A MEASURE THEORETIC CHARACTERIZATION OF CHOQUET SIMPLEXES

ERIK M. ALFSEN

A point set A in \mathbb{R}^n is affinely independent if and only if the convex hulls of B and C are disjoint, hence separable by a hyperplane, for any partition $\{B,C\}$ of A. (This is related to a classical theorem of Radon, cf. e.g. [4].) In the present paper this result is generalized to a theorem on a compact convex set K in a locally convex space, according to which K is a simplex if and only if every boundary measure on K admits a Hahndecomposition by halfspaces (determined by an affine Borel function of class \mathscr{A} , cf. definition below).

We are indebted to R. Phelps for valuable discussions on the subject and also for making available to us the manuscript of his forthcoming book [6].

1. Definitions and basic properties.

The setting of the present note is similar to that of [1], and we shall use the concepts of that paper rather freely. Thus K shall be a compact convex subset of a locally convex Hausdorff vector space E over R, \mathscr{H} shall be the class of all K-restrictions of continuous, affine functionals, and \mathscr{S} shall be the class of all continuous and convex, real valued functions on K. The lower envelope \underline{f} of a real valued function f, bounded below on K, is the greatest l.s.c. convex minorant of f. It can be expressed as follows

(1.1)
$$\underline{f}(x) = \sup\{g(x) \mid g \in \mathcal{S}, \ g(y) < f(y) \text{ for all } y \in K\}$$
$$= \sup\{h(x) \mid h \in \mathcal{H}, \ h(y) < f(y) \text{ for all } y \in K\}.$$

The upper envelope \bar{f} is defined dually and admits the dual characterizations.

In the sequel we shall use the word *measure* to denote a regular Borel measure on K, and vector-valued integrals are taken in the weak sense. Thus $\int t d\mu(t)$ denotes the *resultant* of μ , and it denotes the *barycenter* of μ if μ is positive and normalized (probability measure).

We shall make repeated use of the following elementary fact: If $\{f_{\alpha}\}$ is an ascending net of l.s.c. functions such that $\sup_{\alpha} \int f_{\alpha} d\mu < \infty$ for some measure μ , then the l.s.c. function $f = \sup_{\alpha} f_{\alpha}$ is μ -integrable and

$$\int f d\mu = \sup_{\alpha} \int f_{\alpha} d\mu .$$

A measure μ is said to be a boundary measure if

$$(1.3) \qquad \qquad \int (\bar{f} - f) \, d|\mu| = 0$$

for every $f \in \mathscr{C}(K)$.

In the sequel \mathscr{F} and \mathscr{G} shall be the classes of all real valued functions on K which are pointwise limits of descending and ascending nets from \mathscr{H} , respectively. Symbols such as $\mathscr{F}_{\sigma\delta}$, $\mathscr{G}_{\delta\sigma}$ etc., will be used in the customary meaning, δ,σ denoting pointwise limits of descending and ascending sequences. The smallest class of functions containing \mathscr{F} and \mathscr{G} and being closed under pointwise limits of monotone sequences, will be denoted by \mathscr{A} .

Clearly every function in \mathscr{F} is u.s.c. and affine, and every function in \mathscr{G} is l.s.c. and affine. The converse statements are also valid by virtue of the following:

PROPOSITION 1. If f is an u.s.c. affine function on K, then the set of all $h \in \mathcal{H}$ such that f(x) < h(x) for all $x \in K$, is directed downward. Consequently \mathcal{F} comprises all u.s.c. affine functions. Similarly \mathcal{G} comprises all l.s.c. affine functions.

PROOF. Let $h_i \in \mathcal{H}$ and $f(x) < h_i(x)$ for all $x \in K$ and i = 1, 2. Let α, β be two real numbers bounding f, h_1 , h_2 below and above, respectively, and define the following "ordinate sets" in $E \times R$

$$\begin{split} L &= \left\{ (x, \eta) \mid x \in K, \, \alpha \leq \eta \leq f(x) \right\}, \\ U_i &= \left\{ (x, \eta) \mid x \in K, \, h_i(x) \leq \eta \leq \beta \right\}, \quad i = 1, 2. \end{split}$$

Clearly L, U_1 , U_2 are convex and compact, and by an elementary theorem, $U = \text{conv}(U_1, U_2)$ is also compact.

