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THE VITALI-HAHN-SAKS
THEOREM FOR VON NEUMANN ALGEBRAS

JOHAN AARNES

1. Introduction.

Our aim is to give an operator-theoretic generalization of the Vitali-
Hahn-Saks theorem (see [2, pp. 158-159]). Indeed, our theorem will
give somewhat more information than the ordinary measure-theoretic
version, as it gives the limit functional as a pointwise limit on all of &7,
where .o/ is the von Neumann algebra relative to which we formulate
the theorem.

Consider first the following more general situation:

Let £ be a Banach-space, and E* its dual. Let K be a w*-closed
convex subset of the unit ball B,* of £*. Then K is w*-compact, and it
is the w*-closed span of its set of extreme points 9,K (Krein-Milman
theorem). Suppose that E* is the norm-closed linear span of K. Now,
let {x,},.~ be a sequence in E which converges pointwise on 9,K, that is
for every ¢ € 9,K the limit lim, , ¢(z,) exists as a finite number and
thus defines a function 2 on 9,K. We may now ask: Does {z,} converge
on all of K or on all of E*? And will 2 be extendable to a representing
functional for an element x in £ such that

¢(x) = lime(x,) forall pe E*?
n—>o0

A partial answer to this question is provided by the theorem of Rain-
water ([6, p. 999]) which states that if K = B,*, and under the additional
requirements that {x,} is bounded and converges pointwise on ¢,K to an
element 2 which is assumed to be in E, then lim,_, , ¢(z,)=¢(x) for all
g€ E*,

Easily available counterexamples show that this is the best that can
be hoped for in this general setting. For instance, take E=C[0,1], and
let {x,} be any sequence of continuous functions in E converging point-
wise on [0,1] to a discontinuous function. Since [0, 1] can be identified
with the extreme points of the unit ball in £* this shows that the assump-
tion that the limit shall be an element of £ can not be dropped. Likewise,
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the assumption that {x,} shall be bounded is necessary: Let {,} con-
verge pointwise to 0 on [0,1] in such a way that

1
fxn(s)ds =1 foralln=12,....
0

This integral is an element of E* (in fact, with norm 1), so {,} will not
converge weakly.

Nevertheless, in the proper setting for von Neumann algebras the
problem will have a positive solution, without the assumptions occuring
in the Rainwater theorem.

In what follows, &/, # will denote von Neumann algebras. By &7, %,
wee denote their pre-duals, &/*, %* their norm-duals respectively. & will
denote the set of projections in a von Neumann algebra «/. By &7+, o/H
and .&/; wee denote the positive elements, the hermitian elements and the
elements of norm less than or equal to one in &7, respectively, and &7, %
is defined as &/;NH, and ,* as & NnF+. We say that a linear func-
tional on & is normal if it is continuous on 2/, when the latter is equipped
with the weak operator topology. A linear functional on &/ is normal if
and only if it can be represented as an element of «/,. ([1, ch.I, § 3,
theorem 1, p. 40]).

In the general context outlined above, we now take £ =7, so B*=./.
For K we choose o/,*, and note that J,K is equal to &, a result which is
due to Kadison [7]. In this setting our version of the Vitali-Hahn-Saks-
theorem is the precise solution of the problem. The reader will also ob-
serve that the measure-theoretic version of this theorem can be inter-
preted in exactly the same way. Indeed, it is just a special case of our
theorem.

We wish to thank prof. R. Kadison for calling our attention to the
fact that each commutative von Neumann algebra is identifiable with a
measure-theoretic picture ([8, part II, theorem 5, p. 32, and part I,
theorem 1, p. 5]). This made considerable simplifications of the proofs
possible.

