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SOME OPEN MAPPING THEOREMS IN LF-SPACES
AND THEIR APPLICATION TO EXISTENCE THEOREMS
FOR CONVOLUTION EQUATIONS
VLASTIMIL PTAK

It is a well known fact that the operation of differentiation can be
made continuous if we are prepared to accept the price: the resulting
topology has some decidedly unpleasant properties. If £ is an inductive
limit of a sequence E,, then some but unfortunately not all topological
properties are inherited by E if they are satisfied on each E, ; thus, e.g.,
a linear mapping of ¥ into a convex space is continuous if (and only if)
its restriction to each F, is continuous or, a hyperplane H < E is closed
in K if (and only if) its intersection with each E,, is closed in F,,. However
if we replace hyperplanes by arbitrary subspaces, the last equivalence is
no longer true. Similar complications occur in the study of openness of
mappings.

It is the purpose of the present paper to present a few remarks con-
cerning the openness of mappings of one LF-space into another. It turns
out that a continuous linear mapping 7' of an LF-space E into an LF-
space F need not be open even if it behaves as one in each F;. Some
additional assumptions are necessary to make 7' open and the study of
this problem is the object of this communication. The main idea of the
present remark consists in using quotient mappings (see e.g. proposition
(4.5)). Although the results are far from satisfactory we are able to im-
prove an earlier result of B. Malgrange [3] and strenghten slightly a
theorem on the range of convolution transforms in distribution spaces
obtained by L. Hérmander [2]. Hoérmander’s work is concerned with
existence theorems for equations Tz =y where 7' is a convolution trans-
form and x € 2'(L2,), y € 2'(£2,). Earlier results in this direction, espe-
cially those of L. Ehrenpreis, are mentioned in the bibliography of [2].

1. Notation and auxiliary results.

The term “‘convex space’ is used for “locally convex Hausdorff topo-
logical linear space”. Similarly a convex topology is the topology of a
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convex space. If E is a convex space we shall denote by U(E) the system
of all closed absolutely convex neighbourhoods of zero in E. If E and F
are two linear spaces, a linear mapping 7" from E into F has a domain of
definition D(T") which is a linear subspace of ¥ ; its range will be denoted
by R(T). We shall use the preposition “of”’ to distinguish mappings
which are everywhere defined. Thus a mapping T of & into F necessarily
has D(T') = E while, for a mapping 7' from Z into F, D(T') may be different
from E.

Let £ and F be two convex spaces and A a linear mapping from E
into F defined on a dense subspace D(A4) of . We define G(4), the graph
of 4, as the set of all [x,4x] € E x F for x € D(A). We shall denote by
D(A’) the set of those y' € F' for which the scalar product (dz,y’) is
continuous on D(4). If y' e D(A’) there exists an z’ € E' such that
(Az,y’y={x,x") for all x € D(A). Since D(A) is dense in E, there is ex-
actly one such «’; we may thus write #’'=4"y’. The mapping A’, the
adjoint of 4, is clearly linear. If E’ and F’ are equipped with the topo-
logies o(E',E) and o(F’', F), then D(A’) will be dense in F’ iff 4 is clos-
able, i.e. iff the closure of G(A4) in E x F is again the graph of a mapping
B from E into F. In this case B is an extension of 4 and clearly B'=A4"’,
hence D(B')=D(A’).

The rest of this section is devoted to some simple results concerning
weakly continuous and weakly open mappings which will be needed later.

DeriniTION (1,1). A linear mapping T from a convex space E into a con-

vex space F i3 said to be weakly continuous if it is continuous as a mapping
of (D(T),o(D(T),E')) into (F,o(F,F")).

ProrosiTION (1,2). Let A be a linear mapping from E into F with D(A) =E.
Then the following conditions are equivalent:

1° if @ s a closed subspace of F, then A-Y(Q) s closed in E;

2° if Q@ is a closed hyperplane in F, then A-Y(Q) is closed in E;

3° DA)=F';

4° A is continuous as a mapping of (E,o(E,E')) into (F,o(F,F’)).

Proor. The implication 1° => 2° being obvious, assume 2° and take
an element y’' € F’. The linear form f(x)=(Ax,y’) defined on E will be
continuous iff f-1(0) is closed in E. Since clearly f-1(0)=A4-1(Q) when @
is the zero hyperplane of y’, f-1(0) will be closed by 2° whence y' € D(4’).
It follows that D(A’)=F'. Suppose now that 3° is satisfied and take
Y5, Y, €F'. Since D(A")=F', we may form z;/=A"y,. If |[{z,z;/d| <1
for 1<¢<n, we have |{(Az,y,/Y| <1 for 1<¢=<n which proves 4°. The
implication 4° = 1° is obvious.
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DEFINITION (1,3). A linear mapping T from a convex space E into a con-
vex space F is said to be weakly open if it is open as a mapping of
(D(T),o(D(T), E')) into (F,o(F, F")).

If T is closed we have the following equivalence.

PRroPOSITION (1,4). Let T be a linear mapping from E into F with D(T)=E
the graph of which is closed in E x F. Then the following conditions are
equivalent:

1° R(T") is closed in E';

2° R(T")=T-1(0)°;

3° T-10)°< R(T");

4° if P is a closed subspace of E with P> T-Y(0) then TP is closed in TE ;

5° if P is a closed hyperplane in E with P>T-1(0) then TP 13 closed

n TE,
6° T is open as a mapping of (E,o(E,E')) into (F,o(F,F")).

