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SPACES WITHOUT LARGE PROJECTIVE SUBSPACES

J. R. ISBELL

Introduction.

This paper is organized around a tabular array of 24 problems on
non-projective or non-injective Boolean algebras or fields of sets—most
of them now solved, many trivially. The 24 questions are these: for
what cardinal numbers m is the class of all (Boolean algebras/fields of
sets) that have no infinite (complete/free/projective) (sub-/quotient) alge-
bra or field closed under the formation of (free sums/direct products)
of m-element families? 23 of them are answered, 18 completely and the
other 5 depending more or less heavily on the continuum hypothesis or
Ulam Measure Problem.

These 23 results involve approximately 3 ideas (beyond Stone’s idea
of duality between Boolean algebras and Boolean spaces, on which
everything depends). The first is a recent result of Efimov and Katétov:
every infinite dyadic bicompactum, hence every infinite injective Boolean
space, contains a convergent sequence. The problems on projective alge-
gras and fields then reduce to very simple forms, though one of them —
whether a free sum of compact spaces containing no convergent se-
quences can contain a convergent sequence—seems to depend on the
Ulam Problem. Second: for projective spaces a corresponding result is
known; every infinite one admits a continuous mapping onto fN. But
we need the stronger result that every infinite closed subspace of a
projective space maps onto BN. With these additions to known results,
we can essentially settle the 12 problems on algebras and 10 of the
problems on fields of sets.

This work actually began with the question whether a direct product
of pseudocompact proximity spaces must be pseudocompact. For zero-
dimensional spaces, this is the dual form of the 23rd problem. Regard-
less of dimension, the theorem holds. The third idea is the characteriza-
tion of pseudocompact spaces X by extension of mappings: every d-con-
tinuous mapping of X into a certain test space 7' (goes into a compact
subset of 7'; equivalently), can be extended over the d-compactification
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of X. For a large class of spaces 7", of which 7 is one, that extension
property is preserved by products.

The question remaining open: can a finite free sum of fields of sets
have an infinite free subfield when its summands do not?

1. Injective spaces.

Let us repeat the central 24 problems and state the results. The
terminology is standard for Boolean algebras but not for fields of sets.
The generalized terminology and Stone duality will be explained after
the statement of results. Perhaps it should be noted first that for both
Boolean algebras and fields of sets, ‘“complete” = “injective”. (If it were
not so, one would have 32 problems).

The questions: for what cardinal numbers m is the class of all (Boolean
algebras/fields of sets) that have no infinite (complete/free/projective)
(sub-/quotient) algebra or field closed under the formation of (free
sums/direct products) of m-element families?

We distinguish 12 like problems from 12 cross problems; the like
problems are the 4 concerning products and completeness and the 8
concerning sums and freeness or projectiveness. The author expected
to omit all details of these, merely observing that they all have positive
solutions for finite cardinals, negative for infinite cardinals. Perhaps
they do. Proofs will be indicated, except for a finite free sum of fields
of sets without infinite free subfields.

Exactly 3 of the cross problems also have a positive solution for
finite cardinals only. These are for products of algebras without in-
finite projective or free subalgebras, and products of fields without
infinite projective subfields. As for free subfields, there is a countable
product theorem ; it fails for ¢ = 2%. Using (in a trivial way) recent results
of Cohen and Solovay on hypotheses contrary to the continuum hy-
pothesis, we can show that the theorem is not provable for cardinals
less than ¢. However, it might be settled without special hypotheses
by being proved false for x,.

Six problems have positive solutions for enormous classes of cardinals,
viz. those on infinite free or projective quotients and on infinite com-
plete subobjects. For products of Boolean algebras without infinite free
or projective quotients, we assume the number of factors is non-measur-
able; the other four work for all cardinals. The non-measurability may
be removable. Bounded non-measurability of the factors can substitute
for it, but this will not be proved. In summary, a supposed counter-
example must be very complicated, and since Tarski can be cited [11]
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for the conjecture that the existence of measurable cardinals is incon-
sistent, the remaining problem does not seem worth more trouble.

The Boolean algebras which lack infinite complete quotients are closed
under countable free sums, not provably closed for sums of larger fami-
lies, not closed for ¢. For fields without infinite complete quotients,
there is no sum theorem-assuming c=x;.

There are 22 positive results (one failing, one unsettled) and 18 nega-
tive results (6 problems turning out positive at least for non-measurable
cardinals). 17 of each will be established, often with all details omitted,
in this section of the paper. In fact, we dismiss 17 trivial counterexam-
ples with the following words. Excepting the free sum of two fields with-
out infinite complete quotient fields, the other examples are all easily
found among finite Boolean algebras and fields of sets, free ones on R,
or ¢ generators, and the algebra or field of all subsets of a set of x, or ¢
points. A careful reader should treat this as a set of exercises proposed
after the definitions below.