The sets L and U are disjoint. In fact if $(x,\eta) \in U$, then there is a convex combination

$$x = \lambda y + (1 - \lambda)z, \qquad 0 \le \lambda \le 1, \quad y, z \in K$$

such that

$$\eta \geq \lambda h_1(y) + (1-\lambda)h_2(z) > \lambda f(y) + (1-\lambda)f(z) = f(x),$$

and hence $(x,\eta) \notin L$.

By a well known separation property (based on the Hahn-Banach Theorem), the sets L and U may be separated by a hyperplane H in $E \times R$. Now H is seen to be the graph of a continuous affine functional whose K-restriction has the desired property

$$f(x) < h(x) < h_i(x)$$

for all $x \in K$ and i = 1, 2.

Now the last part of the proposition is an immediate consequence of (1.1).

Clearly $\mathscr A$ is contained in the class $\mathscr B_a$ of affine Borel functions, but the two classes are not identical in general. By an example of G. Choquet [3] (cf. also [6]) there exists an affine Borel function (of second Baire class) which does not enjoy the property (1.5) of our next proposition. The relationship between $\mathscr A$ and $\mathscr B_a$ is similar to the relationship between the monotone class generated by convex closed sets and the class of convex Borel sets. The latter two classes have been proved to coalesce in $\mathbb R^2$ by V. Klee [5], but to the best of our knowledge the problem is open even for $\mathbb R^3$.

PROPOSITION 2. If μ is a positive normalized measure with barycenter x and if f is a function of class \mathscr{A} , then f is μ -integrable and

$$f(x) = \int f d\mu .$$

PROOF. Let \mathscr{K} be the class of all μ -integrable functions of class \mathscr{A} for which (1.5) holds. If $g \in \mathscr{G}$, then there is a net $\{h_{\alpha}\}$ from \mathscr{H} such that $h_{\alpha} \nearrow g$. Now

$$\sup_{\alpha} \int h_{\alpha} d\mu = \sup_{\alpha} h_{\alpha}(x) = g(x) < \infty ,$$

and by (1.2) g is integrable and

$$\int g d\mu = \sup_{\alpha} \int h_{\alpha} d\mu = g(x) .$$

Hence $\mathscr{G} \subset \mathscr{K}$. Similarly one may prove $\mathscr{F} \subset \mathscr{K}$.

Next consider an increasing sequence $\{f_n\}$ from $\mathscr K$ which converges pointwise to a real valued function f. Then

$$\sup_{n} \int f_{n} d\mu = \sup_{n} f_{n}(x) = f(x) < \infty,$$

and by the Monotone Convergence Theorem, f is integrable and

$$\int f d\mu = \sup_n \int f_n d\mu = f(x) .$$

Hence $f \in \mathcal{K}$. Similarly one may prove that \mathcal{K} is closed under pointwise limits of descending sequences. It follows that $\mathcal{K} = \mathcal{A}$, and the proof is accomplished.

A non-zero signed boundary measure with total mass zero and resultant in the origin is said to be an affine dependence on $\partial_e K$, and K is said to be a simplex if there is no affine dependence on $\partial_e K$ (cf. [1]). By a theorem of G. Choquet and P. A. Meyer [2, p. 145], K is a simplex if and only if \bar{f} is an u.s.c. affine function for every $f \in \mathcal{S}$, or equivalently if and only if \bar{f} is a l.s.c. affine function for every $f \in \mathcal{S}$. Hence it follows from Proposition 1, that K is a simplex if and only if $\bar{f} \in \mathcal{F}$ for every $f \in \mathcal{S}$, or equivalently if and only if $f \in \mathcal{S}$ for every $f \in \mathcal{S}$.

2. Hahn-decomposition by half-spaces.

We first prove that any two mutually singular boundary measures on a simplex can be "separated up to ε " by a function from \mathcal{H} .

