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AN EXTREMAL PROBLEM
RELATED TO
BERNSTEIN’S APPROXIMATION PROBLEM

GOSTA WAHDE

Let K(x) be a continuous function defined on (— oo, 00) with K(z)=1
and such that

(L.1)

n

= 0, n=0,1,2,....
K(x)

|:c|—>oo

Let further Cx be the space of all complex-valued continuous functions
f(z) defined on (—o0,c) and such that

f@) _
with the norm
g = sup 2

o<zceo K(@)

L% the space of all complex-valued measurable functions defined a.e.
on (—oo0,00) and such that

X 2
(1.3) f |;{(—x)

with the norm

dx < oo

o]

and £ the class of all polynomials P(x) with complex coefficients.

From (1.1) it follows that £ = Cx and & < L%. Bernstein’s approxima-
tion problem is to determine conditions on the function K(x) under
which & is dense in Cgx respectively in L%. This problem has been
treated by many authors; for a survey of known results, see Mergelyan [5],
Ahiezer [2] and Pollard [7].
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The purpose of this paper is to solve by elementary methods a certain
extremal problem closely related to Bernstein’s approximation problem.
For the sake of completeness we also show how, starting from the solution
of this extremal problem, one can derive with elementary methods some
known results concerning Bernstein’s approximation problem.

I wish to express my gratitude to Professor Lennart Carleson for his
generously given advice and never failing interest.

2.

The above-mentioned extremal problem and its solution can be for-
mulated as the following

TrEOREM 1. Let p,(x) be a given polynomial of degree n with complex
coefficients and without real zeros. Let P, _, be the class of all polynomials
P(x) of degree at most n—1 with complex coefficients. Then, for an arbi-
trary non-real z,

(2.1)
oo -1 2 2 <) X
P@)ePn1 3, Pa() [Im 2| T |z — 2|

Proor. Let

Pa@) = ¢TI (z—0,)

v=1

and let ¢,=z. Obviously, we may assume that
Ime, > 0, vy=0,1,...,n.

Because of the continuity in ¢,, v=0,1,...,n, of both of the members in
(2.1) it is sufficient to consider the case when all the numbers c,,
v=0,1,...,n, are different. We have

P (e 252 = (s 3 2h00)

p’n(x) c v-O(x—cv) y=1L—C, y=1
for certain numbers z,, »=1,2,...,n, and with
(x) =
P T M@0,
and
fia) = — 1,2
) = s =12,...,n.
v T—¢C Y

14

Using the scalar product
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(£.9) = [f(a) 9(@) de

in the Hilbert space L?( — o0, ) the left-hand side in (2.1) can be written
2 52

"o’

wEf

y=1

(zv) oo |2
and it is well known that

5 = (Pof1:S2- - - 5fn)
F(fifo- - ofn)

where G(fy.fs. . -.fn) I8 Gram’s determinant

G(-fl’f2" . "f l(fv’f )|v,u=1

We obtain easily

h dw 2mi
: ) = = ) s U= 1,2)' .oy
(fv f;;) J (x_Cv)(x_E”) cv-—(_)'u v, u n
Using the notation
1 0,1
a ———'———‘, J LR F) N,
. N § SIS
we find
dx
( s ) = 2n
22 (x ¢,) I (x—c¢,) ,go cj—c

By means of the decomposition into partial fractions

n

e
plx) =2
j=0ZT—¢;
we obtain
' a;a; L 2L a0,
(p,9) = — 9%y = 2m = .
i J§0k§0 (T —c;)(z—2C) jgokgocj"‘ck

The determinant G( fl, fas - »f,) now becomes a so-called Cauchy deter-
minant and can easily be calculated explicitly (see e.g. Achiezer [1]).
We find



To calculate this determinant we first subtract the (j+ 1)-th row multi-
plied by a; from the first row, for j=1,2,..
obtained we factor out @, from the first row and then subtract the
(k+ 1)-th column multiplied by @, from the first column, fork=1,2,...,n
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1 1 1
61—61 01—62 ’ ) Cl—an
1 :
(2.7!1,)"’ (fl’f2’ "’fn) = 02761 §
1 1
P e
H1§v<ySn (6 —¢, )(av—ay)
Hv pu=1 (0 p)
Moreover,
i s a;ay, a; a;
j=0 k=0Ci—Ck j=0C;—Cy j=0C;i—Cp
% a,, 1 1
(2n @)n+l GFp:frfo- - -ofa) k=0C1—Ck €10 €1—Cp
% a, 1 1
k=0Cn— Elc cn_’él c‘n_én

.,n. In the determinant so

Finally, we factor out @, from the first column and obtain

(2miyr+t

X, f1s fas- -

1

o fa) = lagl?