We assume, without loss of generality, that all fields of sets are sepa-
rated. Thus they are ordered triples (B,X,:), where B is a Boolean
algebra, X is a set, and ¢ is a homomorphism of B into the algebra of
all subsets of X such that b,+b, in B implies ¢(b,)*+¢(d,), and z,+x,
in X implies that for some b in B, z, € i(b) but z, ¢ ¢(b). (It follows that
1(1)=X). One could define the dual zero-dimensional proximity spaces
simply as ordered triples (X,B,s) for which the same conditions hold.
Using ordinary Stone duality, one could define the space instead as
(X, B,i¥), where ¥ is a one-to-one function from X onto a dense subset
of the Stone space #(B). This presentation generalizes to give an
arbitrary proximity space if we suppress B and consider a pair (X,e),
X being a set and e a one-to-one dense embedding of X in a compact
space. We want both presentations 1.

In the (B, X 1), (X, B,%) notation, we are concerned with pairs /: B, - B,,
f:X, - X,, where % is a homomorphism, f is a function, and ik =f-14,.
Such a pair (k,f), or k alone, is called a homomorphism or field mapping
from (By, X,,1;) to (B,, X,,1,); the pair (f,4), or f alone, is a d-continuous
mapping from (X,, B,,i,) to (X;,By,4;). We shall now adopt the usual
device of referring to an ordered triple by its first term (when the level
of confusion permits). Given A and f as above, if A is onto, then f is
one-to-one (but the converse is false); in this case B, is a quotient field
of B, and X, is a subspace of X,. If f is onto, then A is one-to-one (but

1 For the general theory of proximity spaces, see [5]. Until Section 3 it suffices to think
of them as spaces with distinguished compactifications; the d-continuous mappings are
the restrictions of continuous mappings of the compactifications.
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the converse is false); in this case B, is a subfteld of B,, and X is a é-con-
tinuous image of X,. (In proximity spaces, as in topological spaces, one
imposes stronger requirements for a quotient mapping. Probably similar
distinctions will be wanted in fields of sets, but the notion of subfield
is standard and the present notion of quotient seems right).

We define free sum, direct product, retract, projective and injective in
the usual manner. Thus the direct product of fields (B,,X,,4,) is the
Cartesian product algebra represented on a disjointed union of the sets
X, by i({b,})=Ui,b,). The direct product of spaces X is their Cartesian
product set together with the smallest field of subsets making all coor-
dinate projections d-continuous. The dual constructs are free sums.
Retracts of objects K are the images of idempotent mappings k: K — K.
Projective objects, of the four varieties we will consider (Boolean alge-
bras, fields of sets, and their duals), may be characterized simply as
retracts of free objects; injective objects are the duals of projective
objects. Free Boolean algebras are, of course, free sums of the 4-element
algebra (free on one generator). Free compact spaces are free sums of
one-point spaces. Similarly a free field of sets is a free sum of copies of
the unique field representation of the 4-element algebra; the dual spaces
are Cantor spaces. A complete field of sets is a completely isomorphic
representation of a complete Boolean algebra B; thus B must be atomic
and represented on its set of atoms. The dual spaces are (equivalently)
free, projective, or d-discrete.

7 of the 8 positive results on projective algebras and fields reduce to
trivialities once we show that every infinite injective Boolean (or zero-
dimensional proximity) space has as a retract the Aleksandrov space a«N
consisting of a sequence converging to a point. Since «V is injective
(a retract of a Cantor space), it suffices to show that it occurs as a sub-
space. If we call a subset S of a topological space X sequentially closed
when there is no convergent sequence of points of S converging to a
limit in X —S, we have:

1.1. TEEOREM 2. Every open, sequentially closed subspace of a Cantor
space 18 closed.

Proor. Let S be open and sequentially closed in a Cantor space
P=1IIT,, where the T, are two-point spaces indexed by ordinal numbers
«. Consider the points of P as functions, and let f be a point of P—S.

2 Tt is already known that this result is consistent with the usual axioms for set theory.
In fact, the stronger result that two complementary sequentially closed subspaces must
be closed follows from Mazur’s work [7], provided there exist no uncountable weakly in-
accessible cardinal numbers.
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We shall construct a descending sequence of indices f,,8,,... such that
each g agreeing with f up to §,and at 8, ,,...,B, belongs to P—8; com-
pleting the construction, the descending sequence must be finite, and
(as we arrange it) it cannot end until g,=0. This will show that P -8
is a neighborhood of each of its points, and 8 is closed.