Proor. The inclusion R(T") <= T-1(0)° is obvious. Further, if x € R(7")°,
we have (T'xz, D(T')y=0 whence T'x=0 the subspace D(T") being dense
in F'. Hence R(7T')°<T-1(0). It follows that for any mapping 7' we have

R(T") = T-Y0)° = R(T")".

The implication 1° => 2° follows immediately from these inclusions.
The implication 2° => 3° is immediate. Now assume 3° and let P be
a closed subspace of E containing 7'-1(0). Let y e TH, ynoneTP.
It follows that y =Tz for some = for which # non € P. Since P is closed
there exists an 2’ € B’ such that 2’ € P® and (z,z')+0. Since ' € P'c
T-1(0)° we have z'=T"y" for some y’, whence

(TP,y'y =(P,2'y =0 and (y,y") = Tz,y) =<{z,2')+0.
The implication 4° = 5° is immediate.

Let us show now that 5° implies 1°. Since R(T")<T-1(0)%, it suffices
to prove the inclusion 7-1(0)°c R(7”) only. To do this, take an
z' € T-10)9; if 2’ =0, we have 2'=T"y’ for y’'=0. We may thus assume
z' + 0 so that there exists an x, € £ which (x,,2')=1. Denote by P the
set of all x € E for which {z,2')=0; we have 7'-1(0) < P since z’ € T-1(0)°
and it follows from 5° that TP is closed in TE. We show next that Tz,
non € TP. Indeed, if Txy=Tp for some p € P, we have xy—p € T-1(0)
whence (z,—p,2z')=0 so that 1={z,,z')=(p,2')=0, a contradiction.
Since TP is closed in TE and Tz, is outside 7P, there exists a y' € F
with (TP,y')=0 and (T'x,,y’Y=1. Let us show that '=T"y". If x€ &,
we have z=(x,x')x,+p with p € P whence
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<Tx’y,> = ((x,x')Tx0+Tp,y')
= (2,2 T2,y > +{T0,y') = (&,a')

and the proof is complete.
The equivalence of the first five conditions is thus established. To
complete the proof, we intend to prove 1° = 6° = 3°.

To prove 6°, take ,',...,z,’ € E' and denote by U the set of all x€ &
for which |{z,z;)| =1,1=<71=<n. We intend to prove by induction that 77U
is a neighbourhood of zero in (TE ,o(F,F')). If n=1, we shall distinguish
two cases.

I. 2’ € R(T"). We have z'=T"y’ for some y € D(T’). Suppose that
yeTE and |{y,y')| =1; y=Tx for some x whence

e, 2| = K&, T'y") = KTx,y)| = 1

so that ze U and ye T'U.

II. 2’ non € R(T'). The last set being closed in E’, there exists an
zy€ B with {xyp, R(T"))=0 and {(xy,2')=1. Since D(T") is dense in E’,
(o, BR(T"))=0 implies Txy=0. Let us show now that TU=TE. If x € E
take z=x—(x,2')x,, We have Tz=Tx and ze U.

Now let »>1 and suppose the statement proved for n— 1 functionals.
Let us denote by M the smallest linear subspace of £’ containing R(71")
and z,’...,z,_,. Since R(T") is closed, M is closed as well. We shall
distinguish two cases:

I z,/ € M. We have 2,/ =82, + . .. +B,_1%n+ Ty’ for some g, and
a suitable y’ € D(T"). Let V be the set of those xe £ for which
[{x,z;/ Y =1, 1£i<n—1. By induction hypothesis 7'V is a weak neigh-
bourhood of zero in TE.

Take a number =1, B2 |8;, 1si<n—1. We intend to show that
ye nf) TV and [{y,y' )= (np)~! imply yeTU. If ye np)TV we
have, for a suitable x, y=(ng) Tz and |[{z,z;)| <1, 1Si=<n—1. At the

same time
(mB) M=, Ty )| = Ky, y')| = (nf)".
We have
n—1
(mp)y 2,2y = uf)™ 3 Bl Y+ (nf) X, Ty,
whence
n—1
K(nB) 1z, )| < (nﬁ)“‘ﬁljlﬂilﬂnﬁ)‘l £1

so that (nf)xz e U.
II. 2, non € M. Since M is closed, there exists an x, € E such that
(e, M>=0 and {(xy,x,'>=1. Again we have T'zy=0. We intend to show



SOME OPEN MAPPING THEOREMS IN LF-SPACES ... 79

that TU=TV. Indeed if x € V, take z=2— (x,x,x,. We have Tx=T=z
and {z,z,")=0. If i<n, (xy,z;)=0 so that {z,2;,)={x,z;”). It follows
that ze U and the proof is complete.

The cycle of implications will be complete if we prove the following
proposition.

ProprosITION (1,5). Let T' be a linear mapping from E into F which is open
as a mapping of (D(T),G(D(T),E")) into (F,o(F,F')). If ' € T-1(0)° then
there exists a y' € F' so that {x,x')=(Tx,y’) for x € D(T).

Proor. Let U be the set of those x for which |(x,2')|<1. Since
T(U nD(T)) is a neighbourhood of zero in B(T"), there exist y,’,...,y,’ € F'
so that x € D(T) and [{Tz,y,/>| =1 imply Tx € TU. Since z’' € T-1(0)°
it is easy to see that Tx € TU implies x € U. Especially, x € D(T) and
(T'x,y,">=0 imply {(x,x'>=0. It follows that there exist scalars 4,,...,4,
such that

o) =2 4{Txy ) = T, 3 4y
for € D(T') which proves the theorem.

