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ON WEAK SEPARATION OF CONVEX SETS AND
ON «-UBIQUITOUS SETS

WARREN STENBERG

1. Introduction.

We say that a linear functional f on a real vector space X weakly
separates two subsets 4 and B of X iff for some real number &, the func-
tional f is =k on one of the subsets and <k on the other but is not
identically =k on AuB. We say that a subset 4 of X is radial at a point
z of X or that x is an tnner point of A iff for each y € X there exists a
positive number ¢ so that z+[0,8)y < A.

The most fundamental result concerning weak separation of convex
sets in real vector spaces is the following

THEOREM A. If A and B are disjoint convex subsets of a real vector space
X and if one of these subsets has an inner point, then there exists a linear
Junctional weakly separating A and B.

This theorem is a direct consequence of the Hahn-Banach Theorem
which is in turn implied by this separation theorem. Any attempt to
weaken the hypotheses of this separation theorem may therefore be re-
garded as an attempt to generalize the Hahn—-Banach Theorem.

A number of years ago A. P. Morse proposed the following

ProBLEM. If A and B are disjoint convex subsets of a real vector space X,
does there exist a linear functional weakly separating A and B provided that
some member of A i8 an inner point of X\ B?

The author has shown in a part of his dissertation [9] as yet unpub-
lished that the separation cannot in general be effected under these

hypotheses in spaces of infinite dimension. More precisely it was shown
that

THEOREM B. If X i3 a real vector space of linear dimension R, then there
exists a convex subset C of X such that the origin 0, is an inner point of
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X\C and such that any linear functional which is non-negative on C is
sdentically zero on X.

The linear dimension referred to in this theorem is the cardinal number
of a Hamel basis for X.

In light of subsequent remarks in this introduction it will be seen that
this theorem is considerably generalized in Theorem 3.2 of this paper.

The separation problems under discussion can be rephrased in terms
of the lzn operation which is defined for any subset A of a real vector
space X by

lind = Aufr: Jy+x, 2+(0,1]y<A4}.

(Here (0,1] denotes a half-open interval on the real line.) That is to say
z € lin A iff either x € A or x is the endpoint of a segment contained in 4.
One further defines

lin°4 = 4
and for each ordinal &« >0

. lin lin*1A4 if « is a successor ordinal ,
lin®4 = . e e e .
Upe, lin® 4 if o is a limit ordinal .
Clearly lin 4 <lin*4 if f<«. One finally defines the order of a subset A
of a real vector space X by

order4 = the smallest ordinal « for which lin*+'4 = lin*4 .

The following results have been obtained by O. M. Nikodym [7] [8]
and subsequently demonstrated somewhat more simply by V. L. Klee [4].
In each of the statements enumerated below, X is a real vector space
and C a convex subset of X.

" 1) Order C =02 where, 2 denotes the first non-countable ordinal.

2) If dim X =R, then order C <.

3) If dim X =R, then for each ordinal « < £ there exists a convex set
C with order C=«.

4) If dimX <X, then linC=C where C is the closure of C in the
Euclidean topology for X, so that order C=0 or 1 according as
whether C is closed or not.

5) If C is convex, then for each ordinal «, lin*C is convex.

It is emphasized that 4) does not hold in general in the absence of
the hypothesis that C is convex.

In order to see how the lin operation relates to the separation problem,
refer to Theorem B and note that, in view of the convexity of C, the con-
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dition that 6 is an inner point of X\ C is equivalent to the condition that
0 ¢linC. Further note that for any set C, convex or not, if a linear
functional fis 2% on C then fis =k on lin*C for each ordinal «. Thus
it is seen that Theorem B will follow if we can demonstrate:

TreoreEM C. If X is a real vector space of dimension R, then there
exists a convex subset C of X such that 0 ¢ linC while lin?C = X.

It was by proving essentially this theorem that the author obtained
Theorem B in [9].

In this paper a more general theorem than Theorem C will be obtained.
Klee [2] defines a set, A, to be ubiquitous iff lin4 = X and shows that a
space of dimension 8, can be represented as the union of two (or in fact
infinitely many) disjoint ubiquitous convex sets. [It is worthy of note
that this result affords one way of demonstrating the impossibility in
spaces of infinite dimension of weakly separating two convex sets under
the sole hypothesis that they be disjoint. That weak separation can
always be effected under this hypothesis in spaces of finite dimension has
long been known.] In [4] Klee proposes the problem: for what (if any)
ordinals « other than 0 and 1 do there exist convex sets C' of order «
such that lin*C'=X.

The answer to this question is provided in the principal result of this
paper, Theorem 3.2. If X is a real vector space with dimX =R, and «
is an ordinal with x < £2, then there exists a convex set C of order « such
that lin*C=X.

It is clear that this theorem solves the cited problem of Klee and pro-
vides a negative answer to the separation problem of Morse implying as
it does Theorems C and B.