To avoid two cases, let there be a largest index 5,. Having g,,...,8,%0,
consider the subspace ¢ of P consisting of functions agreeing with f at
these indices. Among the ordinals « < §;, some of them have the property
that there is y < « such that g € @, g=f on [0,y], and g=f on [«,,] imply
g e P—S8. This holds trivially if x=y+ 1. It remains to prove that it
holds for «=gp,, so that the induction runs.

Suppose « is an w-limit of smaller ordinals y;, but no y; does what
we want. Thus there are functions g; in @ agreeing with f up to y; and
on [«,8,], all belonging to 8. Since S is open, there are finite sets of
indices N; such that every h agreeing with g; on N; belongs to . Let N
be the union of all N;. Let k; agree with g; on N and with f everywhere
else. The sequence {h;} lies in the compact metric space of all functions
agreeing with f except on N, and therefore it has a subsequence con-
verging to a limit A. Now % is in @, since all g; and &; are in @; similarly
h agrees with f on [«,8;]. At an index <«, almost all g; and A; agree
with f, and so does k. Thus % agrees with f up to 8; and at §,_,,...,5,,
whence k€ P—8, a contradiction.

Suppose the desired property established for all predecessors d of «,
where « is a limit ordinal and not a countable limit. For each d<«
let ¢(8) be the smallest suitable y:g € @, g=f on [0,y], and g=f on [4,5,]
imply g € P—8. Then ¢(6)<d, and if ¢’ >4 then ¢(d’)=c(d). But this
implies that ¢ is bounded away from «. (The known argument: other-
wise one could find an ascending sequence d, interlaced with ¢(d,.,) > d,,
and the common limit & could not have c¢(¢) <e). Thus there is y <«
such that for all <«, if g€ @, g=f on [0,y], and g=f on [J,B;], then
g € P—S. Finally, no g in @ N 8 agrees with f even on [0,y] and [«,$,];
for S is open, and every such ¢ is a limit of the functions just shown
to be in P—8.

Continuous images of Cantor spaces are called dyadic bicompacta. Our
injective spaces are instances; so is every compact group [6].

1.2. CoroLLARY.3 In a dyadic bicompactum, every open, sequentially
closed subspace is closed. Thus every mon-isolated point is the limit of a

3 The second statement in 1.2 (which implies 1.1) is stated by B. Efimov [2]. He states
that M. Katétov has proved the same result. Most of Efimov’s proof is in his earlier note
[1] (in Proposition D and the proof of Theorem 4). The argument proves more and is lon-
ger than the present one.
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convergent sequence of other poimts; and every infinite injective Boolean
space contains «N.

Proor. A routine check shows that the property in 1.1 is inherited
by continuous images (closed continuous images, in general spaces). Thus
if the complement of a point is not closed, it is not sequentially closed.
Finally, an infinite compact space has a non-isolated point.

The injective Boolean spaces are seen to be sharply distinguished from
the projective spaces, which contain no convergent sequences. (This last
is known and will be strengthened below, 2.1). The fact that no infinite
Boolean space is both projective and injective is stated without proof
in [4], credited to D. Scott and H. Trotter. One of our 8 results requires
exactly a proof that a free sum of Boolean spaces not containing «N
never contains «N. With a restriction, that will be in 2.3. The other
seven present no difficulty.

Consider next four of the questions on complete algebras and fields,
namely the ones about direct products. These are negative for infinite
cardinals. The positive results concern embedding a free space on x,
points in a finite sum of spaces, and they are trivial.

There are 8 problems on Cantor spaces, which obviously reduce to the
ordinary Cantor space C. One pair of them, for fields and algebras, are
mutually equivalent; can C be embedded in X x ¥ without being em-
beddable in X or Y ? It suffices to consider the images of C'in X and Y,
which are two compact metric spaces. But a compact metric space
contains a Cantor set if and only if it is uncountable. Third question:
can a free sum of proximity spaces X, not containing C' contain C'? No,
for the sum is the union of open-closed sets X, and a non-empty open-
closed set of C is homeomorphic with C. The corresponding result for
compact spaces requires assurance that ¢ cannot be embedded in the
set of points added to the union to compactify it; after 2.3, we will
have that for non-measurable cardinal numbers. Next we consider a pair
of questions having different answers in the compact and the non-
compact case. For compact X and Y, it is trivial that X U Y cannot
map onto C without one of the images containing an open set and there-
fore admitting a mapping onto C. On the other hand, a countable sum
BN can map onto C. But for proximity spaces, sum is mere union.

1.3. ProposITION. If the ordinary Cantor set C is expressed as a countable
union of subsets, at least one of them admits a uniformly continuous mapping
onto C.

