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A MEASURE THEORETIC
CHARACTERIZATION OF CHOQUET SIMPLEXES

ERIK M. ALFSEN

A point set 4 in R” is affinely independent if and only if the convex
hulls of B and C are disjoint, hence separable by a hyperplane, for any
partition {B,C} of 4. (This is related to a classical theorem of Radon,
cf. e.g. [4].) In the present paper this result is generalized to a theorem
on a compact convex set K in a locally convex space, according to
which K is a simplex if and only if every boundary measure on K ad-
mits a Hahndecomposition by halfspaces (determined by an affine Borel
function of class &7, cf. definition below).

We are indebted to R. Phelps for valuable discussions on the subject
and also for making available to us the manuscript of his forthcoming
book [6].

1. Definitions and basic properties.

The setting of the present note is similar to that of [1], and we shall
use the concepts of that paper rather freely. Thus K shall be a compact
convex subset of a locally convex Hausdorff vector space E over R, #
shall be the class of all K-restrictions of continuous, affine functionals,
and & shall be the class of all continuous and convex, real valued func-
tions on K. The lower envelope f of a real valued function f, bounded
below on K, is the greatest L.s.c. convex minorant of f. It can be expressed
as follows

(L1) f(x) = sup{g(x) | ge &, g(y)<f(y) forall ye K}
sup{h(z) | he #, h(y)<f(y) forall ye K}.

I

The upper envelope f is defined dually and admits the dual charac-
terizations.

In the sequel we shall use the word measure to denote a regular Borel
measure on K, and vector-valued integrals are taken in the weak sense.
Thus [tdu(t) denotes the resultant of u, and it denotes the barycenter of
u if p is positive and normalized (probability measure).
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We shall make repeated use of the following elementary fact: If {f,}
is an ascending net of l.s.c. functions such that sup,|f,du < oo for some
measure y, then the ls.c. function f=sup,f, is p-integrable and

(1.2) [ #du = sup, [£.du.
A measure p is said to be a boundary measure if
(1.3) [ = dit =0

for every f e €(K).

In the sequel # and ¥ shall be the classes of all real valued functions
on K which are pointwise limits of descending and ascending nets from
H, respectively. Symbols such as %, %,, etc., will be used in the
customary meaning, d,0 denoting pointwise limits of descending and
ascending sequences. The smallest class of functions containing & and
% and being closed under pointwise limits of monotone sequences, will
be denoted by .

Clearly every function in & is u.s.c. and affine, and every function
in ¥ is l.s.c. and affine. The converse statements are also valid by virtue
of the following:

ProposiTioN 1. If f is an w.s.c. affine function on K, then the set of all
h e o such that f(x)<h(z) for all x € K, vs directed downward. Conse-
quently F comprises all w.s.c. affine functions. Similarly % comprises
all 1.s.c. affine functions.

Proor. Let h,e s and f(x)<hy(x) for all xe K and i=1,2. Let
&, B be two real numbers bounding f, k,, k, below and above, respectively,
and define the following ‘“‘ordinate sets’ in £ x R

L = {(xn) |zeK,axn2f()},

Ui={xn) |zeK, hfx)sn<f}, i=12.
Clearly L, U,, U, are convex and compact, and by an elementary theorem,
U=conv(U,,U,) is also compact.

The sets L and U are disjoint. In fact if (x,1) € U, then there is a
convex combination

x=dy+(1-21)z 02121, y,z2ekK,
such that

N 2 My(y)+(1-Ahy(2) > A (@) +(1-2f(2) = f(2),
and hence (x,7) ¢ L.
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By a well known separation property (based on the Hahn-Banach
Theorem), the sets L and U may be separated by a hyperplane H in
E xR. Now H is seen to be the graph of a continuous affine functional
whose K-restriction has the desired property

(1.4) f(®) < h(x) < hy(z)
for all ze K and 7=1,2.

Now the last part of the proposition is an immediate consequence of
(1.1).

Clearly &/ is contained in the class 4, of affine Borel functions, but the
two classes are not identical in general. By an example of G. Choquet [3]
(cf. also [6]) there exists an affine Borel function (of second Baire class)
which does not enjoy the property (1.5) of our next proposition. The
relationship between .7 and &%, is similar to the relationship between
the monotone class generated by convex closed sets and the class of
convex Borel sets. The latter two classes have been proved to coalesce
in R? by V. Klee [5], but to the best of our knowledge the problem is
open even for R3.

ProrosiTioN 2. If u is a positive normalized measure with barycenter x
and if f is a function of class o/, then f is u-integrable and

(1.5) f@ = [ fdu.

Proor. Let £ be the class of all u-integrable functions of class &7
for which (1.5) holds. If g € ¢, then there is a net {#,} from 5 such that
k,"g. Now

sup, [ h,du = sup,h,(a) = g(a) < oo,
and by (1.2) g is integrable and
f gu = supafh,,d/t = g(z) .

Hence ¥<". Similarly one may prove F <X .
Next consider an increasing sequence {f,} from ¢ which converges
pointwise to a real valued function f. Then

Supnffnd:u = supnfn(x) = f(:l?) < o0,

and by the Monotone Convergence Theorem, f is integrable and

[ fau = sup, [ fadu = 1@
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Hence f e . Similarly one may prove that J¢ is closed under point-
wise limits of descending sequences. It follows that J¢ =./, and the
proof is accomplished.