We will define a subset 4 of a vector space X to be «-ubiquitous iff
order A=« and lin*4=X.

Since the submission of this paper, some of the results have been ob-
tained by V. L. Klee using different methods.

2. Preliminary definitions and lemmas.

The proofs of the main theorems of this paper depend on finding
general conditions under which for a family I" of convex sets we may
conclude that
(2.1) lin*(U{C: Cel'}y = (U{lin*C : Cel?}),

where (S) denotes the convex hull of 8, that is N{C' : S=CAC convex}.
This relation does not hold in general even in finite dimensional spaces
when x=1. We give two examples in Z,.
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ExamprL 2.1. For n=1,2,3,..., let C,, be the segment of the line
through the origin with argument » lying in the closed unit disc. Here
linU{C, : n=1,2,...}) is closed while (U{linC, : n=1,2,...}) is not.

ExampLE 2.2. Let C;={0} and C;={(x,y): 20,y=1}. Here

linU{C, : n=1,2}) = {(x,y): 220,0sy=<1}
while
UflinC, : n=1,2}) = {8} {(=,y): 220,0<y=<1}.

In the first example the conclusion (2.1) fails because the set I' is
infinite; in the second example because the members of I" are not line-
arly bounded, where a convex set is said to be linearly bounded iff it
contains no ray. If neither of these exceptions occurs then the conclu-
sion holds with «=1 in spaces of finite dimension. That is

Remark 2.1. If C,,0C,,...,C, are linearly bounded convex subsets of
a finite dimensional vector space, then

lindU{C;: i=1,2,...,n}) = (U{linC,: i=1,2,...,n}).

This is easily proved using compactness, see for example [4]. This
remark inspires the following Definition 2.1. Before stating this funda-
mental definition we introduce some notation which will be used through-
out the remainder of this section and the next.

NoraTion: We let X denote a real vector space with dimX =X,.
We let I denote the set of non-negative integers, I’ the set of positive
integers, R the set of real numbers, P the interval [1,), @ the interval
(0,1]. For use in discussing convex combinations we let K be the set of
functions ¢ satisfying:

(1) range t<[0,1],
(2) {i: #@2)> 0} is finite,
(3) Z{t(¢) : ¢+ € domain t}=1.

We further agree that if b is a real number, 4 a set of real numbers, y a
vector and C a set of vectors, then

AC = {ax: acA arzeC}, bC = {bx:2eC}, Ay = {ay:acd}.

For each set S of subsets of X we defineoS=U{H : He S}. Weuse Sc<T
to mean YAeS ABeT (A<B). The natural cone of a basis # for X is
defined to be the set of vectors which when expressed as linear combina-
tions of members of # involve only non-negative coefficients.
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DEriniTION 2.1. We say that a convex set C is enveloped (respectively,
delineated) by I iff

(1) I' is a family of linearly bounded convex sets (respectively, seg-
ments) with C={cl");

(2) for each finite dimensional subspace, Y, of X there is a finite
dimensional subspace, Z, of X and a finite subset, 4, of I" such that

YnC < {U{ZnG:Ge4d}).

We say that C is enveloped (respectively, delineated) iff for some I', C is
enveloped (respectively, delineated) by I We say I' is an enveloping
(respectively, delineating) family iff (¢I') is enveloped (respectively,
delineated) by I'. (It should be emphasized that it is not required of an
enveloping family I" that each finite dimensional subspace of X should
intersect only finitely many members of I'.)

It is clear that if C is delineated by I" then C is enveloped by I

Partial motivation for this definition is furnished by the following
lemma.

Lemma 2.1. If I' is an enveloping family, then
lin{U{@: Gel}) = (U{lin@: Gel}).
It is noted that the family in Example 2.1 above fails to satisfy condi-

tion (2) of the above definition while that in Example 2.2 fails to satisfy
condition (1).

Proor. Let C=(U{G: GeI'}) and let z € linC with z+Qy<C. Let ¥
be the (at most two-dimensional) subspace of X spanned by x and .
Let Z be a finite dimensional subspace of X and 4 a finite subset of I"

80 that
YnC < (U{ZnG:Qed}).

The family {Zn@ : GeA4} is a finite family of linearly bounded convex
sets contained in the finite dimensional space Z so that
lindU{Z n G: Ged}) = (U{lin(Zn @) : Ged})
by Remark 2.1. Now
z+Qy <« YnC < (U{ZnG:Ged})
so that
z € lin{U{Zn@:Ged}) = (U{lin(Zn Q) : Ged})

< (U{linG:Gel}).
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This shows that
lin{U{G: Gel'}) < (U{linG: Qel}).

The inclusion the other way follows immediately from the observation
that for each Ge T,
lin@ < in{U{@ : Gel})

and from the fact that lin 4 is convex whenever 4 is convex. The proof
is therefore complete.