Proor. First suppose C is a union of two sets, 4, B, and A does not
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map onto C. Then in every perfect subset D of C there is a perfect subset
of B. To see this, observe that D is homeomorphic with C and thus with
O x C; moreover, a homeomorphism 4:D — C x C can be extended over C.
Then the first coordinate of A must not map 4 N D onto C; thus BN D
contains one of the perfect sets A~1(p), pe C.

It follows that a space mapping onto C cannot be a finite union of
subspaces not mapping onto C (by considering images). Suppose C is
a countable union of sets §;, with no §; mapping onto C. Let D, be a
perfect set disjoint from 8, and recursively let D, ,; be a perfect subset
of D, disjoint from S, ,,. By compactness, the D’s have a common
point; but it can belong to no §,, a contradiction.

From 1.3, a countable sum of proximity spaces not mapping onto C
cannot map onto C. If we assume the continuum hypothesis, this com-
pletely solves the sixth problem on Cantor spaces. Among the alter-
natives to the continuum hypothesis, P. Cohen and R. Solovay have
shown independently that ¢=x,, is consistent (oral communication from
Solovay); this implies readily that 1.3 is not true for all cardinals less
than c.

Seventh (and last) result on C':

1.4. ProrosiTioN. The product of two compact spaces which admit no
continuous mapping onto C admits no continuous mapping onto C.

Proor. For metric spaces: if X x ¥ maps to C, the mapping factors
across the component space X'x Y’. Then that space is uncountable.
Hence X’ or Y’ is an uncountable compact metric space, and contains
a copy of C. Since the component spaces are Boolean, C is a retract
of X' or Y’, and therefore an image of X or Y.

For the general case, we need to factor across X’ x Y’ and then across
X" x Y”, an intermediate metric product space. Probably the quickest
way to see that this can be done is to use function spaces and the relation
(C4*B=(C4)B, This holds for compact spaces with the uniform topology
on the function space, and that is a metric topology when the range C
is metric. Then f':X’x Y’ — C gives us a continous mapping of the
compact space X’ into the metric space of mappings from Y’ to C; the
image is a compact metric space X", and f’ factors across X" x Y’.
Another step finishes the proof.

The eighth question, whether 1.4 generalizes to proximity spaces and
d-continuous mappings, can be reduced in the same way (precompactness
replacing compactness). X'’ and Y”' turn out to be embeddable in C.
But the question remains open.
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2. Projective compact spaces.

We have still four cross problems about free spaces on R, points, and
two promised results about free sums of compact spaces. Five of these
matters are treated in this section.

The free sum of a family of compact spaces (if it exists) clearly must
be a compactification of their discrete sum; indeed, one easily verifies
that the Stone-Cech compactification of the discrete sum is the compact
free sum (which therefore does exist). In particular, the free spaces are
the Stone-Cech compactifications fD of discrete spaces D, and the pro-
jective spaces are their retracts. We shall want another characterization
of the projective spaces, as extremally disconnected compact spaces. The
definition of an extremally disconnected space will not be used. (See [3]).
But this: a subspace of a topological space X is normally embedded if
every bounded continuous real-valued function on the subspace extends
continuously over X. X is extremally disconnected if and only if X is
completely regular and every dense subspace is normally embedded
[3, Exercise 6M]. If X is extremally disconnected, so is fX (same
exercise). Hence to show that a compact space Y is projective, it suf-
fices to exhibit one dense subspace X of Y such that every dense sub-
space of X is normally embedded in Y (for Y is then gX).

2.1. PrROPOSITION. Hvery o-compact subspace of a free compact space is
normally embedded.

ReEMARK. One may note that this, if true, is true more generally for
projective spaces. Indeed it is true still more generally, for subspaces
of free spaces.

Proor. If 4 is a o-compact subspace of the free space 8D, we show
that Du4 is a paracompact space (hence normal) by using the criterion
that every open covering has a o-locally finite open refinement [8].
Evidently there exist a countable open refinement on a neighborhood
of 4 and a discrete open refinement on the rest of DuA. Then since
A is closed in DuAd, a bounded real-valued continuous function f on
A has an extension g over DUA. Let h=g | D; b has an extension ¢
over BD. Since t=g on D, i=g=f on 4.

2.2. ProposiTiON. Every separable subspace of a free compact space is
extremally disconnected. Hence every infinite closed subspace contains an
infinite projective subspace.

Proor. If C < D has a countable dense set B, then B is normally
embedded and extremally disconnected. The closure £ of B is extremally
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disconnected ; and every dense subset of C is dense in E, normally em-
bedded in £, normally embedded in C. Finally, an infinite closed set ¥
in BD contains a countably infinite set 4 and its projective closure.

2.3. Proros1tioN. If X ¢s a locally compact o-compact space, then every
o-compact subspace of fX — X is normally embedded and every separable
subspace s extremally disconnected. If X is a discrete sum of mon-measur-
ably many locally compact o-compact spaces, every infinite closed subspace
of X — X contains an infinite projective subspace.