PROPOSITION 3. If μ and ν are mutually singular, positive boundary measures on a simplex K, then for every $\varepsilon > 0$ there exists an $h \in \mathcal{H}$ such that $0 \le h \le 1$ and

(2.1)
$$\int h \, d\nu \leq \varepsilon, \quad \int (1-h) \, d\mu \leq \varepsilon.$$

PROOF. By the mutual singularity of μ and ν there exists a continuous function f on K such that $0 \le f \le 1$ and

(2.2)
$$\int f \, d\nu \leq \frac{1}{2} \varepsilon, \quad \int (1-f) \, d\mu \leq \frac{1}{2} \varepsilon .$$

By (1.1) \underline{f} is the supremum of the set of all $g \in \mathcal{S}$ such that g(x) < f(x) for all $x \in K$. This set is closed under finite suprema ("réticulé supérieurement"). In particular it is directed upward, and by (1.2) it has a member g such that

$$\int g \, d\mu \, \geqq \int \underline{f} d\mu - \tfrac{1}{2} \varepsilon \; .$$

This inequality subsists with g^+ in the place of g, and clearly $g^+ \in \mathcal{S}$, $0 \le g^+ \le f$ and $g^+(x) < 1$ for all $x \in K$. Hence by (2.2) and by the characteristic property (1.3) of boundary measures

$$(2.3) \int g^+ d\nu \leq \int f d\nu \leq \frac{1}{2} \varepsilon ,$$

and

(2.4)
$$\int g^+ d\mu \ge \int f d\mu - \frac{1}{2} \varepsilon \ge \mu(K) - \varepsilon.$$

Since K is a simplex and $g^+ \in \mathscr{S}$, the function $\overline{g^+}$ is u.s.c. and affine. By (1.1) $\overline{g^+}$ is the infimum of the set of all $h \in \mathscr{H}$ such that $h(x) > g^+(x)$ for all $x \in K$. By Proposition 1 this set is directed downward and by (1.2) it has a member h such that

$$\int h \, d\nu \, \leq \, \int \overline{g^+} d\nu + \tfrac{1}{2} \varepsilon \, .$$

We may assume $h \le 1$ since $g^+(x) < 1$ for all $x \in K$. Hence $0 \le h \le 1$, and by (2.3), (2.4) and by use of (1.3) once more

$$\int h \, d\nu \, \leq \, \int g^+ d\nu + \tfrac{1}{2} \varepsilon \, \leq \, \varepsilon \, \, ,$$

and

$$\int h \, d\mu \, \geqq \, \int g^+ d\mu \, \geqq \, \mu(K) - \varepsilon \, .$$

These relations complete the proof.

PROPOSITION 4. Let μ and ν be mutually singular, positive boundary measures on a simplex K. For every $\varepsilon > 0$ there exists an (affine) function g of class \mathscr{G}_{δ} such that $0 \le g \le 1$, and

(2.5)
$$\int g d\nu = 0, \qquad \int (1-g) d\mu < \varepsilon.$$

Moreover, there exsists an (affine) function f of class $\mathscr{G}_{\delta\sigma}$ such that $0 \le f \le 1$, and

(2.6)
$$\int f d\nu = \int (1-f) d\mu = 0.$$

PROOF. By Proposition 3 there exist functions $h_n \in \mathscr{H}$ such that $0 \le h_n \le 1$ and

(2.7)
$$\int h_n d\nu \leq 2^{-n}, \qquad \int (1 - h_n) d\mu \leq 2^{-n},$$

for $n=1,2,\ldots$ Define

$$g_{n, p} = h_{n+1} \wedge \ldots \wedge h_{n+p}, \qquad n, p = 1, 2, \ldots$$

The functions $g_{n,p}$ are l.s.c. and affine since K is a simplex. By Proposition 1,

$$g_{n,p} \in \mathscr{G}, \qquad n,p=1,2,\ldots$$

Now define

$$g_n = \inf_p g_{n,p}, \quad n = 1, 2, \dots$$

Clearly $g_n \in \mathscr{G}_{\delta}$, and

$$\int g_n d\nu \le \int h_{n+p} d\nu \le 2^{-n-p}, \qquad n, p = 1, 2, \dots.$$

Hence

(2.8)
$$\int g_n d\nu = 0, \qquad n = 1, 2, \dots.$$

By the characteristic property (1.3) of a boundary measure,

$$\begin{split} \int (1-g_{n,p}) d\mu &= \int (1-h_{n+1} \wedge \ldots \wedge h_{n+p}) d\mu \\ &\leq \sum_{k=n+1}^{n+p} \int (1-h_k) d\mu \leq 2^{-n} (1-2^{-p}), \quad n,p=1,2,\ldots. \end{split}$$

Hence by the Monotone Convergence Theorem

(2.9)
$$\int (1-g_n)d\mu = \sup_p \int (1-g_{n,p})d\mu \le 2^{-n}, \quad n=1,2,\ldots.$$

By (2.8) and (2.9) the requirement (2.5) is satisfied with $g=g_n$ when $2^{-n} \le \varepsilon$.