2. A principle of uniform boundedness.

If # is a commutative von Neumann algebra, then there exists a
locally compact space S and a positive measure x4 on S with support S
such that the spaces # and L(S, u) are linearly isometric. Here LZ(S, 1)
denotes the space of all complex valued, essentially bounded functions
on 8, where two functions are identified when they are equal almost
everywhere. Moreover there is an isometric isomorphism of the pre-dual
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B, of B onto L{(S,u), the integrable functions on § (identified as for
L™). If ¢ is a normal functional on & (i.e. an element of #*) and § is
the corresponding function in L{(S,u), then

(2.1) #4) = [#6) A6 duts),  sesS,
S

for every A € &, when A is the function in L¥(S,x) corresponding to A.
([1, ch. I, § 7, pp. 112-120], [8, part II, theorem 5, p. 32, part I, theorem
1, p. 5]).

Let A be a self-adjoint operator in a von Neumann algebra o7, and
let & be the commutative von Neumann sub-algebra of ./ it generates.
Suppose now that % is a family of normal linear functionals on o/
which is pointwise bounded on the projections in /. A fortiori & is
then pointwise bounded on the projections in %.

By the representation of # as LX(S,u) for some S and g, this transfers
to the statement that for each measurable set £ < S there is a constant
K(F) < co such that

(2.2) < K(E); sefs,

[ #66) duto)
E

for all ¢ € LY(S,u) corresponding to members of #. Then it follows, by
a theorem of Nikodym ([2, ch. IV, 9.8, p. 309]) tht we can find a con-
stant K < oo such that

(2.3) <K, seS8,

[ #66) dut)
E

for all measurable sets £ in S and the same class of functions {$}. By
standard measure theory it immediately follows that the L!-norms of
the elements of {$} must be uniformly bounded. Hence, by the isometric
character of the map ¢ —~ @ we obtain in particular that the set
{pd):peF } is bounded. But then, by the Banach—Steinhaus theorem
and the fact that every operator in &/ can be written as the linear sum
of two self-adjoint operators, it follows that  is uniformly bounded on
bounded sets in .o«#. Therefore we have proved:

TaEOREM 1. If F is a family of normal functionals on a von Neumann
algebra of, which is pointwise bounded on the projections in <, then F is
uniformly bounded on bounded sets of /.
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3. The Vitali-Hahn-Saks theorem.

Let o/ be a von Neumann algebra and let ¢ be a linear functional
on /. We say that ¢ is completely additive if for any family {P,}, . of
mutually orthogonal projections in &/, we have

(3°1) q)(ZyEI‘Py) = Zyel'(p(Py) .

Dixmier has proved that if ¢ is positive, then complete additivity is
equivalent to normality ([1, p. 65, exc.9]). More generally, Sakai
([4, footnote p. 440]) observed that this equivalence still holds when ¢ is
bounded. In particular, for ¢ bounded, the condition (3.1) is equivalent
to the requirement that if {P,}, ., is any downward directed, monotone
net of commuting projections in &/ such that glb{P,}, =0, then it
shall follow that ¢(P,) - 0; y e I.

Therefore, and in analogy with the corresponding concept for measures,
we say that a family & of bounded linear functionals on & is uniformly
completely additive on &/ if for any ¢>0 we can find an index y,e I’
such that if y = y,, then |p(P,)| <¢ for all pe F. Here {P,} ., is com-
mutative and descending to zero as above.

We now state our version of the Vitali-Hahn—Saks theorem.

THEOREM 2. Let {@,},.n be a sequence of normal linear functionals on
&, and suppose that for every projection P € o, lim,_,  @,(P) exists as a
finite complex number, which we denote by @(P). Then:

(i) @ has a unique extension to all of o/ as an element of &Z*, and limg,(A4)
exists and 18 equal to p(A) for every A € .

(ii) @ 28 completely additive, and consequently normal.

(iii) The restrictions {@, | PNB},.n 8 equicontinuous in 0 with respect
to the relativized weak operator topology on any commutative von Neumann
sub-algebra B< .

(iv) The family {@,}nen 18 uniformly completely additive.