DEFINITION 2.2: C i8 x-enveloped (respectively, a-delineated) by F iff:

(1) F is a function on the set of ordinals g with § < «, whose values are
families of subsets of X;

(2) for each ordinal B <«, lin?C is enveloped (respectively, delineated)
by F(B);

(3) for y<f=a, F(y)= <F(B).

We say that C is x-enveloped (respectively, «-delineated) iff for some
function F, C is x-enveloped (respectively, «-delineated) by F. We say
that F is an «-enveloping (respectively, o-delineating) function iff
{a F(0)) is x-enveloped (respectively, x-delineated) by F. If conditions
(1), (2) and (3) hold with =<« replaced by f<a« in each of these
conditions then we say that C is «-subenveloped (respectively, o-sub-
delineated) by F, etc.

The following remarks are self-evident consequences of the above
definition.

ReMARrks 2.1. 1. If C is «-enveloped (respectively, «x-delineated) by F
and B<o« then C is p-enveloped (respectively, pf-delineated) by
F|{y:v=B}.

2. If C is x-enveloped (respectively, a-delineated) by F and order C <«
then for each ordinal >, C is f-enveloped (respectively, §-delineated)
by @ where G(y)=F(y) for y =« and G(y)=F(x) for a <y = 8.

3. If « is a successor ordinal then C is x-subenveloped (respectively,
a-subdelineated) by F iff C is (x—1)-enveloped (respectively (o—1)-
delineated) by F.

4. If C is x-subenveloped (respectively, «-subdelineated) by F then
for each ordinal f<«, C is f-enveloped (respectively, S-delineated) by
F|{y:y<p}

5. If C is x-enveloped (respectively, «x-delineated) by F then C is x-
subenveloped (respectively, «-subdelineated) by F | {f: 8 <«}.

6. If C is «-subenveloped (respectively, «-subdelineated) by F and
lin*C is enveloped (respectively, delineated) by I" and for each ordinal
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f<w«, F(B)=<T, then C is x-enveloped (respectively, x-delineated) by
G where G(f)=F(f) for < and G(x)=1.
7. If C is x-delineated by F then C is x-enveloped by F.

We next present some lemmas which give conditions under which
P lin*C = lin*(PC).
The following example suffices to show that this is not in general true
even when x=1 and X is two-dimensional.
Exampre 2.3. Let C={(z,y): (x—1)2+y2<1}. Then
lin(PC) = {(z,y) : 20}
while
PlinC = {6} u {(x,y) : >0} .
However,
Lemma 2.2. If C is a convex set in two dimensional Euclidean space, Y,
and either 0 ¢ linC or linC is a polygonal region, then
PlinC = lin(PC).

Before proving this lemma we state and prove

Lemma 2.3. For all C <X and for all x<Q
Plin*C < P lin*(PC) = lin*(PC).

Proor. The inclusions P lin*C < P lin*(PC) and lin*(PC) < P lin*(PC)
are obvious. It only remains to show that P lin*(PC)<lin*(PC) which
we do first for a=1. Let x € Plin(PC). Then for some k€@, kxe
lin (PC) so that for some y, kx+ Qy < PC. Thus since 1/k € P we have

1 1

whence z € lin (PC) which yields the desired inclusion for x=1. Suppose
now that the lemma has been demonstrated for all ordinals less than «
where o« > 1. Then if « is a successor ordinal,

P lin*(PC) = P linlin*>1(PC) < lin P lin*-1(PC)
< linlin*-1(PC) = lin*(PC) .
If x is a limit ordinal then,
Plin*(PC) = P U,_,lin?(PC) = U,_,P lin®(PO)
< Up,lin’ (PC) = lin*(PC) .
This completes the proof.
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Proor or LEmMMA 2.2. In light of Lemma 2.3 it need only be shown
that lin (PC)<P linC.

Assume first that 0 ¢ linC. Let x and y be such that z € lin(PC) and
z+Qy<PC. Suppose that ¢ PlinC. Then [0,1Jx<Y\linC. Since
[0,1]x is compact and linC is closed in the Euclidean topology for Y,
there is an open set U with [0,1Jx< U< Y\linC and a 2z € z+ Qy such
that [0,1]:<U. Hence QznlinC=¢ or equivalently z ¢ P linC' whence
a fortiori z ¢ PC. This contradiction assures us that z € P linC which
completes the proof in the case that 0 ¢linC.

Next assume that linC is a polygonal region. In view of the part of
the proof already given we need only consider the case that 6 € linC. If
0 is an interior point of linC then PlinC=Y which gives the desired
result. Finally consider the case that 6 is a boundary point of linC.
Let S be the smallest sector (convex cone) with vertex at the origin
containing linC. Since linC is a polygonal region there are segments
contained in linC on each of the bounding rays of S. Thus PlinC=S=S.
Since PC <8 we have lin(PC)<linS=S. This completes the proof.

Lemmas 2.2 and 2.3 facilitate the proofs of the important lemmas
2.4 and 2.6.