ProrosiTioN (1,6). Let E and F be two topological spaces, ¢ @ mapping
of E into F. Then the following conditions are equivalent:
1° the mapping ¢ is continuous and open;
2° the mapping @ satisfies the following two conditions:
2.1° if G is open in E then ¢~tpG is open in E;
2.2° a set F <@k is closed in oE iff ¢=1F s closed in E.

Proor. 1° == 2.1°. Let G be open in K. Since ¢ is open the set ¢@ is
open in pF whence ¢G'=HnekE for a suitable H open in F. Since ¢ is
continuous ¢~1H is open in E. Clearly ¢—1H =¢~1¢G.

1° = 2.2°, Let B be closed in @& so that B=Hnek for a suitable H
closed in F'. Since ¢ is continuous, ¢—1H is closed in E. Clearly ¢—1H =
¢ 1B. If B is a subset of pF such that ¢—1B is closed in E, the set
¢(E —¢~1B) will be open in @K since ¢ is open. Clearly pF —B=
¢(£ —@~'B).

Now assume that 2.1° and 2.2° are satisfied. Let B< F be closed in F'.
Since p-1B=¢-Y(BneE) and Bnek is closed in ¢k, the set ¢p~1B will be
closed in E by 2.2°. It follows that ¢ is continuous. If @ is open in E,
we have ¢~lpG open in E by 2.1° so that ¢~ eE —¢G)=E — ¢ 1¢G is
closed in E. It follows from 2.2° that ¢ F — @ is closed in ¢E hence pG
is open in pE. The mapping ¢ is thus seen to be open.

ProposiTioN (1,7). Let T be a linear mapping from E into F with
D(T)y=E. Then the following conditions are equivalent:
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1° if @ vs a subspace of TE, then Q 18 closed in TE iff T-Y(Q) is closed
n FE;

2° if @ is a hyperplane in TE, then Q is closed in TE iff T-YQ) is closed
mn B

3° T is a homomorphism of (E,o(E,E')) into (F,o(F,F")).

Proor. The implication 1° => 2° being immediate, assume 2° and let
us prove 3°. If P is a closed hyperplane in F then 7-Y(P)=T-YPnTE)
and the last set is closed by 2° since PNTE is closed in TE. It follows
that 7' is weakly continuous. If 7-1(0)=H < E and H is a closed hyper-
plane in E then by 2°, TH will be closed in T'E iff T-'TH is closed in E.
We have, however, T-1TH = H since T-1(0)<H. It follows that 7T is
weakly open.

Now assume 3° and let us prove 1°. If Q<TE is closed in TE, the
space 7-1(Q) will be closed in E since T is weakly continuous. Suppose
that Q<TFE and 7-Y(Q) is closed in E. Since 7-}(0)<7T-}Q) and T is
weakly open, @ =T7-1(Q) will be closed in TE. The proof is complete.

2. Closed mappings.

This section describes some methods of generating closed mappings.
The results, although of an auxiliary character, seem to be interesting
enough on their own to be stated separately.

ProrosrTiON (2,1). Let E, E,, E,, be convex spaces, h, a linear mapping
from E into E,, hy a linear mapping from E into E,. Suppose that

1° h, 18 weakly open and R(h,)=E,;

2° hy 18 closed in E x E,;

3° h,710) < hy1(0).
Let H be the subset of E, x E, consisting of [x,,x,] such that x,=hx and
xy=hyx for some x € D(hy)ND(hy).

Then H i3 closed in K, x E,.

Proor. For the proof we shall adopt the following convention: if 7'
is a linear mapping from % into F, not necessarily densely defined, 7" is
not uniquely defined. We shall nevertheless use the symbol D(7") for
the set of those y’' € F’ for which (7'z,y’) is continuous on D(7).

First we shall prove the following statement: if z," € D(k,’) and
2' € B’ is such that (hyx,z,")=(x,2’) for x € D(hy) then there exists an
z,' € D(h,") with (h,z,2,") =(=,2’) for x € D(h;); the functional [ —=z,’,x,’]
annihilates H. .

Indeed, since k,~1(0) < k,~1(0), we have (h,~1(0),2’) =0 so that, h, being
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weakly open, there exists by Theorem (1,5) an z,"e€ D(h,’) with
(b, y=(2,2") for « € D(h,); if x e D(h,)nD(h,), we have

([, hox ][ — 2y, 25 1) = —y,2y") +<ho, 2,y = 0.

Suppose now that [z,,2,] non € H. Since R(h,)=E, we have x, = h,x, for
some x, € D(h;). Then [x4,x,] non € G(h,) hence there exists [«’,x,'] such
that ([z,h,x], [*',2,'])=0 for xe D(hy) and ([z,,x,], [',2,])+0. It
follows that (x,z")+{hyx,z,’>=0 for x € D(h,) so that x,' € D(h,'). Ac-
cording to what has been proved above there exists an x," € D(h,") with
(b2 Y= —<{x,2") for x € D(h;). Now [—=,’,2,"] annihilates H and

(o, 2] =2y, 25" ) = — (20,2, ) + {25, 25 )
= — (g, %, ) + (T, )
(g, @) + {29, 5" ) = {[%g, %], [*',2,']) + 0.

Il

The proof is complete.