Proor. First part: repeat the arguments of 2.1 and 2.2 except that
every open covering of X U A turns out to have a countable subcovering.
For the second part, we have a mapping f: X - D, where D is a non-
measurable discrete space and each set f~1(p) is locally compact o-com-
pact. Extend to ff: fX — gD. If F is an infinite closed subspace of
BX — X, Bf(F) is finite or contains an infinite projective space P. In
the second case, since P is projective, P can be embedded in F. In the
first case some infinite closed subset G of F lies in an inverse set (8f)~1(p).
If p € D, then @G lies in B[ f~1(p)] —f~1(p) and contains an infinite projective
subspace. The remaining possibility is p € D~ D. The traces on D of
neighborhoods of p determine a finitely additive non-atomic two-valued
measure ; this measure cannot be countably additive, so some countable
family of neighborhoods U, of p has intersection disjoint from D. Let
g, be the characteristic function of U,; g=22-"(1—g,); h the con-
tinuous extension of ¢ over D. Let Y be the set of all points y of fX
such that A(ff(y))>0. Then Y is an open F, set of X which (i) contains
X and (ii) is disjoint from (Bf)~Y(p). From (i), X =Y. From (ii),
G < BY —Y; so the proof is complete.

We want a special property of the free space on x, points, SN.

2.4, THEOREM. Ewvery subspace BN of a free compact space 18 a retract.
Hence every infinite closed subspace retracts wpon an infinite projective

space.
Proor. Given BN < gD, construct a sequence of pairwise disjoint
neighborhoods U, of the isolated points x, of SN. Let
Vi=D - U[U,: n>1], V,=DnU,

thereafter. Map D to N by putting f(x)==, if x€ V,. The mapping
f has a continuous extension gf: D — fN. Since D is dense in gD,
ff (x,)==,, and Bf is a retraction.

Any infinite closed set X in BD contains a discrete subspace N and

Math. Scand. 17 — 7



98 J.R.ISBELL

its closure BN, and X < fD retracts upon BN. This completes the
proof.

One naturally asks whether every continuous mapping of a closed
subspace of 8D into BN can be extended over 8D. This is entirely con-
trary to “known” results about these spaces; but those results depend
on the continuum hypothesis, and without it, it is not clear how to
construct mappings except for the extensible mappings. If the con-
tinuum hypothesis is assumed, there are 2¢ autohomeomorphisms of
BN — N [10], and it is not hard to see that only ¢ of them can be extended
to continuous mappings N — gN.

The author is indebted to M. Henriksen for asking whether in Theorem
2.4, BN can be replaced by an arbitrary projective space. It is a striking
idea, and entirely open.

2.5. THEOREM. Let {X;:1 €I} be a family of compact spaces none of
which has an infinite projective quotient space. Then their product has no
infinite projective quotient space.

Proor. Assume the contrary. Then the product P admits a continuous
mapping f onto SN ; but no factor X; can be mapped upon an infinite
subset of SN. Consider the inverse sets f~1(p,) of the isolated points of
BN. Each is open and compact, hence restricted in only finitely many
coordinate indices. Uniting these index sets, we discover a countable
partial product, every cross-section over which maps onto SN. Then
we may assume [ is the set of positive integers. (If it was finite, fill out
with one-point factor spaces). Now we shall get a contradiction between
R*°=c and the fact that SN has more than ¢ points [3, p. 130].

Choose points "= (z;*) € f-X(p,). Let L, be the set of all ;. The
product of all L, has ¢ points, and its closure L maps onto fN. For
each p e BN, consider various points A of finite products II;_,L,, and
the cylinders

C,={xeL: for 15k, z;, = 4;}.

Suppose C, contains a point x of f-1(p). The set
8, ={yeP: for i+k+1, y, =z}

is homeomorphic with X, ., so f(S,) is finite. Then f-1(p) N S, is
relatively open; since x € L, x;,; € L,,, there is an l e L;,; such that
the cylinder over A'=(4,,...,4;,!) meets f~1(p). As this holds for £=0,
we conclude that there is an infinite sequence (1), the cylinder over
every initial segment of which meets f-1(p). Then (4,) itself is in f-1(p),
and the contradiction is established.
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2.6. THEOREM. Let {X,} be a countable family of Hausdorff spaces none
of which has an infinite projective compact subspace. Then their product
has no infinite projective compact subspace.