Lemma 2.4. If C i3 convex, x < 2 and 0 ¢ lin*C, then P lin*C =1in*(PC).

Proor (by transfinite induction). From Lemma 2.3 we know that
P lin*C <lin*(PC). Let z and y be such that z € lin (PC) and z + Qy < PC.
Let Y be the (at most two-dimensional) subspace of X spanned by z
and y and let C'=YNnC. Now (' is a convex subset of ¥ with 6 ¢ linC’' <
linC. Since z+Qy< Y n(PC)=PC’ we see that z € lin(PC"). Invoking
Lemma 2.2 we obtain € PlinC’'<P linC. This proves the lemma in
the case that «=1. Assuming the lemma to have been proved for all
ordinals less than «, we obtain the result for « by means of the following
familiar computations. If « is a successor ordinal, then

(2.2)  lin*(PC) = lin lin*-1(PC) = lin P lin*-1C

= Plin lin*-1C = P lin*C ,
while if « is a limit ordinal

(2.3) lin*(PC) = U,_, lin®(PC) = U,_,PlinC
= P U, lin’C = Plin*C.
This completes the proof.

Lemma 2.6. If C is delineated, then lin (PC)=P linC.
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Proor. Again, by Lemma 2.3, we need only show that lin(PC)c<
PlinC. Let I' be a family which delineates C. Let z and y be such that
z€lin(PC) and x+Qy<PC. Let Y be the space (at most two-dimen-
sional) spanned by « and y and let Z be such a finite dimensional subspace
of X and 4 such a finite subset of I" that

(2.4) YnC<cU{ZnGQ:Ge4a}).
Letting C'=YnC, (2.4) yields
(2.5) C=YnCc¥nU{ZnG:Ged}) =« YnC =C".

Since the family {Zn@ : Ged} is a finite collection of points and seg-
ments, the set lin{U{ZnG : Ged}) is a polytope so that C'=Y¥YnC is
by (2.5) a polygonal region in Y. Now x+Qy< Y n(PC)=PC’. Thus
z €lin(PC’') whence, by Lemma 2.2, x € Plin(C’. This completes the
proof.

Lemma 2.6. If C i3 «-subdelineated, then lin*(PC)= P lin*C.

Proor (by transfinite induction). The case x=1 is covered by the
preceding lemma. Assume that the lemma holds for all ordinals less than
« where « > 1. A repetition of the arguments (2.2) and (2.3) completes
the proof.

The following lemma which will be employed in the final stages of the
proof of the main theorem of Section 3 is so obvious as to require no
proof.

Lemma 2.7. If C is contained in the natural cone of a basis & for X, then
for each ordinal «, lin*C is contained in this cone.

A few words of orientation may be helpful to the reader at this point.
In the proof of the main Theorem 3.2 in the case that « is a limit ordinal
there will be constructed a convex set C' of order « such that 6 is an
inner point of 1in*C. The steps in the argument require that C' be line-
arly bounded. We next pass to the set PC which is not linearly bounded.
It is clear from Lemma 2.3 that X =P lin*C <lin*(PC). It will next be
necessary to show that order (PC) is not less than «. This will be achieved
by use of Lemma 2.6 applied to C. The hypotheses of the said lemma
require that C have a certain “polygonal” character namely that C be
a-subdelineated. The notions of delineated, «-delineated, and «-sub-
delineated sets are required solely for the proof of Theorem 3.2 in the
case that « is a limit ordinal as are Lemmas 2.5, 2.6, 2.7 and the sub-
sequent Lemma 3.5 and the parts of Lemmas 3.2 and 3.4 which deal
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with delineated sets. The proof of Theorem 3.2 in the case that « is a
limit ordinal also involves Theorem 3.1 in the case that « is a successor
ordinal which in turn employs all the lemmas not mentioned above.
It is seen then that the proof of Theorem 3.2 in the case that « is a limit
ordinal requires a good deal more machinery than in the case that « is a
successor ordinal.

3. Main results.

NoraTion. We denote by Y@®Z the direct sum of the subspaces ¥
and Z and by Y¢Z the direct sum of the family, ', of subspaces of X.
If M<34% then for each Z € & we define

projM on Z(Z) = {x: v € Z Ay e IHI\{Z}) (x+y e M)} .

We write simply proj M on Z when the family & is clearly understood.
We denote by [M] the space spanned by M.

Lemma 3.1. Suppose that X =3%{X,:1€I}. Suppose that for each
1€ l', C; is a linearly bounded convex subset of X; and that Cy is a linearly
bounded, finite dimensional convex set. Let uy=0 and for ke I’ let

u, € 34{X;: 1 =0,1,...,k—1}.
Further suppose that {u, : 0€C}<=Cy. Then the set
C=U{u+C;:iel})
8 enveloped by the family {u,+C;:1 €I} so that
linC = (U{u;+1linC,;:ve1}).
Proor. The first of the conditions of Definition 2.1 is clearly satisfied.