The meaning of the preceding theorem is obvious: the set H is the graph
of a mapping from E, into E, Indeed, if [0,2,] € H, we have 0=hx
and z,=h,x for some xe€ D(h)ND(h,). It follows that x e h,~1(0)<
hy~1(0), whence xy=hyx=0.

The following result is, in a certain sense, dual to the preceding one.

PRrOPOSITION (2,2). Let E,, E,, E be convex spaces, f, a linear mapping
from E, into E, f, a linear mapping from E, into E. Suppose that
1° f, ts weakly continuous and D(f,)=E,,
2° f, is closed in E,x K.
Let F be the subset of B, x E, consisting of [x,x,] such that fix,=f,x,.
Then F is closed in E,x H,.

Proor. Define a mapping f from E,x E, into E in the following
manner: D(f) will be the set of all [x,,x,] where

o€ D(fy) and  f(xy,%,) = frz,—fo%, -

We intend to show that f is closed in E, x E, x E; this also proves our
theorem since clearly F=f-1(0).

Take a point [z,° z,° %] which does not belong to G(f). It follows
that [z0,f,(x,°) —2°] non € G(f,) so that there exists a point [z,,z']€
E,’ x E' with the following properties:

([ fo(9)], [%5,2']) = 0 for all z, € D(fy)
and

<[x20’f1(x10)_x0]’ [xz':x']> + 0.

Math. 8cand. 16 — 6
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It follows that
(B9, 25 ) + {fo(®g), &'y = 0 for all x, e D(fy).

Since f, is weakly continuous, D(f,’)=E’ and hence f,'(z’) is defined. If
p=[f/ ("), %y, — '], we have

(G(f), 1) = @0, [1 (&) + (%o, 5 ) — {f1(21) — fa(3), ")
= (@i (@) = {fu(@1), 2" + (2o, 25" ) + (fo( @), 2") = 0.

On the other hand,

([xlo’ xﬁo: 29, p> = (xlo’fll(x')> + <x20’ x2'> - <.’E0, z')
= (% ) + (fu(®,0) — 2%, 2")
= ([2%f1(2,%) —2°, [/, 2']) + 0.

This completes the proof.

The set F is the graph of a mapping from E, into Z, if f, is injective.
Indeed, if [0,2,] € F we have f,x,=0 whence x,=0. The domain of this
mapping will be the whole of E, if R(f,)<R(f,).

ProrosITION (2,3). Let h be a linear mapping of (E,u) onto (B,v). Sup-
pose that (E,u) 18 continuously imbedded in a space (E*,u*). Suppose that

1° & ts weakly open;

2° h~1(0) is closed in (E,u*).
Then the closure of G(h) in (E*,u*) x (B, v) is again the graph of a mapping
from (E*,u*) onto (B,v).

Proor. Suppose that [0,y,] belongs to the closure of G(&) in
(E*,u*) x (B,v). Since R(h)=DB, y,=h(x,) for some z, € E. Suppose that
9o+ 0. It follows that 2, non € h=(0). The last set being closed in (E,u*)
there exists a 2’ € (£,u*) such that (A~1(0),z")=0 and (%y,2')+0. The
mapping b being weakly open there exists by (1,5) an element &’ € (B, v)’
such that (hz,b")=(x,2’) for all x€ E. If x € E, we have

[z, h(x)], [#', =b']) = (2,2")—{W(x),b") = 0
and
[0,50], [, =0 = —<Yp,0") = —<(h(mo),0") = —{=,2") £ 0.

This contradiction proves the theorem.

3. Sequentially open mappings.
Let E and F be two LF-spaces and T' a continuous linear mapping
of F into F. Let U € U(X) and consider the set T7U. If R(T)=F it is
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not difficult to show [1] that 77U will be a neighbourhood of zero in F.
If R(T) is different from F, the situation is much more complicated:

TU need not be a relative neighbourhood of zero in R(T) even if
TUNF; is a relative neighbourhood of zero in E(T)nF; for each j. In
the present section we intend to study mappings which are open only
in this weakened sequential sense.

ProrosiTioN (3,1). Let E and F be two LF-spaces and T a continuous
linear mapping of E into F'. Then for each i there exists a j such that TE,< F;.

Proor. Since E;=U,;(E,nT-(F;)) it follows from Baire’s theorem
that E;<T-1(F;) for some j whence T'E;< F,.

THEOREM (3,2). Let E and F be two LF-spaces and T a continuous
linear mapping of E into F. Then the following conditions are equivalent:

1° for each j the intersection TENF; is closed;

2° for each j the intersection TENF; is closed and there exists a defining
sequence H; of E such that TH;=TENF;;

3° for each neighbourhood of zero U in E and each j the set T'U is a neigh-
bourhood of zero in TENF; and there exists a defining sequence H,
of E such that for each r the restriction of T to H, is open and
H,+T-Y0) closed in E.

Proor. 1° = 2°. Let j be fixed. The set TENF; is complete since it
is closed in F;. Since it may be represented as the union of T'E;nF; the
set TE,n F; will be of the second category in TEn F, for some p. Consider
the mapping T' of E,nT-(F,) into TEnF;. Its range TE,nF; is of the
second category in TENF;, so that we have TE,nF;=TEnF; by the
open mapping theorem.