Proor. Case 1: a product X x Y. Given an embedding e:fN - X x ¥,
we shall find an infinite closed subset of SN on which one of the coordinate
functions e;: BN - X, e,: PN — Y, is one-to-one. This is trivial unless
each e, is finite-to-one; for when e, is constant on a set 8, ,|S is one-to-one.
Next, the sets e;~1(x) must be of bounded finite size. Otherwise there
would be a sequence of increasingly large sets e;~(x;), whose union is
normally embedded in SN (by 2.1). As {x;} lies in a regular space ¢,(SN),
it has an infinite discrete subset D. It follows that e,~1(D) is also discrete.
For any limit point x of D, there are infinitely many disjoint subsets
S, of e;7}(D) such that x € e,(S,~); thus e, !(z) is infinite.

Let m be the largest integer such that there exist g, different m-point
sets e;~1(x;). Their union V is normally embedded in SN and can be
written as a union of disjoint sets V,,...,V,, each of which is mapped
one-to-one by ¢;. Each point of V- belongs to an inverse set containing
at least m points, and with finitely many exceptions, each of these sets
consists of m points, one from each V,~. We can remove neighborhoods
of the exceptional points, leaving an infinite closed subset W, of each V.
Then e, embeds W, in X.

The theorem follows for finite products.

Case 2: a countably infinite product. We have coordinate functions e,,
no finite set of which suffices to separate points on SN. Then for each n
there exist points p,,q, of BN such that e(p,)=e;(q,) for i<n. Since
countable sets are normally embedded, we may suppose that all the
points p,,q,, are distinct. But for any limit point p* of the p’s there
is a limit point ¢* of the ¢’s such that e (p*)=e,;(q*) for all ¢; and since
countable sets are normally embedded, g* < p*.

Briefly, 2.6 says that if BN is embedded in X x ¥ then an infinite
closed subset must be embedded in one factor. Since SN has isolated
points, there must also be a non-empty open subset embedded in one
factor. It seems unlikely that any compact space without isolated points
can have that property. We can show, assuming the continuum hypothe-
sis, that SN — N does not have it.

2.7. EXAMPLE. Assuming 28 =N,, there exist two quolient mappings
f:BN - X, g: BN - Y, such that neither is one-to-one on any infinite
open-closed subset but z — (f(x), g(x)) is one-to-one, and X and Y are
Boolean spaces. Thus f(N) and g(N) support fields of sets whose free
sum has an infinite complete quotient field although neither summand has.
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Proor. Let N* denote fJN—N. We shall construct p:N* — P,
¢:N* - @, neither one-to-one on any non-empty open set but together
giving an embedding of N* in Px Q. Then X will be the quotient of
BN by the decomposition into sets p~(f) and single points of N, and ¥
is constructed similarly from g. Evidently X and Y will be Boolean
if P and @ are. The zero-dimensional proximity spaces f(N) < X,
g(N) = Y then have no infinite subspace N’ whose 8-compactification
is BN’, thus no infinite projective subspace; but in f(N)xg(N) the
diagonal will be projective, completing the proof.

The space N* has just ¢ open-closed sets, the derived sets of subsets
of N in AN. By hypothesis, then, the non-empty open-closed sets can
be arranged in a list {U,} indexed by the countable ordinals. We shall
refer to these briefly as listed sets. Note that every closed G, set is the
closure of its interior [10].

We generate labels V,,S,% T* o >p, for certain listed sets, and X,
for certain closed G, sets, as follows. p, will be the characteristic function
of V,. Let Vo=U, At an ordinal a=p+1, let 2, be a point of V,.
Let X, be the set of all points of N* not separated from z; by any of
the functions p,, y <p. Let S;” and T';* be disjoint listed subsets of (the
interior of) X, For y<p, let 8,*=8/—V, T =TS -V, Let V, be
a listed subset of U, not containing any S,* or 7% y <f; such a set
must exist, for U, (being homeomorphic with N*) has ¢ disjoint listed
subsets [10]. Since the V’s are chosen in this way, the sets S,% 7T',* are
indeed non-empty and therefore are listed. At a limit ordinal «, let
8,% T, be listed subsets of the G, sets N,_,8,%, Ny, T} respectively,
and choose V, as before.

The functions p, are the coordinates of a mapping p’ into a Cantor
space; let P=p'(N*), and define p:N* - P by p(x)=p'(x). Then P
is Boolean. Observe that p is not one-to-one on any non-empty open
set U. For U contains a listed set U;. The coordinate functions p, (y < f)
are constant on 8,/+1 U T'+1; and for « > g, the function p, is constant
on 8p+t1uT,»+1, Thus the disjoint sets M,,,S,* and N, ,T,* are not
separated by p.