In order to establish condition (2) of this definition let Y be a finite
dimensional subspace of X. Let m be the smallest integer such that

CouY < 34{X,: i=0,1,...,m}.
Let W=[Y,Cyuy,uy,...,u,]. Note that W is finite dimensional and
that
W< 34{X,: 1=0,1,...,m}.
Now let
Z = 3%projW on X; : ©=0,1,...,m}.

Again Z is finite dimensional and

W< Zc3HX,;: i=0,1,...,m}.
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Next let x € YnC. Then there exists ¢t € K with domain {=17 so that
z = {t;(u;+x;) :iel}
where x; € C; when ¢;+0 and z;=0 when £,=0. Let
I, = {i: z;=0At;+0}, I, ={i: 2;+0At,+0}.

Now I, and I, are disjoint finite sets of non-negative integers and recall
that for each ¢ € I,

ui € 00 < W < zd {X’i: i=0’1’...,m}.
Furthermore
(3.1) x = {tu,iel} + > {t;(w+x) :iel}.

Observe that u; € C, for 7 € I, and use the convexity of C, to write

D (taug v e Iyy =ty
where

xy €Cy bty =D {t;:iely}.

Now we have
(3.2) v =tz + 3 {t(ug+x) iel}.

Let k=maxI,, and using (3.2) write
(3.3) b, = =ty @y — by, — D {(ug+x)  telai<k}.

It is readily seen that each term on the righthand side of (3.3) belongs
either to 3%{X, : 1 <m} or to 3¢{X, : i <k}. Since ¢,,+0 and z; € X, \{6}
we see that k<m. It therefore follows that for ¢ € I, we have u;e¢ W
and since x€ Y< W and z,’ € Cy< W we have from (3.2)

(3.4) S{tix;iiel} =x—tdxy - {tu;:0el,} e W.

The definition of Z together with (3.4) now assures us that z; € Z for
t € I,. And since as we have already noted, u, € W<Z for ¢ € I, we find
that

u,+x; € Zn(u;+C;) for iel,

And now, since t;' +3{t;: i€ I,}=1, z € Cy, and maxI, <m we have
x =tz + 3 {t;(u;+x;) 1iel}
eU{Znu;+C) : ielyvi=0})
c(U{Zn (u;+0C;) : i=0,1,2,...,m}).
Thus we see that
YnCc{U{Zn@w+0;) : i=0,1,2,...,m}).

Math. 8cand. 16 —5
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Thus C is enveloped by the family {u,+C;:¢eI}. That linC=
(U {u;+1linC; : ¢ € I}) follows from Lemma 2.1. This completes the proof.

Lemma 3.2. If all the hypotheses of Lemma 3.1 hold and in addition, for
each 1 €I, C; is enveloped (respectively, delineated) by a family I';, then C
s enveloped (respectively, delineated) by the family {u;+G : Gel';aniel}.

Proor. It is clear that we only need verify condition (2) of Definition
2.1. To this end let Y be a finite dimensional subspace of X and employ
Lemma 3.1 to find a finite dimensional subspace Z’ of X and an integer
m so that
(3.5) YnC < (U{Z n@u;+C,) : ©=0,1,2,...,m}).

For each ©=0,1,2,...,m we have
(3.6) Z'n(u;+Cp) = w+(Z' —u)) nC; < w;+[Z,u;1n C; .

And, since C; is enveloped (respectively, delineated) by I;, there exists
a finite dimensional subspace, Z;, of X; and a finite subset, 4, of I'; so
that

(3.7) (Z'u]lnC, = (U{Z,nG:Ged)}).
Now (3.6) and (3.7) yield for :=0,1,2,...,m
(3.8) Z'n(u;+C;) < u;+[Z,u;1n C;

cu;+U{Z,nG:Ged)})
< (U{lZyu] n(u;+G) :Ged}).
Let Z=[Zy,Z,,...,Z,,,u;,%,,...,%,] and note that Z is finite dimen-
sional. Now combining (3.5) and (3.8) we have
YnC < (U{Z nu+C;) : 1=0,1,2,...,m})
e (U{{Z,uln (u;+@Q) : Ged; A 1=0,1,2,...,m})
c(U{Znw+Q) : Ged; Ai=0,1,2,...,m}).

The finiteness of each of the 4,,7=0,1,2,...,m, yields the desired result.

Lemma 3.3. Let X;, C;, u; for i€l and C satisfy the hypotheses of
Lemma 3.1. Let « be an ordinal >0 and define by induction for each ordinal
B

00 7’f ﬁ =0 ’
Cf =1 inCf1u {u;: 0€linfC,}) if Bis a successor ordinal ,
U, 50y if B is a limit ordinal .