We see thus that for each j there exists a p such that T-1(F,)<
E,+T-1(0). Let us denote by p(j) the minimal p of this property.
We shall distinguish two cases:

I. The sequence p(j) is bounded: p(j)=<gq for all j. It follows that
E=E,+T-0) whence TE=TE, so that TE=TE, < F, for some k.
Since T'E is closed in F), the mapping T' considered as a mapping of E,
onto TE,=TE is open. Hence T is open as a mapping of £ onto TE.
If j > max(g,k) we have

TE; =TE =TEnF;

so that E, for j 2 max (g, k) is a defining sequence of the required property.
II. The sequence p(j) is unbounded. Clearly p(j)=<p(j+1), hence
p(j) tends to infinity. If j is given, put
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Hj = Ep(j) n T_I(Fj) .

Let us show first that H; is a defining sequence.

(1) If j is given, we have H;<E,; by definition.

(2) Let 1 be given. By (3,1) there exists a j such that B,<T-1(F,).
Since p(r) tends to infinity, there exists a k>j such that p(k)>+. It
follows that

E, <« T-Y(F;) « T-Y(F,) and E; < E,(k).

Combining these inclusions we obtain
E; = Bygyn T-H(F,) = H, .

The sequence Hj is thus seen to be a defining sequence for E.
To show that TH;=TEnF; let us observe first that 7-}(F;) < E,; +
T-(0). Each x € T-1(F;) may thus be written in the form x=y+2 with
€ E,; and z € T-1(0). Since y=x—2z¢€ T-1(F;) we have y € H; so that
T-Y(F;) < H;+T-1(0). It follows that

H; < T\F;) < H;+T-0),

whence TH;=TENF;.

2° => 3°. Let H; be a defining sequence of E such that TH;=TEnF;;
we have H; 4 T-1(0)=T-(F;) so that H;+ T-1(0) is closed in E for each j.

Further, consider the mapping 7' as a mapping of H; onto TENF;.
The last set being closed in #; and hence complete, it follows that 7' is
an open mapping of H; into F;. If U is an arbitrary neighbourhood of
zero in K, we have TUNF;>T(UnH,;)nF; and the last set is a neigh-
bourhood of zero in TEnF);.

3° = 1°. Let H; be a defining sequence for £ such that H;+7-1(0)
is closed in £ and the restriction of 7' to H; is open for each j. Let j be
given and let us show first that

TEnF; =TH,nF; forsomep.

Suppose that for each p there exists an x, such that Tz, € F; and Tz,
non € TH,,. Taking, if necessary, suitable multiples of the x;, we may
assume the sequence 7'z, to be bounded. Since 7'z, non € TH,,, we have
x,none€ H,+T-1(0) so that there exists an xz,’e B’ such that
(Hy+T7Y0),2,")=0 and (z,,x,")=1. Let U, be the set of all xze E
for which [(z,z,')|<1/p. Clearly U=U,nU,n... is a neighbourhood
of zero in E. Let m >0 be given and suppose that x, € mU +71-1(0) for
all p. If p>m, we have x, e mU,+T-1(0) whence 1={x,,x, )<m[p<1
which is a contradiction. It follows that, given m, the inclusion 7'z, €
mT U can never be satisfied for all p. Since T'U is a relative neighbour-
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hood of zero in F; and Tz, is bounded, we arrive at a contradiction.
We have thus shown that

TEnF; =TH,nF; forsomep.

Since TH, < F,, for some k by (3,1), the set TH,, is closed in F,, the
mapping 7' being open when considered as a mapping of H,,. It follows
that TENF;=TH,nF; is closed in E and the proof is complete.

If R(T)=F, the situation is very simple. Indeed, condition 1° of
theorem (3,2) is automatically satisfied. It follows that, for each
U € U(E) and each j, the set TUNF; is a neighbourhood of zero in F;
8o that T'U is a neighbourhood of zero in F. A continuous linear map-
ping of an LF-space E onto an LF-space F is thus seen to be open. This
result has been obtained first by J. Dieudonné and L. Schwartz [1].

TaEOREM (3,3). Let E and F be two LF-spaces and T a continuous
linear mapping of E onto F. Then T is open.

Proor. If j is fixed we have F;=UT(E,nT-'(F;)) so that the set
T(E,nT-\(F;)) will be of the second category in F; for some p. It
follows from the open mapping theorem that F;=T(E,nT-\(F;)) for
this p and that the restriction of the mapping T' to E,nT-(F;) is open.
If U is a neighbourhood of zero in E, the set UnE,nT-(F;) is a neigh-
bourhood of zero in E,nT-1(F;), hence

TUNF; > T(UnE,nT-\F))

is a neighbourhood of zero in F;. Since j was arbitrary this shows that
T is open.

4. Open mappings.

A sequentially open mapping need not be open. Indeed, suppose 7' is
a continuous and sequentially open mapping of an LF-space £ into an
LF-space F with range R. If U is a neighbourhood of zero in £ we know
that, for each j, there exists a neighbourhood of zero V; in F such that
V;nRnF;<=TU. It does not follow that the V; can be put together some-
how to form a neighbourhood V of zero in F so as to have VNnRE<TU.
It is necessary to indroduce additional assumptions to be able to do this;
in the present section we intend to discuss some sufficient conditions for
T to be open.

First let us mention the following rather strong condition due to
B. Malgrange ([3, Prop. 6, p. 315]).
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TaEOREM (4,1). Let F be an LF-space and M an absolutely convex
subset of F. Let Z< M be absolutely convex and such that for each j the
set ZNF; is an open neighbourhood of zero in M nF;. Suppose that MnF;
is compact for each j.

Then Z is a neighbourhood of zero in M.

Proor. Let V; € U(F) be such that
VinMnF; < Z.