On the other hand, each non-empty open set U of N* contains a listed
set U, and an open inverse set V,=p,~(1). Thus for each listed U,
the obstruction set

4s = p~p(Up) n p(N*—U,)]

is nowhere dense. So ¢ can be constructed as follows.
We generate disjoint families #, of listed sets, mappings ¢,, closed
nowhere dense sets R,, closed G, sets W, and listed sets Y% Z;* (x 2 f).
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Here 2, will always have dense union; R, will be the remainder of N*;
and ¢, will be a quotient mapping corresponding to the decomposition
into the elements of .#, and the single points of R,. (Thus the quotient
space is Boolean). To begin, let .%, be a maximal family of listed sets
disjoint from each other and from 4,. At each ordinal x=£+1, select
a point w, in U, but not in the first category set U,_,R,. Let W, be
the set of all points of U, not separated from w; by any of the functions
q,,y<p. Let Y%, Z; be disjoint listed sets interior to W, Let K,* be
a listed set disjoint from A4,, meeting both Y,/ and Z,°, but not con-
taining any Y.? or Z.. (Such a set exists since there are ¢ disjoint listed
sets meeting Y’ and Z,® but not 4,). Recursively select K~ disjoint
from A, and the preceding sets K,*, meeting ¥,? and Z,?, but such that
its union with its predecessors K,* still does not contain any Y or Z*.
Extend the resulting countable family {K *}, y <«, to a maximal family
Z, of listed sets disjoint from each other and from A4,. Also

(*) Y= Y/0Kyr, 77 =Z/0K..

This carries the construction to the next limit ordinal x, where we choose
listed sets Y,% Z,* in N,_,Y,? and N,_,Z,?’ respectively. K,* and the
rest of ¥, are constructed in the same way except that the index «
replaces B throughout. (*) is omitted.

The mapping ¢ is defined by its coordinates ¢,, the space @ being
the subspace q(N*) of the appropriate product space. Like p, g is not
one-to-one on any open set, because each listed set U, contains the
nonempty disjoint sets N,.,¥,* and N,.,Z;* which no g, separates.
However, any distinct points x € U,, y ¢U, are either separated by p
or in A, and separated by ¢,. The example is therefore established.

3. Pseudocompact proximity spaces.

We note again, this time more seriously, that basic facts on proximity
spaces and uniform spaces can be found in [5]. It is not an encyclopedic
reference ; we must add, e.g., that the completion of a product of uniform
spaces is the product of the completions of the factors [3, Exercise 15M/].
A locally complete space is open in its completion; we omit proof.

3.1. TuroreM. For any locally complete uniform space K, the class of
all uniform spaces X such that every uniformly continuous mapping of X
into K has a uniformly continuous extension over the completion of X
(into K) is closed under formation of direct products.

Proor. Let P be a product of such spaces X, @ the product of their
completions ¥,. Every map f:P — K can be extended, uniquely, to a
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map g of (the completion) @ into the completion K- of K. We wish
to prove g(Q) < K, given that, for any copy of any Y, (in @), either
g(Y,) < K or g(X,) ¢ K. Suppose some point ¢°=(¢,°) of @ maps to
ze K-—K. In the closed set g-1(K-— K) we construct a transfinite
sequence of points ¢* as follows. Well-order the indices x. Having
¢’ =(q,P), consider the set

{g€@: for w*B, q,=9¢/}.

This is a section over Y, and g does not map it into K. Hence it includes
a point ¢g#+! such that ¢,f+' € X,, g(¢?*!) ¢ K. At a limit ordinal «, the
preceding ¢® form a convergent sequence; let ¢* be their limit. The x-th
coordinate of ¢# is ¢,**1 € X for all > «, so we arrive finally at a point
p of P; but g(p) e K-— K, a contradiction.

3.2. CoroLLARY. The class of fields of sets having no infinite complete
subfield is closed under formation of free sums.

Proor. Translate the proposition first by Stone duality and then by
embedding in the category of uniform spaces. We arrive at the class
of precompact uniform spaces X such that dX =0 and every uniformly
continuous image of X in N < SN is finite. A product P of these is
precompact zero-dimensional and, by 3.1, every mapping into N < gN
extends over the completion P—. Since P- is compact, the image is a
compact subspace of N; so it is finite.

We note three additions to 3.1. First, even if K is not locally complete,
the proof works for finite products. Second, in the precompact case (all
X* precompact, K precompact and locally compact), one has closure
under arbitrary products for the spaces X such that every uniformly
continuous image of X in K is compact; for this class is the intersection
of the class described in 3.1 with reference to K itself and all the classes
similarly determined by subspaces K — {point}. Third, a direct exten-
sion:

3.1*. THEOREM. Theorem 3.1 remains true if K is merely a cone whose
base is locally complete, or more generally, if the set of points at which K
18 not locally complete is a complete subspace of K.