A non-zero signed boundary measure with total mass zero and result-
ant in the origin is said to be an affine dependence on 0,K, and K is said
to be a simplex if there is no affine dependence on 0K (cf. [1]). By a
theorem of G. Choquet and P. A. Meyer [2, p. 145], K is a simplex if
and only if f is an u.s.c. affine function for every f e &, or equivalently
if and only if f is a l.s.c. affine function for every fe — . Hence it
follows from Proposition 1, that K is a simplex if and only if fe F for
every f e &, or equivalently if and only if f € & for every fe — .

2. Hahn-decomposition by half-spaces.
We first prove that any two mutually singular boundary measures on
a simplex can be ‘“‘separated up to ¢’ by a function from .

ProrosiTiON 3. If 1 and v are mutually singular, positive boundary
measures on a simplex K, then for every e >0 there exists an h € S such
that 0Ssh=<1 and

(2.1 fhdv <e f(l—h) du < e

Proor. By the mutual singularity of u and » there exists a continuous
function f on K such that 0<f<1 and

(2.2) [ravs e [a-pausie.

By (1.1) f is the supremum of the set of all g € & such that g(z) < f(x)
for all z € K. This set is closed under finite suprema (‘“réticulé supé-
rieurement’’). In particular it is directed upward, and by (1.2) it has a
member g such that

fgdu szd/t—%b‘-

This inequality subsists with g+ in the place of g, and clearly g+ € &,
0=g+<fand g*(z)<1 for all x ¢ K. Hence by (2.2) and by the charac-
teristic property (1.3) of boundary measures

(2.3) J gtdv < f fdv < 3¢,

and

(2.4) [odu 2 [fdu—te 2 wr)—e.
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Since K is a simplex and g+ € &, the function g+ is u.s.c. and affine.
By (1.1) g* is the infimum of the set of all & € 5# such that h(x) > g+(x)
for all ze K. By Proposition 1 this set is directed downward and by
(1.2) it has a member % such that

fhdv < fg?—fdv+<}s .

We may assume k=<1 since g+(x)<1 for all te K. Hence 0<h <1,
and by (2.3), (2.4) and by use of (1.3) once more

fhdv < fg+dv+§e Le,
and
fhdy 2 fg‘*d‘u = w(K)—e.

These relations complete the proof.

ProrositioN 4. Let u and v be mutually singular, positive boundary
measures on a simplex K. For every ¢ >0 there exists an (affine) function
g of class G, such that 0=g=<1, and

(2.5) fgdv =0, f(l—g) du < ¢.
Moreover, there exsists an (affine) function f of class 9, such that 0Sf<1,
and
(2.6) ffdv:J-(l—f)d‘u=0.

Proor. By Proposition 3 there exist functions %, € # such that
0<h,=<1 and

2.7) [hts s 20, [Q-ho)dp < 2,

for n=1,2,... . Define

Inp = Ppsa A oo Abyyy, n,p=1,2,....

The functions g, ,, are 1.s.c. and affine since K is a simplex. By Proposi-
tion 1,
Inp€ Y, n,p=1,2,....
Now define
gp = infyg, ,, n=12,....

Clearly g, € %,, and
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fg,,dv < fhmdv <28, mp=1,2,....
Hence
(2.8) fg"dv —0, n=L12,...

By the characteristic property (1.3) of a boundary measure,
f(l"‘gn,p)d/" = f(l"'hn+1/‘ cee A hn+p)d:”'

n+p
= 2 (l—hk)dfu‘ = 2—n(1_2~p)’ n1p=1:2:~°-

k=n+1

Hence by the Monotone Convergence Theorem
(2.9) f(l_gn)dlu = Suppf(l_'gn,p)d.u s 2, n=12,..

By (2.8) and (2.9) the requirement (2.5) is satisfied with g=g, when
2" <e.

Next define f=sup,g,. Clearly fe &,,. By the Monotone Convergence
Theorem and by (2.8)

ffdv =0.
Clearly 1—-f<1-g, for n=1,2,.... Hence by (2.9)

Ja=pdu=o.
Thus, f has the desired property (2.6).

THEOREM 1. A convex compact set K is a simplex if and only if every
(signed) boundary measure u admits an affine function f of class o such
that

(2.10) p (= | f@@) 2 0}) = pH({z | fl@) = 0}) = 0.

Proor. 1. Assume K to be a simplex. By Proposition 5 there exists
an affine function g of class %,, such that 0<g<1 and

(2.11) fgd,r = f(l—-g)dp"‘ - 0.

Let f=g—3}, and define A={z|f(x)20}, B={x|f(x)£0}. Clearly
32459, 2p<1-g, and by (2.11)
u(4) = p*(B) = 0.

Thus fe %,,<«, and (2.10) is satisfied.
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2. Assume K to be a non-simplex. By the definition of a simplex
there exists an affine dependence u on 0,K. We assume the positive and
negative parts of x4 to be normalized, and we denote the common bary-
center of u*+ and y~ by . Thus we have

(2.12) uHK) = u~(K) =
(2.13) f tdu*(t) = f tdu-(t) = =

We claim that such a measure u cannot admit any function f of class &/
for which (2.10) is valid. In fact, assume fe ./ and

(2.14) p(4) = p+(B) =

where A= {z | f(x) 20}, B={z | f(x) £0}. By (2.12) and (2.14),
pH({z | f(2)>0}) = p({x | f(2)<0}) =

Hence there is an « > 0 such that

(2.15) wrd,) 2 v(B,) 2 %,

where 4,={z | f(x)2«}, B,={x | f(x) < —«}. By virtue of (2.13), (2.15)
and by Proposition 2

o5 [faut s [fdur = f@),

Ay

—3x 2 ffd;r 2 ffd;r =f().

*

This contradiction completes the proof.
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