We intend to show that there exists a V;,; € U(F) such that

1° VignMnFy,, < Z;

2 V,nF;cV;, < V5.
Denote by V the system of all V € U(F) which satisfy V,nF,=V<V,
and suppose that no V e V satisfies VN MnF,,,<Z. It follows that the
set VNnMnF; n(F —Z)is nonvoid for each V € V. Since V has the finite
intersection property and the sets under consideration are compact,
there exists a point z, which satisfies

xge VAMnF;n(F-2)

for each V e V. Since V; eV, we have z,€ V.

Take now a point y non € F;. There exists a point &’ € F' such that
(F;,x')=0 and (y,z’)=1. Let S be the set of those x € F for which
[(z,2')|= 1. Clearly V;nS eV and V;nS does not contain y. It follows
that xye F;. We have thus x, € V,;nM nF;<Z which is a contradiction.

Now take a V; € U(F) such that V,nMnF,<Z and construct by in-
duction a sequence V, € U(F) with the properties 1° and 2°. It is easy
to see that V'=nV; belongs to U(F) and satisfies VN M <Z. This com-
pletes the proof.

The preceding compactness condition may be somewhat loosened.
For that purpose a slightly more refined construction is required the
idea of which is due to B. Malgrange (l.c. p. 316).

Lrmma (4,2). Let F be an LF-space and W <R two absolutely convex
subsets of F. Suppose that, for each j, there exists a V;e U(F) such that

V,nBRnF; < W.

Suppose that the following condition is satisfied: Given j, e, V; such that
O<e<l, V;e U{F)and V,nRNF;< W there exists a V., € U(F) such that
1° V;unBnF;,<W;
2° (1=e)(V;nFy)< V<V,
Then there exists a V € U(F) so that VnR<W.



SOME OPEN MAPPING THEOREMS IN LF-SPACES ... 87

Proor. Take a sequence 0<eg; <1 such that n=TI(1—¢;) is positive.
Choose a V, € U(F) so that V,nRnF,=W and construct by induction
a sequence V; e U(F) so that

Put V=NV, s0 that RnV < W. To see that V is a neighbourhood of zero
in F it suffices to show that n(V;nF;)<V or, in other words, that
n(V;nF;) <V, for each k. With view so the inclusions V> V,>... it
is sufficient to prove this for k>j only. Put H;=V;nF;; we have

(I—e)H; < ViynFyyy = Hyyy

so that n;H;<n;,,H;,; where 7;=(1—¢;)(1—¢;.,).... It follows that,
for each p>0,
< V.

jtp 2

nH; < n;H; < n;,,H

i+p
and the proof is complete.

PropPOSITION (4,3). Let F be an LF-space and R a subspace of F. Let
He U(F) and put M=RnH. Let Z<M be an absolutely convex set such
that for each j the set ZNF; is an open neighbourhood of zero in MnF;.
Suppose that, for each j, the following condition is satisfied: if X< MnF;,,
and X|F; is bounded, then X[RnF; is relatively compact in M[RNF;.
Then Z is a neighbourhood of zero in M.

Proor. Let V; e U(F) be such that V;<H and
V,inMnaF;<Z

and let 0<e<1 be given. We intend to show that then exists a V,,, €
U(F) such that

1° ViunMnF;,<Z;

2° (L—e)(V;nF)) <V, <V,
Denote by V the system of all V € U(F) which satisfy

(1—8)(anFj) cVec Vj

and suppose that no V e V satisfies VnMnF,;,,<Z. Clearly there ex-
ists a convex topology w on F with the following properties:

(1) w is coarser than the topology v of F;

(2) w coincides with » on F,,;

(3) w has a countable complete system of neighbourhoods of zero.
Let us denote by @ the canonical quotient mapping of F modulo F;
and put @=Qw. The topology @ has a countable complete system of
neighbourhoods of zero W, e U(F|F;,%). For each n put
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Vo = (1-6)V; 0 QIW,.

Let us show first that V™ e V for each n. Since W, e U(F/F,, %) we
have Q-1W, € U(F) whence V™ e U(F). The inclusion

Vo = (1-e)V;nQ1W, < (1—¢)V,; < ¥,
being obvious, take an x € (1—¢)(V;nF;). Since
z € F; = Q(0) < Q' W,,

we have xz € V™ which completes the proof of V™ e V.

Let y,e VOnMnF; ,n(F—-Z). Since Qy,eW,, y,eF,;,; and w
coincides with » on F;,, the set of the y,, is bounded in ¥;,, modulo F.
It follows from our assumption that there is a subsequence z, of y,, a
point yoe MnF;,, and a sequence r, € RnF; such that z,—r, — y,.
Since

Qy,~0 and @z, = Q(z,—7,) > QY ,

we have Qy,=0 so that y,e F;, Hence y,e RnF; and q,=r,+
Yo€ BRnF;. Now ¢,=2,+(q,—%,) and (g,—2,) - 0 so that

qn € (@n—2,)+(1—8)V; © (1—4¢)V; « (1—4e)H for large n .

It follows that
g, € 1—4e)(V;nHnERnF)) < (1-4e)Z
for large n.
Now both 2, and g, belong to EnF;,; and 2, do not belong to Z.
The last set being a relative neighbourhood of zero in BRnF;,,, it follows
that, for large n, ¢, ¢ (1 — ¢)Z which is a contradiction.