1 1 1
Co—Cp Co—C;  Co—Cp
1 1 1
61—Cp €1 —C  €—Cp
1 1 1
0,,—500”—-51 o cn_an

. Hogv<p§n (cp - C,) (Ev - Ey

)o

IT-, (cy—¢,) (T —7C,)

Hence we have

H: pn=0 (C,

-3,)
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5 = 271 .4

(00_60) H:l=1 lco_avlz (Imz) I-Ll=l |z—§,|2 '

Now, if we observe that

Imz j.?log[x—c[
x J |x— 2|2
and

Imz  dx

7 lx—z|2
—0

(2.1) follows.

From Theorem 1 we easily obtain

THEOREM 2. Let H(x) be an entire function of the type

(2.2) H(z) = X b,a*; by>0; 5,20, v=1,2,..

y=0

Then for an arbitrary non-real z

)= P))
H(x)

T ox |Imz| JlogH(x)
[Imz| |z —2|2

where the meaning of the last member is to be 0 if

dx

(2.3) B(z) = inf f =2
P

log H (x)
|z —2|?

Proor. Let "
H,(x) = X ba*.

»=0

By Theorem 1

(2.4) By(2) = J'l(x z)~1— P(x)|2dx
g’n— 'n(x

__= ox |Imz| flogH (a:)
[Im 2| |z —2|2 )

Furthermore,

“dx = log|z—¢,|, v=12,...,n

135
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(2.5) E(z) = lim E,(2).

n—>o00

For given an ¢> 0, there exists a polynomial P,(x) such that

dx < E(z)+¢

.ﬁu—ad—aww
J H(z)

and for sufficiently large n evidently

dz + ¢,

[ l@—2)"1=P,(z)] T l(@—2)1 =P, ()2
e =< [T

whence
E(z) £ E,(2) < E(z)+2¢.

Finally, (2.3) follows from (2.4) and (2.5).

3.

We now return to Bernstein’s approximation problem. Let M=
M ¢y be the class of all complex polynomials p(x) for which

Ip(x)] £ K(x), —oco<z<oo.

The following theorem holds true.

TrEOREM 3. If

oo

1
(3.1) sup j—omdx = oo,
MK-—oo 1422

then P is dense in L.

Proor. Since the class C, of continuous functions on (— oo, ) with
compact support is dense in L% it is sufficient to approximate an arbi-
trary function g(x) in C, with an arbitrary degree of accuracy. And to
every ¢ > 0 there exists a linear combination r(z) of functions of the type

1
—y Imz 40,
z—z

such that -
f l9(@)—r(@)2de < e.

(This can be proved by elementary methods; see e.g. Shohat and Tamarkin
[8] or Achiezer [1].) Hence a fortiori
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I

Consequently it is sufficient to prove that

g(x)—r(x)|?

K@) dr < ¢.

(x—2)"1—P(z) | ®

K(x) dr = 0.

(3.2) int f

From (3.1) there follows the existence of a sequence of polynomials
{Pn(®)}o, in Mg such that

10gip1.(x)l
,,lim f 1+a®

We have for n=1,2,...
Pa@)? < 1+[P,(2)* = |go@)]?, —oo<z<00,
where g, () is a polynomial satisfying |g,(z)| =1 and
1Pa(®)] < Ign(®)] < 2 K(x), —oco<w<oo.
Because for an arbitrary complex z

le—2| < lo—il(1+]i—z]),
we conclude

rl
(3.3) . lim figlq“—("i'dz — o, Imz+0.
n—>00 |x—z|2
Finally, since

F|(z—2)1-P(2)|?

. [ |(@=2)1-P@)|*
(3.4 inf _!o Ko woE —ow

dr £ 2inf
g,()

P .

I

(3.2) follows from (3.4), (2.1) and (3.3).

4.
We can now eagily prove the following theorem (compare Pollard [7],
Ahiezer [2]):

THEOREM 4. Suppose K(x) ts non-decreasing as |x| increases. Then a
necessary and sufficient condition for P to be dense in Cx is that

10glp(w)l _
(3.1) %;f L = o
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REMARK. The condition that K(x) be non-decreasing as |z| increases
is needed only to guarantee that

max K(&) £ BK(x), —co<T< ™,
l&~dal<1

for some constant B. If, for example, K(x)=1 for || <1, then we can
take B=1.