Suppose that for each B < « the sets C* and linf C;, i € I, are linearly bounded
and that Cf is finite dimensional. Then C is x-subenveloped by F where
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FB) = {CLf}u {u;+1lin’C; :iel'} for B<ou.
Furthermore
(3.9) lin*C = {Cy*u U {u;+1in*C; :i€I'}).

Proor. It is readily checked that Lemma 3.1 is just the case a =1 of
this lemma. It is also easily checked that for y<f<«, F(y)c<F(B).
Assume that the lemma has been demonstrated for all ordinals d<«a
where « is an ordinal greater than 1. It therefore follows that for é < «,
C is é-subenveloped by F | {f : f < ¢} and that

1in’C = (Cy U U{u,+1in’C; :iel’}).

Moreover, since 0 < «, the hypotheses assure us that Oy’ is finite dimen-
sional and linearly bounded and that each of the sets lin’C,, i € I, is
linearly bounded. Reference to the definition of C,’ assures us that the
hypotheses of Lemma 3.1 are satisfied with C, replaced by €’ and C;
replaced by lin’C,. Therefore lin’C is enveloped by

{3 uU{u;+1in’C; :iel'}.

Therefore (see for example Remark 2.1.6) C is d-enveloped by
F | {f:p<6}. This shows that C is x-subenveloped by F. In order to
establish (3.9) first consider the case that « is a successor ordinal. Now

lin*-1C = (Cy*-1u U{u;+1in*-1C; :iel'}).

Since the hypotheses of Lemma 3.1 are satisfied with C, replaced by
Cy 1, C; replaced by lin*-1C, for ¢ € I' and C replaced by lin*-1C we
have by that lemma
lin*C = linlin*1C = {linCy>*-1u U {u;+1in*C; :5€I'})
= {Cy*u U {u;+1lin*C; :se€l'}),
where the last equality is obtained by reference to the definition of Cy*.
Thus (3.9) holds for « a successor ordinal.
In the case that « is a limit ordinal,
lin*C = U, _lin’C = U, <Cf uU{u;+1in’C; :iel'})
= <Uﬂ<a00ﬂ U U {ui+1in“0z- . i (S I’}> .
= (Cy* U U{u;+1lin*C; :9el'}).

This establishes (3.9) when « is a limit ordinal and completes the proof of
the lemma.
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Lemma 3.4. Suppose that the hypotheses of Lemma 3.3 hold and that in
addition for each i € I' there 18 a function H; so that C; is x-subenveloped
(respectively, «-subdelineated) by H,. Further suppose that there is a func-
tion H on the set of ordinals less than o so that for each B<x, Hy(B) is a
Jinite family of linearly bounded convex sets (respectively, segments) with
O ={aH(p)) and that for y<f<a, Hyy)c<HypB). Then C is x-sub-
enveloped (respectively, x-subdelineated) by H where

HP) = {u;+G : GeH/B)riel}.

Proor. Conditions (1) and (3) of Definition 2.2 are clearly satisfied.
Moreover for <o

lin?C = (0 uU{u,;+1in°C, :ieI'})
= (ug+<oHy(B)) U U{u;+<cH(p)) :iel'})
= (U{u; +oHy(p) :iel}) = (cH(B)) .
Note that for each § <« the hypotheses of Lemma 3.2 are satisfied with
C replaced by 1in®C, C, replaced by C\’ and with C; replaced by lin?C,
for 1 €I', I'; replaced by H,(p) for ¢ € I and with I" replaced by H(f).
Applying Lemma 3.2 we find therefore that lin’C is enveloped (respec-

tively, delineated) by
{u;+Q: GeH,p),iel}.

This completes the proof.

LemmMa 3.5. If X=34{X,:1€l'} and C; 18 a convex subset of X, for
i € I' with 0 ¢ 1in?C, and 1in® C; linearly bounded and C={(U{C,: i eI'}),
then
orderC = sup{orderC;:iel'}.

Proor. Let f=orderC and «=sup{orderC;:iel'}. Apply Lemma
3.3 with Cy=0 and uy=u,=u,=...=0 to find for each ordinal y <

that
a lin’C = (U{lin’C,:iel'}y.

Thus by the definition of «,
lin**1C = (U {lin*"1C;:ieI'})
= (U{lin*C,:¢eI'}) = lin*C.
It therefore follows that g <. It will suffice now to show that for y <2
(lin”C)n X,, = lin’C,  for each nel’.
Accordingly let z € (lin”C)nX,,. Then |
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x=>{tx,1el'},

where z; €lin’C;<X,, t€ K and domaint=1I'. Since 0 ¢ lin”’C,, we can
only have xe€ X, if ¢,=0 for ¢+n, whence {,=1 and z=x, € lin”C,.
Therefore for n e I’ and y< £,

lin’C, < (lin’C) n X,, < (lin®C) n X,, < lin’C,

so that for each n € I, order C, £, whence « <. As we have already
shown that <« the proof is complete.

TrEOREM 3.1. If dim X =R, then for each x < 2 there is an «-delineated
convex set C of order « lying in the natural cone of some basis # for X.