THEOREM (4,4). Let (E,u) and (F,v) be two LF-spaces. A continuous
linear mapping T of E into F will be open if the following condition is
satisfied:

There exist defining sequences E; and F; such that T-1F;< E;+T-1(0)
and an H € U(F) with the following properties: if x, € E;,,, Tx, € H and
Tz, - 0 mod F;, then x, - 0 mod E;+T-1(0).

Proor. Denote by E; the set TE; and by @ the canonical mapping
of F onto F[F;. Let w be a convex topology on F which is coarser
than v, coincides with v on R;,; and has a countable complete system
of neighbourhoods of zero. Put @=@Qw and take a countable complete
system of neighbourhoods of zero W, € U(F/F;,®). Let U e U(E) and
suppose we are given a V;e€ U(F) such that V;<H and R;nV,=TU.
Let 0<e<1 be given. Put
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Vo = (1-e)V,;nQW,

and let us show that at least one V™ satisfies the following two condi-
tions:

1I° (F;n V™) = (1-¢e)(F;n Vy);

2° R, ,n¥V®<TU.
First of all, V™ e U(F) since @ is continuous and w is coarser than v.
Further it is easy to see that 1° is satisfied for any n. Indeed, V™ c
(1—¢&)V; whence

FinV®™ < (1-¢)(F;n V).

On the other hand, if y € (1 —¢)(F;nV;) we have y € (1—¢)V; and Qy=0
since y € F;. Hence y € Q-'W,, so that ye V™ and y e Finvm,

Suppose now that the inclusion 2° is not satisfied for any n. It follows
that there exists a sequence x,, € E;,; such that

Tz, € (1-¢)V; < H, QTx,eW,, Tx,&TU.

Since Tz, € R;,; and w coincides with v on R;,;, we have Tz, -0
mod ;. It follows from our assumption that we have z,—z, — 0 for a
suitable sequence z,=p, +q, with p, € E; and ¢, € T-(0). Since

Tp, € (1—4e)V; for large n. Since T'p, € R;, it follows that, for large =,
Tp, e (1-4e)(V;nR)) < (1-4e)TU

so that there exist r, € T-1(0) such that p,+r, € (1 —%e)U. Hence
Tp—Gnt+Ty = Pptr,+(@,—2,) €U

for large n, so that Tx,=7T(x,—q,+r,) € TU for large n, which is a
contradiction.

The conclusion follows from lemma (4,2).

THEOREM (4,5). Let (E,u) and (F,v) be two LF-spaces and T a con-
ttnuous linear mapping of E into F. The mapping T will be open if the
Sfollowing two conditions are satisfied:
1° there exist defining sequences E; and F; such that T-Y(F;) = E;+T-1(0)
for each j;

2° there exists an H € U(F) such that, for each j, the mapping Q;°T;.,
is open in H (here Q; is the canonical quotient mapping of F mod F;
and T, ts the restriction of T to E;.,).

Proor. An immediate consequence of Proposition (4,4).
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5. Convolution operators.

In this section we intend to give an application of Theorem (4,4) to
the case of a convolution operator in a space of type 2(£2). Let 2, and
£, be two open subsets of the euclidean space E, and let S e &'(%#,,) be
such that supp(S*¢)<Q, for each p € 2(2,). The following facts are
well known: if g € 2(2,) then Sx¢ € P(£2,) and the mapping 7' defined
by Te=8=x¢ is an injective linear and continuous mapping of 2(£2,)
into 2(2;). The mapping 7' will be called a convolution operator of
2(£2,) into 2(£,).

The operator 7' may be extended in an obvious manner to a mapping
A of &'(L2,) into &'(£2,). Let us recall now a result of Hormander [2]:
if 7! is sequentially continuous then 7"&(2,)=4&(2,). Especially it
follows from this result that, for a sequentially open convolution operator
T, the mapping A4 is an injective continuous and open extension of 7'
to &'(£2,). We shall apply this result in the proof of Theorem (5,1).

THEOREM (5,1). Let 2, and 2, be two open subsets of the euclidean space
E, and let T be a convolution operator of D(2,) into 2(Q,). Suppose that
the following two conditions are satisfied:

1° T is sequentially open;

2° for each compact K,<$, there exists a compact K,<Q, with the

following property: if p € &'(2,), Ap 18 continuous on 2, and in-
Jinitely differentiable outside K,, then ¢ is infinitely differentiable
outside K.

Then T is open.

Proor. We intend to show that the assumptions of Theorem (4,4) are
satisfied.

1. Let K,/ be an increasing sequence of compact sets with union 0,.
It follows from Theorem (3,2) and condition 2° of the present theorem
that there exists an increasing sequence of compact sets K,/ <Q, with
union 2, such that (a) if ¢ € 2(£2,) and suppTp< K,/ then suppp<K,’
(b) if pe &'(£2;), Ap is continuous on £, and infinitely differentiable
outside K, then ¢ is infinitely differentiable outside K,. Now take an
arbitrary j and keep it fixed. We shall denote by %, the natural im-
bedding of C(K,/+') into &'(£2,). Let g, be the canonical mapping of
D(K,J+1) modulo 2(K,%) and let @, be its natural extension to &’(£2,)
in the sense of Proposition (2,3). The mappings ¢,/ and @, are defined in
a similar manner.

