K and has
barycenter . Writing »,=(p(d,)) for n € N, and »,,=»(¢(0)), one has

x = ivw(dn)wwww) .

By definition of x, and by the continuity of ¢,

4 (xo— Zvndn) =0.
n=1
Hence for some g € R,

(4.7) E,—v, =0, forallmeN.

We claim that »,+0 for all n € N.
Summing over », and making use of (4.2), one obtains

M3

& =

V-

iiiMa

n=1

Hence

Vo=1=rv,=1-3¢ >0.
n=1 n=1
Next we assume that v, =0 for some k+oc. Then by (4.7), o=&,/B,
and so

(4°8) §n - é’

k8, =v,, forallmeN, n+k.
B
Let J*={n|neN,B,>0}, J-={n|neN,p,<0}, and assume first
k e J*. Then the positivity of », entails

b, &
ﬂn ﬂk’

(4.9) for all neJ*.

2

If keJ™, then
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bn o i
Iﬂnl 1Bl

Either of the alternatives (4.9), (4.10) contradicts the assumption (4.4).
This completes the verification that v, + 0 for all n € N.

Finally, let 4 be some convex compact set such that z € 4, 9,4 <9,K.
The Choquet Theorem for 4 yields a measure » € IR, *(K) which is sup-
ported by ¢,K, has barycenter z, and satisfies

(4.10) forall neJ™.

(4.11) w(8,K\0,4) = 0.

By the above discussion 9,K\0,4 =0, and the proof is complete.

Theorem 4 shows the impossibility of ‘“triangulation” of general poly-
hedra. However, it would be of some interest to find sufficient condi-
tions for a convex compact set K to admit a decomposition of the type
(4.1). To every point = of a metrizable convex compact set with this
property there would correspond a (non-unique) subset 4=0,4 of 9,K

such that x has a unique representing measure u, (cf. (1.4)) concentrated
on 4.
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