Moreover in the case that « is a successor ordinal we may further require
either that C satisfy

(3.10) 9 ¢ lin*C
or
(3.11) lin*C = ({6} ulin*-1C) .

Proor (by transfinite induction). For x=1 let we X with uw=+6.
Then (1,2]u and (0,1]u are 1l-delineated sets of order 1 satisfying re-
spectively (3.10) and (3.11). Furthermore if % is chosen as a basis element,
these sets are in the natural cone regardless of how the other basis ele-
ments are chosen. Suppose next that the theorem has been proved for
all ordinals <o where a«>1. Let X=3%{X,:iel} where X,=Ru,
u=+0 and for 1 e I’, dimX,;=R,. Let y,0x,,0,,... be a sequence of suc-
cessor ordinals satisfying:

o;=0—11if « and «—1 are successor ordinals;
otherwise

%1,09, &, . . . 18 & strictly increasing sequence with
limit « or o« — 1 whichever is a limit ordinal .

For i €I’ let C; be an «;-delineated convex subset of X; which lies in
the natural cone with respect to some basis #; of X; and such that
order C;=a,. Let # be the basis for X defined by #={u}u
U{%,:1eI'}. We now divide the remainder of the proof into two cases.

CasE 1. « ts a successor ordinal. Require that
lin*%C; = ({6} ulin*%1C;).

Let a,,a,,a4,... be a strictly decreasing sequence of positive numbers
and let ay=lima,. Let

C = U{au+C;:1el'}).
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It is clear that C lies in the natural cone of Z. We note that by Remark
2.1.2 each of the C;, i e I’, is (x+1)-delineated. Check that the hypo-
theses of Lemma 3.4 are satisfied with « replaced by « + 1, with u, replaced
by a;u, and with

Hau: o8}y  for f<u;

212 C =
¢ ) 0 [ag,a;]u for f=o,x+1.

It follows from Lemma 3.4 that C is « + 1-subdelineated and by Remark
2.1.4 that C is x-delineated. The hypotheses of Lemma 3.3 are satisfied
with u; replaced by e« and with O defined for <« by (3.12) so that
the conclusion (3.9) of that lemma yields

lin*C = {Cy*u U{au+1in*C; :5e1'})
= ([ag,a,Ju U U{au+1in%C; :ie1'}).
The hypotheses of Lemma 3.1 are seen to hold with C, replaced by
[ag, @ ]u with u; replaced by au and with C; replaced by lin*%C,, 1€ I'.
Therefore
lin*+1C = lin lin*C = (lin([ay,a,]u) U U {au +1in lin%C; :ie1'})
= {[aq,a,Ju U U{au+1in*%C; : i€ '}) = lin*C .

whence orderC £«. Application of Lemma 3.3 with « replaced by g
where 8 <« yields

linC = (CfuU{au+1lin’C;}y  for f<a.

It is now easily verified that aqu ¢ lin?C for g <« and since azu € lin*C
we find that order C = «. Thus order C =«. The condition (3.10) or (3.11)
is satisfied according to whether a;>0 or a,=0. This establishes the
result in the case that « is a successor ordinal.

Case II. « is a limit ordinal. Require that 0 ¢ lin*C,; for e I'. Let
C=U{C,:iel}).

Lemma 3.5 assures us that order C =« and it is obvious that C is con-
tained in the natural cone of #.

Since each of the sets C; is an «;-delineated set of order «,;, it follows
from Remark 2.1.2 that for each i € I’, C; is (x + 1)-delineated. Applying
Lemma 3.4 we find that C is « + 1-subdelineated and hence by Remark
2.1.4, C is x-delineated. This completes the proof.

It might shed some light on the procedure employed in this paper to
observe that in the proof of case I of the above theorem we used the fact
that
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lin’C = (Cf uU{au+1inC; :iel'})
whence it is easily checked that
lin’C = (U{au+1in?C; :iel'}).

It might be thought therefore that the sets C,’ could be dispensed with;
this is not the case however since lin’C is not for all 8 <« enveloped by
the family {a;u+1inC; : ¢ € I'} as required for the induction. A similar
remark applies to Theorem 3.2.

THEOREM 3.2. If dim X =R, then for each ordinal o with « < there is
a convex C' of order « such that

lin*C' = X .
Proor. CaskE 1. « ¢s a successor ordinal. Let
X =X,®>4X, : i=1,2;nel’}.

For each i=1,2 and each nel’, let C,? be a linearly bounded convex
set of order o with

(3.13) C,t < X, and lin*C,? = {lin*-1C, u {6}) .
Let e,,65,€5,. .. be a basis for X with
e, € XoUU{X,?: i=1,2Ak=1,2,...,n—1}.
Let
C =U{(-1)e,+0C, : i=1,2anel'}).