2. Consider now the space &'(Ky+1); clearly k;,,~! is an open mapping
from &'(K,*') onto C(K,+'). By its definition, @,/ is a mapping from
&' (K J+') onto D(K+1)[D(K4’) the graph of which is closed in
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&' (K J+) x (D(K+1)[|D(K )
It follows from theorem (2,1) that the set
P < OB+ x (DK D(KS)
of those pairs [z,y] for which there exists a &€ D(h;1)nD(Q,") with

7+1

h;hE=x and QfE=y is closed in C(K,+) x (2(K,+)|D(K)).
A h_7_+11 /C(K21+1)
&' (K )y—s &' (K *Y)
AN N\
Ahgk oK) 9 DK DE)

3. Clearly the mapping p from &’(K,/+!) into P defined for & € D(p)=
D(k;1)nD(Qy) as
p(§) = [h;.:1§ ) sz‘f]

is open and E(p)=P. Further, we have assumed 7' to be sequentially
open so that 4 is an open mapping of &'(£2,) into &'(£2,). Using these
facts, it is easy to see that the mapping poA defined on A-Y(D(p)) with
range P is open as well. Since D(p)< &'(Ky+'), we have A*l(D(p))c
&'(K+1). We have thus an open mapping poA4 from &'(K,’+!) into P
with domain 4-%(D(p)) and range P. Further, the graph of the mapping
Q.7+ is closed in &'(K,*!) x (2(K,/+1)[D(K ). It follows from theorem
(2,1) that the set M of those [u,v] € P x (2(K,#+1)/2(K,?)) for which there
exists a z e A-Y(D(p))nD(Q,’) with p(A(z)):u and Q,7z=wv, is closed in
P x (2(K,+)|2(K ).

4. Since poA is one-to-one, the set M is the graph of a mapping ¢
from P into 2(K,i+')[2(K,’). Now we use assumption 2°. It follows that
A-I(D(p))CD(Q{') so that g is defined on the whole of P. By the closed
graph theorem the mapping g is continuous.

5. We intend to show now that the assumption of theorem (4,4) is
satisfied. Denote by H the set of those y € 2(L2,) for which

max|y(t) £ 1, te€Q,.

It follows that H e U(2(R2,)). Suppose now that we have a sequence
z, € 2(K,/*1) such that Tz, € H and Q,/Tx, — 0. It follows that pT'z,
is bounded so that Q,/z, =gpTz, is bounded as well.

Since pT'z, is bounded, the sequence 7'z, is bounded in &'(K,/*!) so
that, A being open, z, is bounded in &’(K,/+!). Since @,’z, is bounded,
there exists a sequence ¥y, € 2(K,/+!) such that Q,%y, =@z, and y, is
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bounded in Z(K,/+1), a Montel space. Let y, € 2(K,*') be an arbitrary
limit point of the sequence y, and let W be an infinite set of natural
numbers such that limy,=y, for ne W. Since z, is bounded in
&'(K 1) there exists an infinite S W and an z, e &'(K,’*') such that
limz,=x, for ne S in &' (K,7*). It follows that, for n €S, we have
lim Tz, = Az, Since Q,Tx, >0, we have Ax,e &'(K,’) whence z,€e
&'(K,%). Since Q(y,,—x,)=0 and y, —z, converges for ne S to y,—x,
in the topology of &'(K,+!), we have Q,%(y,—%,)=0. Since &'(K,)<
D(Q,%) it follows that

Q1Y = Q%o+ Q1 (yo—x,) = 0.

Hence, forn e W, limQ,w, = limQy, = 0.
Since y, was arbitrary, we have lim @iz, =0.

Theorem (5,1) represents a slight improvement of a result of Hor-
mander [2]. Hoérmander’s theorem requires that, for each K,<Q, there
exists a K,<£, with the following property: if ¢ € £'(£2,) and Ag is
infinitely differentiable outside K, then ¢ is infinitely differentiable
outside K,. In (5,1) we require this for continuous A¢ only. This (very
mild) generalization can be pushed a little further.

THEOREM (5,2). Let 2, and Q, be two open subsets of the euclidean space
E, and let T be a convolution operator of D(L2,) into D(£2,). Suppose that
T is sequentially open. Suppose we have two sequences of compact sets
KJj<Q, and K,J<Q, and a nondecreasing sequence of nonnegative integers
n(1) with the following properties:

1° K,0=0, the sequence K,I is increasing with union £,, the sets K,/ are

closures of their interiors; similarly for K7,

2° if p€ &'(Q,), Ap has continuous derivatives up to order n(i) outside

K, with continuous extensions to the set Q2,—intK,t and if Ag is
infinitely differentiable outside K,/ then @ is infinitely differentiable
outside K 1.

Then T is open.

Proor. We shall introduce first, for each j, a space C;,; defined as
follows. The elements of C;,, will be those x € C(K,/*!) which possess
the following properties: for ¢=0,1,...,j the function x has continuous
derivatives up to the order #(¢) on int K,/+! — K, and these have continu-
ous extensions to K,+1—int K,!. The topology of C;,; will be defined
by means of the following j+ 1 pseudonorms:

pi(x) = max {max|zD(t)], t € K+ —int K,*}
|Djsnti)
for 1=0,1,...,j. Clearly C;,, is complete.
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Further, let us denote by A}, the natural imbedding of C;,, into
&'(£2,) so that Y, is continuous. We shall denote by H* the set of those
y € D(L,) which satisfy the following inequalities

max |zP(t)] £ 1, t € Q,—intK,?
|D|=n(i)
for ¢=0,1,2,.... It follows that H € U(2(£2,)).

The proof of the present theorem is identical with the proof of Theorem
(6,1). It suffices to replace C(K,+!) by C;,y, h;.;, by h_;’:—l and H by H*.
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