We outline the proof, which depends on the use of single points rather
like the preceding remark. If f:P - K fails to extend over P-, this
means the extension g:P- - K- assumes a value z in K-— K. If § is
a complete subspace of K, z has a neighborhood U far from S; if S is
the set of all points at which K is not locally complete, then (taking U
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closed or open) KnU is locally complete. By routine arguments one
gets a uniform covering {V,} of P such that for some 8, f(V;) = U and
zef(Vg)~. Omne can have V; a rectangle, and then the proof of 3.1
shows that on some section across V, f cannot be extended over the
completion with values in KnU. If we took U closed, prolongation
of that section gives a factor of £ on which f fails to extend over the
completion.

Doubtless 3.1 admits other extensions. The purpose of the extension
to cones is to include the class of pseudocompact proximity spaces: the
spaces admitting no non-precompact compatible uniformity, or equiva-
lently [5, Exercise II.11], having a unique compatible uniformity. It
remains to show that this purpose has been achieved. (We remark, but
do not prove, that it cannot be done without cones; no locally compact
space suffices to test for pseudocompactness).

We need the result [5, Exercise II.12] that if ¥ and Y’ are §-iso-
morphic uniform spaces and X is precompact, then X x ¥ and X x ¥’
are d-isomorphic. It implies

3.3. ProPosITION. 4 8-continuous image of a pseudocompact proximity
space is pseudocompact.

Proor. Let f: X — Y be é-continuous onto. Transferred into uniform
spaces, X and Y are precompact and f is uniformly continuous. The
graph X’ of f in X x Y is uniformly isomorphic with X, since projection
(2,f(x)) > « and the mapping & — (x,f(x)) are both uniformly continuous.
If Y is not pseudocompact, there is a d-isomorphic uniformity making
Y into a non-precompact space Y'. X x Y’ is §-isomorphic with X x ¥,
so the point set X' becomes a subspace X'' that is still §-isomorphic
with X. But X' is not precompact; a cylindrical covering of X x ¥’
over a uniform covering of Y’ that has no finite subcovering can have
no finite subfamily covering X"’.

We shall let fN denote either the countably infinite free proximity
space or the corresponding precompact uniform space. With correspond-
ing ambiguity, 7' denotes the cone over fN.

3.4. ProrosiTION. A proximity space 18 pseudocompact if and only if
it has no infinite free subspace that is a retract of a d-neighborhood of itself.

3.5. ProPoSITION. A proximity space X is pseudocompact if and only if
every d-continuous mapping of X into T extends over the d-compactification
of X. If X has d-dimension 0, the same holds with T replaced by fN.
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Proor oF 3.4. A non-precompact uniform space has an infinite uni-
formly discrete subspace N, and N is a uniform neighborhood retract
wherever it is embedded [5, p. 81]. Passing to proximity spaces, we
have a d-neighborhood retracting upon fN.

Conversely, suppose a d-neighborhood U retracts upon fN < X. Let
V be a smaller §-neighborhood far from X —U; let V, be the inverse
image of » € N. Pass to precompact uniform spaces fN < gX and define
a new uniformity % on X as follows. For each uniform covering {W,} g,
form the covering consisting of all W, that meet X —V and all sets
V,.nW, Evidently these coverings satisfy the necessary conditions
[5, p. 5] to form a basis for a uniformity 4. AX is not precompact, for
its subspace N is uniformly discrete. The identity mapping from AX
to gX is d-continuous since g < k. For its inverse, consider any two
sets 4, B, near in gX. At least the uniform neighborhoods of subsets
of X~V are the same in gX and in X ; so if A—V is near Bor B—V
is near A, then A and B are near in AX. If neither of these relations
holds, then ANV is near BNV in ¢gX. But on V, the uniformity 2
is obtained from g in the same way as in the proof of 3.3; hence hX
and gX are d-isomorphic.

Proor or 3.5. Suppose f: X — T is é-continuous and not extensible
over the d-compactification of X. Then in the d§-compactification of
T, f(X) has a limit point not in 7'; from the form of 7' it is clear that
f(X) is not pseudocompact. Hence X is not pseudocompact. Conversely,
if X is not pseudocompact, 3.4 gives us a retraction of a d-neighborhood
V of fN < X upon fN. Combining this with a mapping into [0,1] that
is O on N and 1 outside V [5, p. 7], we get a mapping into 7' that identifies
SN in X with the base of the cone, and cannot extend over a compacti-
fication of X. In the zero-dimensional case, the same arguments apply
with fN in place of T except that we choose V to be far from X -V
and map X — ¥ to fN in any manner.

3.6. THEOREM. Every product of pseudocompact proximity spaces is
pseudocompact.

This is immediate from 3.1* and 3.5. In view of the second part of
3.5, this result generalizes 3.2.
Theorem 3.6, for finite products, has been announced by V. Polja-

kov [9].
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