Proor. The sufficiency. As in the proof of Theorem 3 it is sufficient
to prove that an arbitrary continuous function g(x) with compact support
can be approximated with an arbitrary degree of accuracy. Let, for
O<a<l,

9a(2) = (1/(20) [ gla+) dt
Then v
9(2) - ga(@) = (1/(2a)) f [g(@)—g(@-+)] dt .

Given ¢ > 0, since g(x) is uniformly continuous on (— o0, ), we can choose

a so small that
[9(x) —ga(®)] < 1e, —co<z<oo.

From (38.1) it follows that

!
sup f Oglp(z)l iz — oo
Me@s o 1+x

By Theorem 3, then, there exists a polynomial P(x) such that

a?e?

f g@)—P@)|? b
2B2

K@)
(for the definition of B see the remark above). Let

Py@) = (1/(2a)) f P(x+t)dt.

Then P,(x) is a new polynomial and we have

1 (¢ 2
19a(2) — Pa(@)l® < @él [ 9@+~ Pa+o) dtl

2 1
= E‘z—i |W dy_!Kz(;-z+§t) dt

8
< — max K%¢),
4B% o 4r1<y
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whence

|ga(@) — Py(z)] < 3e K(x), —oco<z<oo.
Finally

”g—Pa”CK = ”g_ga”CK"' ”ga_Pa”C’K <g,

which shows the sufficiency of the condition (3.1).
The mecessity. Suppose that & is dense in Cx. Then to an arbitrary
&> 0 there exists a polynomial @(x) such that

1w

. < etK(x), —oo< <00,
r—1

Choose an 4 >0 so large that

(=)' - Q)]

d
EEY (1Q(x)|2+ 1)(1 +22) r<e

From the assumption that & is dense in Cx there follows easily (see Pol-
lard [6]) the existence of a sequence of polynomials {P,(z)}3_, with

[Po(x)] £ 2K(x), —oco<®<oo, n=12,...,

and
lim P,(x) = K(x)

n—>o0o

uniformly on every compact set. Then choose an N so large that

|Py(z)| > 3K (), -Ad<zx< A4,
and let
Q)2+ |Py(x)2+1 = |R(x)2,

where R, (x) is a polynomial. Now we have

[le=i)1-Qu@)e

@O | (R@rare
.. [ K@ (2= i)~ Q(a)?
=) Prerara™ T ] e@rrD+a)
< 4¢ f lf-xx“’-*-s = (4n+1)e.

On the other hand, by (2.1)

T l@—i)1— Q)2
|R, (@)1 +2?)

(4.2) el

dx = me
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where
1= flog IR'(x)l—dx + flog( +x )d:c .
14 22 1422
Hence
TG
s—)O__co 1 + z2
Since

Q@) = |Q@)—(z—1) +](x—i)Y < K(x)+1 < 2K(z),

we have
IR(@)? < 4K%(x)+4K%z)+1 < 0K¥(z),

that is, $B,(x) € M g, and therefore (3.1) holds.

5.

Usmg Theorem 2 we can also derive the following result concerning
Bernstein’s approximation problem in the case when K(x) is even and
log K(z) is a convex function of log|xz| (see Carleson [3]).

THEOREM 5. Suppose that K(x) 18 even and log K(z) 18 a convex function
of log|x|. Then a necessary and sufficient condition for P to be dense in Cx
and in L% is that
flog K(z)

1422 dz = co

(6.1)

Proor. From Theorem 2 it follows (compare the proof of Theorem 3)
that if g(z) € C, and if, for a function H(x) of the type (2.2),

de = oo,

flog H(x)
1+ a2
then =
ot [ 19@)= PGP

de = 0.
g o H)

On the other hand, by the same theorem, if

tmlog H(x)

Lia? dxr < oo,

then
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inf f'(x—i)_l_P(x”zdx >0.
g —00

H(x)

Now by a lemma by Y.Domar [4], to every even function K(z)=1
such that log K(x) is a convex function of log|z| there exists a function
H(x) of the type (2.2) such that

K(z) £ H(z) £ 25K ()

for all sufficiently large |z|. (The elementary proof of this lemma pro-
ceeds using only simple properties of convex functions.) From this
Theorem 5 follows in what concerns LZ%.

If 2 is dense in L%, we conclude as in the proof of Theorem 4 that &

is dense also in Cx. On the other hand, suppose that & is dense in Cx

and let
Eyz) = K(z) (1+2)t .

Then log K,(x) is convex in log|x| and we have for g(x) € C, and P(z) €
lg@) - P@)llzy, = mtlg(x) — P(@)llcy -

Hence & is dense in L%l and (5.1) follows.
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