Proor. The family {@,},.ny is obviously pointwise bounded on the
projections in &7, so that by Theorem 1 we can conclude that it is uni-
formly bounded on bounded sets in /. By spectral-theory {g,} con-
verges on a norm-dense set in &/H, and thus by uniform boundedness
on all of &/H, and hence on all of &/. We then put

(P(A) = limn»w(pn(A)a Aed,

and ¢ becomes linear, bounded and is the only possible extension of the
original ¢ defined on the projections with these properties. This com-
pletes the proof of (i).
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Next, let # be any commutative von Neumann sub-algebra of 7,
and let LZ(S,u) be a function-algebra corresponding to it as in § 2.
For every n=1,2,..., let v, be the measure defined by

volB) = [Bul®) duts),  se S,
E

when §, is the function in L%(S,u) which corresponds to ¢,, and E is
any u-measurable set in §. Then define the measure » by

s v

=25 12" l+|[vn‘|(S)

N=] n
Here |v,| denotes the total variation of the measure »,. Then » is abso-
lutely continuous with respect to u and therefore determines a function
n e LL(S,u), n=dv[du. Now, let E be any u-measurable set, and let Py
be the projection in & which corresponds to y, the characteristic func-
tion of the set Z. Then

lim »,(E) = lim f Pu(5) 15(6) du(s) = lim ,(Py)

n—>o00 n—>o0 n-—>00

exists as a finite complex number. Moreover, each », is absolutely con-
tinuous with respect to », so by the measure-theoretic Vitali-Hahn-Saks
theorem we know that for any given &> 0 there is a d > 0 such that for
all y-measurable sets E satisfying »(E)<d we shall have »,(F)<e, n=
1,2,... ([2, ch.III, 7.2, p. 158]). But since » corresponds to the L1-
function 7, this is by the relation (2.1) exactly the same as saying that
{®n} is equicontinuous on N4 in 0 with respect to the o(#, %, )-topology.
Now this topology will coalesce with the weak operator-topology, rela-
tivized from &7 to Zn% ([1, ch. I, § 3.3, p. 36]). Hence (iii) is proved.

(iv) follows immediately from (iii), since we need only consider the
commutative von Neumann algebra generated by the family {P } ., in
question, and note that P,—~0 with respect to the weak operator-
topology.

(ii) follows at once from (iv) and the remarks preceding the theorem.

We do not know whether the family {g,},.n actually is weakly equi-
continuous on & in 0 (cf. (iii) in the theorem above). However, the
family {g,} will be equicontinuous with respect to the Mackey-topology
(&, ,), on all of of. This can be seen as follows: .7, is a Banach-
space with dual .7, and therefore the o(%/,,2/)-closed, convex, circled
extension of the sequence {g,} (which is relatively o(&/,,2/-compact)
must be o(s/,,.o7)-compact ([3, 17.12, p. 159]).
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The Mackey-topology t(&/,%/,) for & is given as the topology of
uniform convergence on the class of convex, circled, o(%,,2/)-compact
subsets of &7, so in particular {p,} must be equicontinuous on & with
respect to this topology.

An affirmative answer to the question above will therefore be obtained
if we can prove that the restrictions to P of the Mackey-topology
(o, /) and the weak operator topology respectively, determine equiv-
alent neighbourhood systems around 0. This is true when .o is commu-
tative, and due to a recent result of Sakai, we are also able to state it
for von Neumann algebras of finite type.

THEOREM 3. Let &/ be a von Neumann algebra of finite type, and let the
sequence {@,tnen be as in the premises of Theorem 2. Then {p, | &, }pcn
18 equicontinuous tn 0 with respect to the weak operator-topology. In
particular {@, | P}y 18 equicontinuous in 0.

Proor. In any von Neumann algebra, finite or not, we have for
A e o, A positive: p(4%) S p(4)-||4]l; 920, p € . The s-topology for
a von Neumann algebra o7 is determined by the family of semi-norms:

{p(A)=[p(4*A)}}, pe Ay, 920}, Ae.

Sakai [5], has proved that for von Neumann algebras of finite type, the
(s, )-topology will be equivalent to the s-topology on bounded sets
of &/. Then, since the weak operator topology and w*-topology for &/
(as the dual of &, ) also coalesce, it follows by the considerations preced-
ing the theorem and the inequality starting the proof, that the theorem
is true.
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