Next define $f = \sup_n g_n$. Clearly $f \in \mathcal{G}_{\delta\sigma}$. By the Monotone Convergence Theorem and by (2.8)

$$\int f \, d\nu \, = \, 0 \, .$$

Clearly $1-f \le 1-g_n$ for $n=1,2,\ldots$ Hence by (2.9)

$$\int (1-f)d\mu = 0.$$

Thus, f has the desired property (2.6).

Theorem 1. A convex compact set K is a simplex if and only if every (signed) boundary measure μ admits an affine function f of class $\mathscr A$ such that

PROOF. 1. Assume K to be a simplex. By Proposition 5 there exists an affine function g of class $\mathscr{G}_{\delta\sigma}$ such that $0 \le g \le 1$ and

(2.11)
$$\int g d\mu^- = \int (1-g) d\mu^+ = 0.$$

Let $f = g - \frac{1}{2}$, and define $A = \{x \mid f(x) \ge 0\}$, $B = \{x \mid f(x) \le 0\}$. Clearly $\frac{1}{2}\chi_A \le g$, $\frac{1}{2}\chi_B \le 1 - g$, and by (2.11)

$$\mu^{-}(A) = \mu^{+}(B) = 0.$$

Thus $f \in \mathscr{G}_{\delta \sigma} \subset \mathscr{A}$, and (2.10) is satisfied.

2. Assume K to be a non-simplex. By the definition of a simplex there exists an affine dependence μ on $\partial_e K$. We assume the positive and negative parts of μ to be normalized, and we denote the common barycenter of μ^+ and μ^- by x. Thus we have

$$(2.13) \qquad \int t d\mu^+(t) = \int t d\mu^-(t) = x$$

We claim that such a measure μ cannot admit any function f of class $\mathscr A$ for which (2.10) is valid. In fact, assume $f \in \mathscr A$ and

$$\mu^{-}(A) = \mu^{+}(B) = 0,$$

where $A = \{x \mid f(x) \ge 0\}$, $B = \{x \mid f(x) \le 0\}$. By (2.12) and (2.14),

$$\mu^+(\{x \mid f(x) > 0\}) = \mu^-(\{x \mid f(x) < 0\}) = 1$$
.

Hence there is an $\alpha > 0$ such that

(2.15)
$$\mu^{+}(A_{\alpha}) \geq \frac{1}{2}, \qquad \mu^{-}(B_{\alpha}) \geq \frac{1}{2},$$

where $A_{\alpha} = \{x \mid f(x) \ge \alpha\}$, $B_{\alpha} = \{x \mid f(x) \le -\alpha\}$. By virtue of (2.13), (2.15) and by Proposition 2

$$\begin{split} &\tfrac{1}{2}\alpha \, \leqq \int\limits_{A_\alpha} f \, d\mu^+ \, \leqq \int \!\! f \, d\mu^+ \, = f(x) \; , \\ &- \tfrac{1}{2}\alpha \, \geqq \int\limits_{B} \!\! f \, d\mu^- \, \geqq \int \!\! f \, d\mu^- \, = f(x) \; . \end{split}$$

This contradiction completes the proof.

REFERENCES

- 1. E. M. Alfsen, On the geometry of Choquet simplexes, Math. Scand. 15 (1964), 97-110.
- G. Choquet et P. A. Meyer, Existence et unicité des représentations intégrales dans les convexes compactes quelconques, Ann. Inst. Fourier 13 (1963), 139–154.
- A. Choquet, Remarques à propos de la démonstration d'unicité de P. A. Meyer, Seminaire du Potentiel, vol. 6 no. 8, Paris 1962.
- L. Danzer, B. Grünbaum and V. Klee, Helly's theorem and its relatives, Amer. Math. Soc. Proc. Symposia in Pure Math. 7 (1963), 101-159.
- 5. V. Klee, Convex sets in linear spaces III, Duke Math. J. 20 (1953), 105-112.
- 6. R. Phelphs, Lectures on Choquet's theorem.