By Lemma 3.3, for 8 <« we have

lin?C = (U{(-1)%, +1in’C,t : i=1,2an€el'})
and by the same lemma
(3.14) 1lin*C = (U{(—1)e, : 1=1,2anel’'}u

v U{(=1)e,+1lin*C,% : i=1,2anel'}).

Thus lin*C contains each basis element e, and its negative, hence also 6.
It may be seen however that 6 ¢ linC for g <« as follows. Suppose on
the contrary that for some f <« we have 6 € lin?C. Then 6 can be ex-

pressed in the form
0 =3 {tx,f: i=1,2an€el'},

where z,% € ((—1)%,+C,?) and t € K with domain ¢=1'x{1,2}. Let m
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be the largest integer n for which #,,+1¢,,>0 and let j be the largest
integer ¢ for which ¢,;>0 and let j'=3—j. Set
z,d = (—1Ye,,+y,7 with g,/ elin®C,j c X, J
and note that y,/ cannot be 6 by (3.13). Now
biUm = —tpi( =1V e, —tpp@, = {t2,f: i=1,2an=1,2,...,m—1}
eX, DX, ®3{X,: i=1,2An=12,.... m—1}

which is impossible since #,;+0 and 6+y, € C, /<X, .
Since 0 ¢ lin?C for f <« we see by Lemma 2.4 that

0 ¢ Plin’C = lin®(PC) for f<«.
However, applying (3.14) and Lemma 2.3 we find
X = (U{Re, :nel'}y « Plin*C < lin*(PC) < X .

Therefore PC has order « and lin*(PC)=X. This completes the:proof
in the case that « is a successor ordinal.

Case II. « is a limit ordinal. Again let
X=X,024{X, : i=1,2anel’}
where for n € I' and ©=1,2, dim X, =R,. Let &;,x,,05,... be a strictly
increasing sequence of successor ordinals greater than zero with limx,, = «.

For each 1=1,2 and each n € I' let C,* be an «,-delineated set of order
o, contained in the natural cone of a basis 4,! for X, * with

lin*»C,¢ = ({6} U lin*—1C, %) .
Let %, be a basis for X, and let e;,e,,e5,... be a basis for X with
en € BoUU{B,l: i=1,2Ak=1,2,...,n—1}.

Let
C =(U{(-1)e,+C, : i=1,2anel'}).

The hypotheses of Lemma 3.3 are satisfied where
Cf = (U{[-11]e, :a,<8}).

It is clear that for g <a, Cyf is finite dimensional and linearly bounded.
Letting G, be the function on the ordinals <« defined by

Go(B) = {[—1,1Je, : &, < B}

we see that for § < &, G,(B) is a finite family of segments, that Cf = (aGy(B))
and that for y <f<a, Gy(y)=<Gy(B). Since, furthermore, each C,? is
«-delineated, Lemma 3.4 assures us that C is x-subdelineated.
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Now Lemma 3.3 yields for <«

(3.15)  lin®C = (U{[-1,1]e, : a,<BDHU
U U{(=1)e,+1in’C,* : i=1,2anel'}).
Furthermore
lin*C = U,_,lin’C > (U{[-1,1]e, :nel'}y.
Now by Lemma 2.3
lin*(PC) = Plin*C > (U{Re, : nel'}) = X .
It now only remains to be shown that
linf(PC) + X for f<o.

To this end we will first show that for »>0, —re, ; ¢lin**C. Suppose
on the contrary that for some r >0, —re, ., €lin®**C. Then by (3.15) we
find

(3.16) ~rens1 = Yo + 2 {tul(— 1), +y5%) : i=1,2ahel’}

where y,e(U{{—1,1]¢, : k=1,2,...,n}) and y,’€lin*»C,’<X,? and
t € K with domain ¢={0}u(l’ x {1,2}).

Recalling that C,¢ (and hence by Lemma 2.7 also lin**C,?) is con-
tained in the natural cone of #, we see that when the y,’ are expressed
as linear combinations of the basis elements e,,, the coefficients are there-
fore 20. Consequently (3.16) can hold only if ¢,,, ; >0. Thus, letting &
be the largest of the integers & for which ¢,, +1%,,>0 we see that k>n.
And since 6 ¢ lin*»C,? we have y,’+ 0. But y,' when expressed in terms
of the basis elements e,, involves only e,, for which m >k=#n+1. (This
is because y,te X, and

en € Xo @D {X,t: i=1,2Ah=1,2,...,m—1}.)

These terms cannot drop out of the sum on the right hand side of (3.16)
since all the terms with negative coefficients involve only e, with A <k.
This contradiction shows that

—re,yq € lin*C .

Using the fact that C is f-delineated for each 8 <« we have by Lemma

2.6 that for <o
li?(PC) = Plin®C .

Thus — Pe, ,nlin**C'= @ for ne l'. As we have already seen that
lin*(PC) = X

we see that PC is a convex set of order x for which lin*(PC)=X. This
completes the proof.
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